
The Annals of Applied Probability
2004, Vol. 14, No. 3, 1267–1294
DOI 10.1214/105051604000000297
© Institute of Mathematical Statistics, 2004

A CHARACTERIZATION OF HEDGING PORTFOLIOS FOR
INTEREST RATE CONTINGENT CLAIMS
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We consider the problem of hedging a European interest rate contingent
claim with a portfolio of zero-coupon bonds and show that an HJM type
Markovian model driven by an infinite number of sources of randomness does
not have some of the shortcomings found in the classical finite-factor models.
Indeed, under natural conditions on the model, we find that there exists a
unique hedging strategy, and that this strategy has the desirable property that
at all times it consists of bonds with maturities that are less than or equal to
the longest maturity of the bonds underlying the claim.

1. Introduction. This paper seeks to characterize portfolios that hedge
contingent claims in the fixed income market. The fundamental traded instruments
in this market are (zero-coupon) bonds, contracts in which the issuer agrees to pay
one unit of currency at a fixed future maturity date. The idealized bonds considered
here do not suffer from credit risk, that is, at maturity the bond issuer always makes
the promised payment.

There are bonds with so many maturity dates traded on the market, it is
conventional to assume at every timet ≥ 0 there exists a bond that matures at
time T for everyT ≥ t . We use the notationPt(T ) to denote the price at timet
of a bond with maturity dateT .

Assuming that there is a continuum of traded securities is an important
distinction from the classical Black–Scholes theory. Indeed, whereas in the Black–
Scholes setting we work with a finite-dimensional vector(S1

t , . . . , Sn
t ) of stock

prices at timet , in the fixed income market we work with the infinite-dimensional
vector of the bond price curvePt(·). It comes as no surprise then that the
characterization of hedging porfolios in the fixed income market is a more subtle
problem.

In Section 2 we review the classical finite-factor HJM models for the dynamics
of the term structure of interest rates and discuss one of their major shortcomings:
they allow for unnatural hedging strategies which would never be used by traders.
In particular, for HJM models driven by ad-dimensional Wiener process, every
interest rate contingent claim can be hedged perfectly by a portfolio of bonds
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of d arbitrary maturities chosen a priori independently of the contingent claim.
This result is at odds with traders’ intuition that the maturities of the hedging bonds
should depend on the contingent claim in question, and it is the main motivation
for the present work.

In Section 3 we consider the natural generalization of HJM models driven by
an infinite-dimensional Wiener process. We introduce the necessary functional
analysis notation, and we define the function spaces which we use as state spaces
for our infinite-dimensional dynamics. In this setting, the appropriate notion of
portfolio is not obvious. But if we agree to consider a certain class of portfolios,
we show that if a contingent claim can be hedged by a given strategy, then this
strategy is unique under an appropriate model assumption. However, we run into
two technical difficulties. First, for a given contingent claim it is not clear whether
a hedging strategy exists at all. Second, if a strategy does exist, it is not obvious if
the strategy agrees with the traders’ intuition.

We are able to resolve these two technical problems with the tools of Malliavin
calculus. Section 4 reviews briefly some useful results from this theory, including
an infinite-dimensional version of the original Clark–Ocone formula. The results
of Section 4 areessentially known. We state them clearly, and we prove those we
could not find in the existing literature in an appropriate form.

In Section 5 we present the main results of this article. We consider the problem
of hedging a European contingent claim for an infinite-factor Markovian HJM
model where the payout functional is assumed to be Lipschitz. We explicitly
compute the hedging strategy via the Clark–Ocone formula and show that the
difficulties of the finite-factor HJM models can be overcome. In particular, under
natural conditions on the model, we find in Theorem 5.7 that there exists a unique
hedging strategy with the intuitively appealing property that at all times it consists
of bonds with maturities that are less than or equal to the longest maturity of the
bonds underlying the claim.

