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Abstract. This note analyzes the mean-reverting behavior of time-
homogeneous Heath-Jarrow-Morton (HJM) forward rate models in the weighted
Sobolev spaces {Hw}w. An explicit sufficient condition is given under which in-
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sures parametrized by the distribution of the long rate.
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1 Introduction

It is commonly believed that over a long enough time horizon interest rates
tend to revert to their average historical levels. In this note we examine the
long time behavior of time-homogeneous Heath-Jarrow-Morton (HJM) interest
rate models and quantify this notion of mean-reversion. In particular, we find
sufficient conditions on the model parameters for the existence of and weak
convergence to invariant measures.

The forward rate ft(x) at time t ≥ 0 for time to maturity x ≥ 0 is given by

ft(x) = − ∂

∂x
log (P (t, t + x))

1This work was partially supported by a VIGRE postdoctoral fellowship under NSF Grant
DMS-0091946. The author would like to thank Marek Musiela, Damir Filipovic, and Thaleia
Zariphopoulou for fruitful discussions and suggestions. The author also thanks the referee for
helpful comments which have significantly improved the exposition.

1



where P (t, T ) denotes the price at time t ≥ 0 of a zero-coupon bond with matu-
rity date T = t+x. In the HJM framework [9] with the Musiela parametrization
[12], the forward rates satisfy, in a sense to be made precise below, the following
stochastic partial differential equation

dft(x) =
(

∂

∂x
ft(x) + at(x)

)
dt +

∞∑
i=1

σi
t(x)dW i

t (1)

where the drift is given by the the famous HJM no-arbitrage condition

at(x) =
∞∑

i=1

σi
t(x)

(∫ x

0

σi
t(u)du + λi

t

)
.

For several special cases, invariant measures have been proven to exist for
the HJM dynamics. For instance, Musiela in [12] and Vargiolu in [13] studied
the linear Gaussian HJM model and found conditions under which there exist
invariant measures for the risk-neutral dynamics. Brace, Gatarek, and Musiela
in [2] proposed a non-linear HJM model, the so-called market model, and found
conditions under which there exist an invariant measure for the risk-neutral
dynamics.

We proceed as follows: In section 2 we recall the HJM model in the Musiela
parametrization and introduce the family of state space {Hw}w. In section 3 we
present the main theorem: under an explicit sufficient condition there exists a
family of invariant measures for the HJM dynamics. Since the conditions of the
theorem are trivially satisfied when the volatility and market price of risk are
constant, we conclude this section with a description of the invariant measures
of the linear HJM models on this class of state spaces.

2 The HJM model

In this section we recall the mild formulation of the HJM equation as a stochastic
evolution equation

dft = (
∂

∂x
ft + at) dt + σtdWt

in a Hilbert space H, where ∂
∂x generates a strongly continuous semigroup on

H. Such a formulation places us within the framework of Da Prato and Zabczyk
[5, 6].

2.1 The choice of state space

The state space H needs to be chosen with care. For instance, the bond price
at time t ≥ 0 for maturity T ≥ t is given by

P (t, T ) = exp

(
−
∫ T−t

0

ft(s) ds

)
,
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and thus H should be a space of locally-integrable functions. Additionally, it
is convenient to choose a space H of continuous functions so that point-wise
evaluation is well-defined, and in particular, so that the definition of the spot
interest rate rt = ft(0) is meaningful.

Filipovic [8] proposed a family of spaces {Hw}w as appropriate state spaces
to analyze the HJM dyanamics. These spaces are defined as follows:

Definition 1 For a positive increasing function w : R+ → R+ such that∫∞
0

dx
w(x) < +∞, let Hw denote the space of absolutely continuous functions

f : R+ → R satisfying ∫ ∞

0

f ′(x)2w(x)dx < +∞

where f ′ is the weak derivative of f . Endow the space Hw with the inner product

〈f, g〉Hw = f(∞)g(∞) +
∫ ∞

0

f ′(x)g′(x)w(x)dx.

Remark 1 For every f ∈ Hw, the limit f(∞) = limx→∞ f(x) is well-defined.
Indeed, the the improper integral f(∞) = f(0)+

∫∞
0

f ′(x)dx converges absolutely
since ∫ ∞

0

|f ′(x)|dx ≤
(∫ ∞

0

f ′(x)2w(x)dx

)1/2(∫ ∞

0

dx

w(x)

)1/2

.