2. Shortcomings of the finite-factor HJM models. An important class of
models of the fixed income market, introduced by Heath, Jarrow and Morton
(1992) and henceforth called HJM models, takes the forward rate curve as the
fundamental object to model. We can define the forward rateft(T ) at time t for
maturityT to be given by the formula

ft(T ) = − ∂

∂T
logPt(T )(1)

whenever the bond price function is differentiable. Since a dollar today is worth
more than a dollar tomorrow, we note that the bond price functionPt(·) is
decreasing, implying by Vitali’s theorem that the forward rateft(T ) exists for
Lebesgue almost everyT ∈ [t,∞). We assume in fact that the forward rates exist
for everyT , and in particular we can define the short ratert at timet by the relation

rt = ft (t).(2)
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Note that the functionsPt(·) andft(·) contain the same information because the
bond prices can be recovered from the forward rates via the equation

Pt(T ) = exp
(
−

∫ T

t
ft (s) ds

)
.(3)

The classical HJM model is specified by fixing a measurable space(�,F ) and a
risk-neutral probability measureQ for which there exists a standardd-dimensional
Wiener process{Wt = (W1

t , . . . ,Wd
t )}t≥0 and the filtration{Ft }t≥0 given by the

augmentation of the filtration generated by the Wiener process, such that the
dynamics of the forward rate processes{ft (T )}t∈[0,T ] are given by

dft(T ) =
〈
τt (T ),

∫ T

t
τt (s) ds

〉
Rd

dt − 〈τt (T ), dWt〉Rd(4)

where{τt (T ) = (τ1
t (T ), . . . , τ d

t (T ))}t∈[0,T ] is anRd -valued adapted process for
eachT > 0 and the bracket〈·, ·〉Rd is the usual Euclidean scalar product. The
specific form of the drift was shown in Heath, Jarrow and Morton (1992) to be
necessary to prohibit arbitrage. An important feature of this methodology is that
the initial condition for these modelsis the whole forward rate curvef0(·).

Note that for these models there are an infinite number of stochastic differential
equations, one for each value ofT , driven by a finite number of sources
of randomness. Besides the fact that finite-dimensional Wiener processes are
mathematically easier to handle than infinite-dimensional ones, this modeling
assumption is usually justified by appealing to the statistics of the yield and
forward rate curves observed on the market. [Recall that the yieldyt (T ) at
time t for maturity T is given byyt(T ) = (T − t)−1 ∫ T

t ft (s) ds.] The principal
component analysis of the U.S. Treasury yield curve as reported by Litterman
and Scheinkman (1991) and of the Eurodollar forward rates by Bouchaud, Cont,
Karoni, Potters and Sagna (1999) suggests that the dynamics of the forward rate
are driven by a few sources of noise. Indeed, Litterman and Scheinkman found
that over 95% of the variations of the yield curve can be attributed to the first three
factors, lending credence to HJM models driven by a low-dimensional Wiener
process.

However, the assumption that the driving noise is finite dimensional has an
important implication. Consider the problem of replicating the realFT -measurable
random variableξ corresponding to the payout of an interest rate contingent claim
that matures at a timeT . Our hedging instruments are naturally the set of zero-
coupon bonds and therisk-free bankaccount process{Bt}t≥0 defined by

Bt = exp
(∫ t

0
rs ds

)
.(5)

To ease notation, we begin with a definition.
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DEFINITION 2.1. For every process{Xt }t≥0, we define the discounted
process{X̃t }t≥0 by X̃t = B−1

t Xt . For everyFT -measurable random variableξ
corresponding to the payout of a contingent claim with maturityT , we use the
notationξ̃ = B−1

T ξ .

A major shortcoming of the finite-factor models is found in the following well-
known proposition. We give a complete proof of this result to emphasize the
difficulties we have to overcome in order to resolve the issues it raises.

PROPOSITION 2.2. Suppose there exist d dates T1 < T2 < · · · < Td and
a positive constant c such that, for all T < T1, the d × d matrix

σt =
[
P̃t (Ti)

∫ Ti

t
τ

j
t (s) ds

]
i,j=1,...,d

(6)

satisfies ‖σtx‖Rd ≥ c‖x‖Rd for all x ∈ Rd and almost all (t,ω) ∈ [0, T ]×�. Then
for every contingent claim ξ with maturity T < T1 such that E{ξ̃2} < +∞, there
exists a replicating strategy consisting of bonds with maturities T1, T2, . . . , Td and
the bank account.

PROOF. Consider a strategy such that, at timet , the portfolio consists ofφi
t

units of the bond with maturityTi for i = 1, . . . , d and ofψt units of the bank
account. As usual, we insist that our wealth process{Vt = 〈φt,Pt〉Rd + ψtBt}t≥0
satisfies the self-financing condition

dVt = 〈φt, dPt〉Rd + ψt dBt,

whereφt = (φ1
t , . . . , φ

d
t ) is the vector of portfolio weights andPt = (Pt(T1), . . . ,

Pt (Td)) is the vector of bond prices. We now show that there exist processes
{φt}t∈[0,T ] and{ψt }t∈[0,T ] such thatVT = ξ almost surely.

Recall that the bond price at timet for maturitys is related to the forward rates
by (3), so by an application of Itô’s rule and the stochastic Fubini’s theorem we
have that the dynamics of the bond price for eachTi satisfy the equation

dPt(Ti)

Pt(Ti)
= rt dt +

〈∫ Ti

t
τt (u) du, dWt

〉
Rd

.(7)

By (7) and (6), the dynamics of the vector of discounted bond prices is given by
dP̃t = σt dWt , and consequently, the dynamics of the discounted wealth process is
given by

dṼt = 〈φt, dP̃t〉Rd = 〈σ ∗
t φt , dWt〉Rd .

On the other hand, ifE{ξ̃2} < +∞, we can apply Itô’s martingale representation
theorem to conclude that there exists ad-dimensional adapted process{αt}t∈[0,T ]
such thatE{∫ T

0 ‖αt‖2
Rd dt} < +∞ and

ξ̃ = E{ξ̃} +
∫ T

0
〈αt, dWt〉Rd .
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Setting the initial wealthV0 = E{ξ̃} and portfolio weightsφt = σ ∗−1
t αt and

ψt = Ṽt − 〈φt, P̃t 〉Rd , we find our desired replicating strategy.�

Thus, in this d-factor HJM model every square-integrable claim can be
replicated by a strategy of holding bonds maturing at thed datesT1, . . . , Td fixed a
priori and independently of the claim. For instance, with a three-factor HJM model,
it is possible to perfectly hedge a call option on a bond of maturity five years
with a portfolio of bonds of maturity fifteen, twenty and twenty-five years. Cont
(2004) remarks that this result is counterintuitive and contrary to market practice.
Indeed, there seems to be a notion of “maturity specific risk” not captured by finite-
factor HJM models since we expect that such a contingent claim should be hedged
with bonds of maturities less than or equal to five years. This shortcoming can be
attributed to the high degree of redundancy in the finite-factor models.

In Section 3 we show that if the dynamics of the bond prices are driven by
an infinite-dimensional Wiener process, we can find conditions on the model such
that a given hedging strategy is unique. Unfortunately, the usual notions of hedging
become more complicated in infinite dimensions.

3. Infinite-factor HJM models: some difficulties. In this section we take a
first look at the hedging problem for infinite-factor HJM models, our goal being to
emphasize some of the difficulties occurring because of the infinite-dimensionality
of the sources of randomness.

Here and throughout the rest of the paper, the stochastic processes are assumed
to be defined on a complete probability space(�,F ,Q). Also, for the ease of
exposition we prefer to break from the HJM tradition and choose the state variable
for these models to be the discounted bond price curveP̃t (·) instead of the forward
rate curveft (·). But noting that the price of a bond at maturity isPt(t) = 1, we see
that the bank account process can be recovered by the formula

Bt = 1

P̃t (t)
(8)

and the bond price with maturitys ≥ t can be recovered via

Pt(s) = P̃t (s)

P̃t (t)
.(9)

This change of variables eases the analysis, although it is quite superficial in
the sense that there is a one-to-one correspondence between bond prices and
instantaneous forward rates given by (1). As motivation for this change of
variables, consider a European option that matures at timeT and has a payout
of the form

ξ = g
(
PT (T1), . . . ,PT (Tn)

)
(10)
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for some datesTi ≥ T and some measurable functiong :Rn → R. From the dis-
cussion in Section 2 we see that, in order to replicate such a claim, we must find the
martingale representation of the discounted claimξ̃ = B−1

T g(PT (T1), . . . ,PT (Tn)).
By (5) we see that̃ξ depends not only on the bond prices at timeT but also on
the entire history of the short rate process. But treating the discounted bond price
curve as the state variable, we have by (8) and (9) that

ξ̃ = P̃T (T ) g

(
P̃T (T1)

P̃T (T )
, . . . ,

P̃T (Tn)

P̃T (T )

)
.