In [8] the space Hw was endowed with the inner product

(f, g)Hw = f(0)g(0) +
∫ ∞

0

f ′(x)g′(x)w(x)dx.

Since the inner products (·, ·)Hw and 〈·, ·〉Hw give rise to equivalent norms on
Hw, we choose to work with the inner product 〈·, ·〉Hw

to neaten the presentation
of the result.

The spaces {Hw}w have many nice properties as seen by the following propo-
sition:

Proposition 2 Fix a weight function w. The inner product space Hw is a
separable Hilbert space. In addition, the evaluation functional δx and the definite
integration functional Ix defined by

δx(f) = f(x) and Ix(f) =
∫ x

0

f(s)ds

are continuous on Hw for all x ≥ 0. Furthermore, the semigroup of operators
on Hw defined by

(Stf)(x) = f(t + x)

is strongly continuous.
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The proofs of the above statements can be found in [8].
The most important motivation for the choice of Hw as state space is that

Hw is compatible with the HJM no-arbitrage condition, at least if w increases
quickly enough. To state the precise result, we introduce some more notation.

For every w, we distinguish the subspace H0
w ⊂ Hw given by

H0
w = {f ∈ Hw such that f(∞) = 0}.

The subspace H0
w is the closed subspace of Hw orthogonal to the functional

δ∞ ∈ H∗
w. Note that we have the natural decomposition Hw

∼= H0
w ⊕ R.

Fix an arbitrary real separable Hilbert space G with inner product 〈·, ·〉G :
G × G → R, and let L2(G, H0

w) denote the space of Hilbert-Schmidt operators
from G into H0

w with with norm given by

‖A‖L2(G,H0
w) =

( ∞∑
i=1

‖Agi‖2
Hw

)1/2

where {gi}i∈N is any orthonormal basis for G.
Define the HJM function FHJM as a map from L(G, H0

w) into the space of
real-valued functions on R+ via

FHJM(A)(x) = 〈A∗δx, A∗Ix〉G

where for each L ∈ H∗
w we let A∗L be the unique element of G such that

〈A∗L, g〉G = L(Ag) for every g ∈ G.
When the weight w satifies a mild growth condition, the function FHJM is

a locally Lipschitz map from L2(G, H0
w) into H0

w. The following proposition,
which is proven in [8], provides an estimate on the smoothness of FHJM.

Proposition 3 Fix a weight w such that
∫∞
0

dx
w(x)1/3 < +∞. For A,B ∈

L2(G, H0
w) we have

‖FHJM(A)− FHJM(B)‖Hw
≤ Cw‖A−B‖L2(G,Hw)‖A + B‖L2(G,Hw)

where Cw = 2
(∫∞

0
dx

w(x)1/3

)3/2

.

2.2 The specification of the model

We fix a complete probability space (Ω,F , P) with filtration {Ft}t≥0 satisfying
the usual conditions and such that there exists a Wiener process W defined
cylindrically on the separable Hilbert space G. Let P be the predictable σ-field
on R+ × Ω.

We now state a definition, which we essentially take from [8], of an HJM
model for the forward rate:

Definition 4 An HJM model on Hw is a pair of functions (λ, σ) where

i. the measurable function λ from (R+ × Ω×Hw,P ⊗ BHw
) into (G,BG),
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ii. and the measurable function σ from (R+ × Ω × Hw,P ⊗ BHw) into
(L2(G, H0

w),BL2(G,H0
w)),

such that there exists a non-empty set of initial conditions f0 ∈ Hw for which
there exists a unique, continuous Hw-valued solution {ft}t≥0 of the HJM equa-
tion:

ft = Stf0 +
∫ t

0

St−sa(s, ω, fs)ds +
∫ t

0

St−sσ(s, ω, fs)dWs. (2)

where
a(t, ω, f) = FHJM ◦ σ(t, ω, f) + σ(t, ω, f)λ(t, ω, f).

Several remarks are in order.

Remark 2 For all HJM models on Hw, the long rate is constant. Indeed, by the
continuity of the functional δ∞, we have by equation (2) that ft(∞) = f0(∞)
a.s. for all t ≥ 0. Consequently, the HJM models on Hw verify the result of
Dybvig, Ingersoll, and Ross [7] that the long rate can never fall. See Hubalek,
Klein, and Teichmann [10] for a proof of this general theorem.