Defining the functional̃g on the spaceC(R+) of continuous functions onR+ by

g̃(x) = x(T )g

(
x(T1)

x(T )
, . . . ,

x(Tn)

x(T )

)
,(11)

we have that̃ξ = g̃(P̃T ) only depends on the timeT values of the discounted
bond price processes. Of course this trades one infinite-dimensional problem for
another; yet in this framework, the problem can be treated as the Black–Scholes
problem of pricing and hedging a modified European contingent claim on a
portfolio of “stocks” with zero interest rate.

REMARK 3.1 (Settlement in arrears). There are many interest rate options
that pay in arrears. That is, although the payoutξ = g(PT (T1), . . . ,PT (Tn)) is
FT -measurable, the money does not change hands until the future settlement date
T +
T . This is the case for claims contingent on the LIBOR rate, such as caplets.
In this situation the discounted claim is

ξ̃ = B−1
T +
T g

(
PT (T1), . . . ,PT (Tn)

)
.

Noting thatP̃T +
T (T + 
T ) = P̃T (T + 
T ) + ∫ T +
T
T dP̃t (T + 
T ), we have

by (8) and (9) that

ξ̃ = ĝ(P̃T ) +
∫ T +
T

T
ξ dP̃t (T + 
T ),

whereĝ :C(R+) → R is defined by

ĝ(x) = x(T + 
T )g

(
x(T1)

x(T )
, . . . ,

x(Tn)

x(T )

)
.

Thus the strategy that consists of replicating theFT -measurable random vari-
ableĝ(P̃T ) and then holdingξ units of the bond with maturityT + 
T replicates
the payout of the contingent claim. Hence the hedging problem still maps to an
infinite-dimensional zero interest rate Black–Scholes world, but with the payout
function modified slightly differently.



INTEREST RATE HEDGING PORTFOLIOS 1273

REMARK 3.2. For each timet , the domain of the discounted bond price
function P̃t (·) is the interval[t,∞). Since we need to consider the dynamics of
the discounted price curve ast varies, it would be more convenient if the functions
P̃t (·) had a common domain. For this reason, we assume that, for everyt ≥ 0, the
domain of the discounted bond price functionP̃t (·) is the interval[0,∞), where
we extend the definition of̃Pt(·) by P̃t (s) = B−1

s for s ∈ [0, t]. Note then that the
process{P̃t (s)}t≥0 is constant fort ≥ s. The corresponding bond prices are given
by Pt(s) = B−1

s Bt for s ∈ [0, t] so that this extension conforms with the price

Pt(s) = E

{
Bt

Bs

∣∣∣Ft

}
(12)

for s ≥ t and can be understood that once a bond matures the one dollar payout is
immediately put into the bank to accrue interest at the short rate.

REMARK 3.3. Another popular way to resolve the issue of having functions
defined on time-dependent domains is to switch to the so-called Musiela notation.
The idea is to work with the timeto maturityθ = T − t rather than with the time
of maturityT . In this approach, the reparameterized discounted bond price curve
P̂t (·) is defined by

P̂t (θ) = P̃t (t + θ).

For the finite-factor HJM model, this new process is a weak solution of the
following stochastic partial differential equation:

dP̂t(θ) = ∂P̂t (θ)

∂θ
dt + P̂t (θ)

〈∫ t+θ

t
τt (s) ds, dWt

〉
Rd

.

This formulation of the HJM models proved to be very fruitful; see, for instance,
Musiela (1993), Goldys and Musiela (1996)and Filipovic (2001). Nevertheless,
for the sake of studying the hedging strategies for interest rate contingent claims,
it is more convenient to retain the time to maturity parameterization. Indeed,
whereas the process{P̃t (T )}t≥0 is a martingale for eachT , the analogous process
in Musiela notation{P̂t (θ)t }t≥0 is usually not a martingale for anyθ .