Remark 3 The choice of the auxiliary space G does not play a crucial role here.
Indeed, the stochastic integral with respect to the cylindrical Wiener process W
can be decomposed as a sum of stochastic integrals with respect to independent
scalar Wiener processes {W i}i∈N by fixing an orthonormal basis {gi}i∈N of G
and letting σi

t = σ(t, ω, ft)gi and (formally) W i
t = 〈gi,Wt〉G. We can recover

the classical n-factor HJM model in this setting by setting σi ≡ 0 for i > n;
equivalently, we may take G to be Rn. We prefer to leave G unspecified so that
the reader may substitute a Hilbert space to suit her intuition. For instance, one
may choose G = L2(R+) and interpret the increment dWt(x) as a white-noise in
space and time. The spacial variable x may be viewed as the time to maturity,
and the volatility σ(t, ω, ft) as an integral operator relating the instantaneous
correlations between different maturities.

Remark 4 The mild formulation (2) of the HJM equation proves more conve-
nient than the classical formulation (1) since the operator ∂

∂x is unbounded on
Hw.

A consequence of Proposition 3 is that sufficient conditions for the existence
of HJM models in the space Hw are easy to check as seen in the following
proposition:

Proposition 5 Fix a weight w such that
∫∞
0

dx
w(x)1/3 < +∞, and assume

‖σ(t, ω, f)− σ(t, ω, g)‖L2(G,H0
w) ≤ Lσ‖f − g‖Hw

(3)

‖σ(t, ω, f)‖L2(G,H0
w) ≤ Mσ (4)

‖σ(t, ω, f)λ(t, ω, f)− σ(t, ω, g)λ(t, ω, g)‖Hw
≤ Lσλ‖f − g‖Hw

(5)

for some positive constants Lσ,Mσ, and Lσλ and all t ≥ 0, ω ∈ Ω and f, g ∈ Hw.
Then the pair (λ, σ) is an HJM model on Hw. Furthermore, for any initial
forward curve f0 ∈ Hw there exists a unique, continuous solution to the equation
(2) such that E{supt∈[0,T ] ‖ft‖p

Hw
} < +∞ for all finite T ≥ 0 and p ≥ 0.
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The proposition can be proved by a standard fixed-point argument which can
be found, for instance, in Da Prato and Zabczyk [5].

3 Invariant measures for HJM models

In this section, we note that the spaces Hw are also compatible with a notion of
mean-reversion if the weight w grows sufficiently quickly.

We restrict our attention to an important class of HJM models:

Definition 6 A time-homogeneous HJM model (λ, σ) is an HJM model such
that there exist measurable functions λ̄ and σ̄ such that λ(t, ω, f) = λ̄(f) and
σ(t, ω, f) = σ̄(f) for all (t, ω, f) ∈ R+ × Ω×Hw.

We henceforth deal exclusively with time-homogeneous HJM models. To
lighten the notation, we write λ̄ = λ and σ̄ = σ and a = FHJM ◦ σ + σλ.
Associated with such an HJM model is the equation

ft = Stf0 +
∫ t

0

St−sa(fs)ds +
∫ t

0

St−sσ(fs)dWs. (6)

Consider equation (6) with the initial condition given by an Hw-valued F0-
measurable random variable f0 with law µ. If for all t ≥ 0 the law of the random
variable ft is also µ then we say µ is an invariant measure for the HJM model.

The following result finds explicit sufficient conditions such that an HJM
model has an invariant measure.

Theorem 7 Fix the weight w and let Cw = 2
(∫∞

0
dx

w(x)1/3

)3/2

and αw =

infx≥0
w′(x)
w(x) . Let (λ, σ) be a time-homogeneous HJM model on Hw with con-

stants Lσ,Mσ, and Lσλ be given by equations (3), (4), (5). If we have

L2
σ + 4CwLσMσ + 2Lσλ < αw (7)

then there exists an infinite family of invariant measures {µν}ν on Hw for the
HJM model (λ, σ) with the following properties:

i. Let ν be a probability measure on (R,BR). For every F0-measurable initial for-
ward curve f0 ∈ Hw such that the marginal distribution of the inital long rate
f0(∞) is ν, there exists a unique measure µν such that the law of ft converges
weakly to µν .