In order to specify an infinite-factor model of the evolution of the discounted
bond prices, it is natural to work in a function space setting. We first review the
relevant notation of functional analysis. For a Banach spaceE, the duality form
is denoted〈·, ·〉E :E∗ × E → R. If F is another Banach space, we letL(F,E)

denote the Banach space of bounded linear operators takingF into E with norm

‖A‖L(F,E) = sup
x∈F,‖x‖F≤1

‖Ax‖E.
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If A ∈ L(F,E), the (Banach space) adjointA∗ of A is the unique element of
L(E∗,F ∗) satisfying

〈µ,Ax〉E = 〈A∗µ,x〉F for all µ ∈ E∗, x ∈ F.

If G is a Hilbert space, we use the notationx∗ ∈ G∗ for the Riesz representation
of the elementx ∈ G, and we identify the double dualG∗∗ with G. If S is a
subspace ofG, then we let

S⊥ = {
µ ∈ G∗ such that〈µ,x〉G = 0 for all x ∈ G

}
be the closed subspace ofG∗ orthogonal toS.

If G andH are separable Hilbert spaces, the space of Hilbert–Schmidt operators
takingH into G is denotedLHS(H,G) and is itself a Hilbert space for the norm

‖A‖LHS(H,G) =
( ∞∑

i=1

‖Aei‖2
G

)1/2

,

where{ei}i is any orthonormal basis forH . There is a natural isometry of the space
LHS(H,G) and the Hilbert space tensor productG ⊗ H ∗.

For a Banach spaceE, we denote byLp(�;E) the Banach space of
(equivalence classes of ) measurable functions from� into E with the norm

‖f ‖Lp(�;E) =
(∫

�
‖f (x)‖p

E µ(dx)

)1/p

,

where the measure space(�,G,µ) is the interval ([0, T ],B[0,T ],Leb[0,T ]),
the probability space(�,F ,Q), or their product([0, T ] × �,B[0,T ] ⊗ F ,

Leb[0,T ] ×Q).
For our application, we need an infinite-dimensional version of the vector-

valued stochastic integrals of the form
∫ t
0 σs dWs . Self-contained expositions of

the theory of infinite-dimensional stochastic integration can be found in the books
of Da Prato and Zabczyk (1992), Kallianpur and Xiong (1995) and Carmona
(2004). From now on, we fix a real separable Hilbert spaceH , and we assume
that {Wt}t≥0 is a cylindricalH -valued Wiener process defined on the probability
space(�,F ,Q), that this cylindrical process generates theσ -field F , and that the
filtration {Ft}t≥0 is given by the augmentation of the filtration it generates. The
classical finite-factor HJM model corresponds to the choice of a finite-dimensional
spaceH . The integrands considered here are the adapted, measurable and square-
integrable stochastic processesσ = {σt}t≥0 valued in the spaceLHS(H,F ) of
Hilbert–Schmidt operators fromH into F for which we have Itô’s isometry

E

{∥∥∥∥
∫ t

0
σs dWs

∥∥∥∥
2

F

}
= E

{∫ t

0
‖σs‖2

LHS(H,F ) ds

}
.

Note if F = R, the spaceLHS(H,R) of Hilbert–Schmidt operators is justH ∗. In
this case we write ∫ t

0
σs dWs =

∫ t

0
〈σs, dWs〉H
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in analogy with the finite-dimensional stochastic integration. However, this
notation can only be formal ifH is infinite dimensional since the Wiener process
{Wt}t≥0 visits the spaceH with probability zero.

We now introduce a family of weighted Sobolev spaces to serve as the state
space for the infinite-dimensional dynamics.

DEFINITION 3.1. For every functionw :R+ → R+ and fori = 1,2, we define
the spaceF i

w of functionsx :R+ → R which arei − 1 times differentiable, with
a (i − 1)st derivativex(i−1) absolutely continuous and such thatx(j)(∞) = 0
for j ≤ i − 1, and

∫ ∞
0 x(i)(u)2w(u)du < +∞.