ii. For every bounded φ : Hw → R such that |φ(f) − φ(g)| ≤ ‖f − g‖Hw for all
f, g ∈ Hw we have∣∣∣∣E{φ(ft)} −

∫
Hw

φ(f)µν(df)
∣∣∣∣ ≤ (1 + E{‖f0‖Hw

})e−αwt/2.
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Proof. The semigroup {St}t≥0 is a strict contraction on H0
w. Indeed, we have

the calculation

‖Sth‖2
H0

w
=
∫ ∞

0

h′(x + t)2w(x)dx ≤ sup
x≥0

w(x)
w(x + t)

‖h‖2
H0

w

for every h ∈ H0
w, and hence ‖St‖L(H0

w) ≤ e−αwt/2.
For every c ∈ R, let σc(h) = σ(h + c1) and ac(h) = a(h + c1) for h ∈ H0

w,
and where 1(x) = 1 for all x ≥ 0. We have

〈Anh, h〉Hw ≤ − αw

2 + αw/n
‖h‖2

Hw
for all h ∈ H0

w

where An = n2
∫∞
0

e−nt(St − I)dt is the nth Yosida approximation of the gen-
erator of {St}t≥0. By Proposition 3 and assumption (7) there is an ε > 0 such
that

2〈An(g − h) + ac(g)− ac(h), g − h〉Hw

+‖σc(g)− σc(h)‖2
L2(G,Hw) ≤ −ε‖g − h‖2

Hw

for all g, h ∈ H0
w.

Let f0 ∈ Hw be deterministic with c = f0(∞). Applying the decomposition
Hw

∼= H0
w ⊕ R to equation (6) yields the system of equations ft(∞) = c and

f0
t = Stf

0
0 +

∫ t

0

St−sa
c(f0

s )ds +
∫ t

0

St−sσ
c(f0

s )dWs (8)

where f0
t = ProjH0

w
(ft). By Theorem 6.3.2 of [6], there exists for every c ∈ R a

unique invariant measure µ0,c, supported on H0
w, for equation (8). The measure

µc = µ0,c∗δc1 is an invariant measure for the HJM model. By the Feller property,
we have that c 7→ E{φ(ft)} is continuous for every t ≥ 0 and every bounded,
continuous φ : Hw → R. Since as t → ∞ we have E{φ(ft)} → µc(φ), the map
c 7→ µc(φ) is measurable.

Now let the initial condition for equation (6) be the F0-measurable random
variable f0 = f0

0 + C1 where C is a real random variable with law ν. Let
φ : Hw → R be bounded and such that |φ(f) − φ(g)| ≤ ‖f − g‖Hw

for all
f, g ∈ Hw. Again by Theorem 6.3.2 of [6], we have∣∣E{φ(ft)|C} − µC(φ)

∣∣ ≤ (1 + E{‖f0‖Hw
|C})e−αwt/2.

almost surely. Taking the expectation of both sides and letting the measure µν

be defined by µν(φ) = E{µC(φ)} completes the proof.

Remark 5 In a practical sense, the HJM model admits a unique invariant mea-
sure. Indeed, it is meaningless to consider initial forward curves with differing
long rates since, within the context of a given HJM model, the long rate is con-
stant. In other words, the value c = f0(∞) can be considered a model parameter,
elevated to the status of the functions λ and σ. Given the three parameters λ, σ,
and c, the unique invariant measure for the HJM model is the measure µν from
the theorem, where ν is the point mass concentrated at c.
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Note in the special case where λ(f) = λ and σ(f) = σ are constant functions,
assumption (7) is trivially satisfied since Lσ = Lσλ = 0.

Corollary 8 Let the weight w be such that infx≥0
w′(x)
w(x) > 0, and let λ ∈ G and

σ ∈ L2(G, H0
w) be deterministic constants.

The equation

ft = Stf0 +
∫ t

0

St−s(FHJM(σ) + σλ)ds +
∫ t

0

St−sσdWs (9)

has a family of invariant measures {µν}ν on the space Hw. For fixed ν, the
random variables f(x) = δx(f) on (Hw,BHw

, µν) have the following properties:

i. The distribution of the long rate f(∞) is ν.

ii. The conditional distribution of the forward rate f(x) given the long rate is Gaus-
sian, for every x ≥ 0.

iii. If
∫∞
−∞ |c| ν(dc) < +∞ and if λ = 0 then the expected value of the short rate

f(0) is greater than or equal to the expected value of any other forward rate.

iv. If
∫∞
−∞ c2 ν(dc) < +∞ then the variance of the short rate is greater than or equal

to the variance of any other forward rate.

Proof. Since σ and λ are constant functions by Theorem 7 equation (9) has a
family of invariant measures of the form µν = µ0 ∗ ν. The measure µ0 is the
unique invariant measure on H0

w for the Ornstein-Uhlenbeck process {f0
t }t≥0

and is Gaussian by Theorem 9.3.1 of Da Prato and Zabczyk [6].
By the continuity of the evaluation functionals δx we have

E{ft(x)} − E{f0(t + x)} = δx

∫ t

0

St−s(FHJM(σ) + σλ)ds

=
∫ t

0

δt−s+x(FHJM(σ) + σλ)ds

=
∫ t+x

x

〈σ∗δs, σ
∗Is + λ〉Gds

=
1
2
(
‖σ∗Ix+t + λ‖2

G − ‖σ∗Ix + λ‖2
G

)
.

Noting that the functional δt+x converges strongly in H∗
w to δ∞ and the func-

tional It+x converges strongly in H0∗
w to a functional I∞ ∈ H0∗

w we have

Eµν{f(x)} = lim
t→∞

E{ft(x)}

= Eµν{f(∞)}+
1
2
(
‖σ∗I∞ + λ‖2

G − ‖σ∗Ix + λ‖2
G

)
In the case that λ = 0, it follows that

Eµν{f(x)} = Eµν{f(∞)}+
1
2
(
‖σ∗I∞‖2

G − ‖σ∗Ix‖2
G

)
≤ Eµν{f(∞)}+

1
2
‖σ∗I∞‖2

G = Eµν{f(0)}
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Finally, we have the variance of f(x) is given by

Varµν{f(x)} = Varµν{f(∞)}+
∫ ∞

x

‖σ∗δt‖2
Gdt

which is decreasing in x ≥ 0.

Remark 6 We note that setting λ = 0 in Corollary 8 is equivalent to consider-
ing the risk-neutral HJM dynamics given by

ft = Stf0 +
∫ t

0

St−sFHJM(σ) ds +
∫ t

0

St−sσ dW̃s (10)

where the process W̃t = Wt +
∫ t

0
λsds is a cylindrical G-valued Wiener process

under the risk-neutral measure Q with Radon-Nikodym derivative

dQ
dP

= exp
(
−1

2

∫ t

0

‖λs‖2
G ds +

∫ t

0

〈λs, dW̃s〉G
)

.

Remark 7 Vargiolu [13] studied the risk-neutral dynamics of the linear Gaus-
sian HJM model when the state space is one of the family of Sobelev spaces
{H1

γ}γ≥0 with norm

‖f‖2
H1

γ
=
∫ ∞

0

f(x)2e−γxdx +
∫ ∞

0

f ′(x)2e−γxdx.

and found, for the case γ > 0, that if
∞∑

i=1

‖σi‖2
H1

γ
< +∞,

∞∑
i=1

‖σi‖4
H1

0
< +∞, and

∞∑
i=1

‖σi‖4
L4

γ
< +∞

then there exists a mild solution to equation (10) in the space H1
γ . If in addition∑∞

i=1 ‖σi‖2
H1

0
< +∞ then there exists a family of Gaussian invariant measures

on H1
γ .

We note that by choosing the state space to be one of the (much smaller)
Sobolev spaces Hw with a weight w that grows fast enough, then there exists a
unique mild solution of equation (8) if σ ∈ L2(G, H0

w) and λ ∈ G. Furthermore,
under no additional assumptions, there exists a family of invariant measures on
Hw.

4 Conclusion

We studied the mild solution to equation (6) in the family of Hilbert spaces
{Hw}w. These spaces are attractive candidates for the state space for the HJM
dynamics since the HJM function F is locally Lipschitz on L2(G, H0

w) when the
weight w grows fast enough. We find that when the weight grows exponentially
fast, the shift semigroup {St}t≥0 has a strongly dissipative generator on H0

w,
and an explicit sufficient condition for the existence of invariant measures for
the HJM dynamics can be formulated in terms of the Lipschitz constants and
bounds for the volatility and market price of risk. In particular, this condition
is satisfied for all linear Gaussian HJM models on these spaces.
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