The spaceF i
w is a Hilbert space for the norm‖x‖F i

w
= (

∫ ∞
0 x(i)(u)2w(u)du)1/2.

We work with the spacesF 1
v andF 2

w. We list three useful properties of these
spaces.

PROPOSITION3.2. If the positive function v is such that Cv = ∫ ∞
0 v(s)−1 ds <

+∞, then the evaluation functionals δs , where 〈δs, x〉F 1
v

= x(s), are continuous

on F 1
v for all s ≥ 0.

If the positive function w is such that Cw = ∫ ∞
0 (1 + u2)w(u)−1du < +∞,

then the evaluation functionals δs and the point-wise differentiation δ′
s , where

〈δ′
s, x〉F 2

w
= −x′(s), are both linear continuous functionals on F 2

w for all s ≥ 0.

If Cvw = ∫ ∞
0

∫ s
0 v(u)/w(s) duds < +∞, then the inclusion from F 2

w to F 1
v is

continuous.

PROOF. The evaluation functionals are uniformly bounded onF 1
v since

∣∣〈δs, x〉F 1
v

∣∣ = |x(s)| =
∣∣∣∣
∫ ∞
s

x′(u) du

∣∣∣∣
≤

(∫ ∞
s

du

w(u)

)1/2(∫ ∞
s

x′(u)2w(u)du

)1/2

≤ C1/2
v ‖x‖F 1

v
.

Similarly, the point-wise differentiation functionals are uniformly bounded on
F 2

w by C
1/2
v . The evaluation functionals are uniformly bounded onF 2

w since
∣∣〈δs, x〉F 2

w

∣∣ = |x(s)| =
∣∣∣∣
∫ ∞
s

x′(u) du

∣∣∣∣
=

∣∣∣∣
∫ ∞
s

(u − s)x′′(u) du

∣∣∣∣
≤

(∫ ∞
s

(u − s)2 du

w(u)

)1/2(∫ ∞
s

x′′(u)2w(u)du

)1/2

≤ C1/2
w ‖x‖F 2

w
.
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Finally, if x ∈ F 1
v ∩ F 2

w, then

‖x‖2
F 1

v
=

∫ ∞
0

x′(s)2v(s) ds

≤
∫ ∞

0

∫ ∞
s

du

w(u)
‖x‖2

F 1
w
v(s) ds = Cvw‖x‖2

F 1
w
,

and hence the inclusion fromF 2
w to F 1

v is continuous. �

We fix a weightw satisfying the conditions ofProposition 3.2, and from now on
we assume that the state variableP̃t (·) is an element of the function spaceF 2

w for
everyt ≥ 0. Note that for this choice of state space, we may speak honestly about
the price of a specific bond or the value of a specific forward rate since evaluation
and point-wise differentiation are continuous. This choice also agrees with the fact
that a bond that never matures is worthless and henceP̃t (∞) = B−1

t Pt (∞) = 0.
And sinceF 2

w is a Hilbert space, we may use the integration theory mentioned
above.

We now formulate a model of the discounted price dynamics.

ASSUMPTION 3.3. The risk-neutral dynamics of the discounted price curve
{P̃t}t≥0 are described by the initial conditioñP0 ∈ F 2

w and the evolution equation

dP̃t = σt dWt,(13)

where{σt}t≥0 is anLHS(H,F 2
w)-valued adapted stochastic process such that

σ ∗
t δs = 0 for all t ≥ s.(14)

We assume that̃P0 and {σt }t>0 conspire in such a way that̃Pt(s) > 0 for
all s ≥ 0 and that

E

{∫ t

0

( |P̃ ′
s(s)| ‖P̃s‖F 2

w

P̃s(s)2
+

(
1+ 1

P̃s(s)2

)
‖σs‖2

LHS(H,F 2
w)

)
ds

}
< +∞.(15)

REMARK 3.4. Condition (14) guarantees that the process{P̃t (s)}t≥0 becomes
constant fort ≥ s. Indeed, the continuity ofδs implies that, fort ≥ s, we have

P̃t (s) − P̃s(s) =
∫ t

s
〈σ ∗

u δs, dWu〉H = 0.

Since our starting point is the discounted bound curveP̃t , we need to infer
the definition of the bank accountBt and of the zero-coupon curvePt . The bank
account, given by the formulaBt = P̃t (t)

−1, has dynamics given formally by

dBt = − P̃ ′
t (t)

P̃t (t)2
dt,(16)



INTEREST RATE HEDGING PORTFOLIOS 1277

while the prices of the zero-coupon bonds, given byPt = P̃t /P̃t (t), have dynamics
given formally by

dPt = − P̃ ′
t (t)

P̃t (t)2
P̃t dt + 1

P̃t (t)
σt dWt .(17)

Condition (15) ensures that the stochastic equations (13), (16) and (17) make
perfectly good sense. In Remark 5.1 we give sufficient conditions for (15) to hold
for a Markovian HJM model.

REMARK 3.5. Because the eigenvalues of a Hilbert–Schmidt operator must
decay fast enough for the sum of their squares to be finite, assuming thatH is
infinite dimensional does not disagree with the principal component analysis
typically used to justify the introduction of models with finitely many factors.

Given such a model, we propose to study how to hedge a contingent claim.
Equivalently, this problem is equivalent to the search for a representation of the
contingent claim as a stochastic integral with respect to the underlying price
process. As we are about to see, this task reduces to finding an adapted process
{φt}t≥0 such that

ξ̃ = E{ξ̃} +
∫ T

0
〈φs, dP̃s〉F 2

w
.

Identifying this process{φt}t≥0 illustrates the difficulties of working in infinite
dimensions.

In the real world, a portfolio can only contain a finite number of bonds at
any time. That is, we really should only consider processes such that, for almost
every(t,ω) ∈ [0, T ] × �, we can find a positive integerd , positive real numbers
T1, . . . , Td and real numbersc1, . . . , cd so that

φt =
d∑

i=1

ciδTi
.

However, limiting ourselves to such portfolios at this stage of the analysis would
be severely restrictive. Indeed, since we are willing to assume that there exists a
continuum of traded securities, it seems reasonable to assume that we can form
portfolios with bonds of an infinite number of different maturities. Since the
process{P̃t}t≥0 takes values inF 2

w, it would seem natural to require that{φt}t∈[0,T ]
takes values in the dualF 2∗

w . Remember that measures of the form
∑d

i=1 ciδTi
are

in F 2∗
w . But the elements of the spaceF 2

w are functions that are quite smooth, and
consequently, the dual spaceF 2∗

w contains distributions that can be quite rough.
Indeed, point-wise differentiation is bounded onF 2

w, and we choose to work in
this space precisely because we need to define the short rate in the drift of the
bond price process. Nevertheless, even though we would prefer to think of our
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hedging strategies as being measures, if we work withF 2∗
w -valued portfolios, we

risk the uncomfortable possibility that they might be much wilder distributions.
As a partial resolution to this problem, we consider strategies valued inF 1∗

v ,
where v is a function satisfying the conditions of Proposition 3.2. Since the
inclusion map fromF 2

w into F 1
v is continuous, the dualF 1∗

v can be identified with a
dense subset ofF 2∗

w . We fix av once and for all, and henceforth adopt the notation
F = F 1

v .
We now make precise the various notions of strategy we shall use.

DEFINITION 3.4. A strategy is an adaptedF ∗-valued process{φt}t≥0 such
thatφt ∈ T[t,∞) for almost every(t,ω), where we use the notation

TA = span{δs; s ∈ A} ⊂ F ∗(18)

for a closed intervalA ⊂ R+ and where the closure is taken in the topology ofF ∗.

Note that the restrictionφt ∈ T[t,∞) reflects the fact that it is unnecessary to hold
expired bonds.

DEFINITION 3.5. A self-financing strategy is a strategy{ϕt }t≥0 such that
d〈ϕt,Pt〉F = 〈ϕt , dPt〉F .

For each strategy{φt}t≥0, the associated wealth process{Vt }t≥0 has dynamics

dVt = 〈φt, dPt〉F + ψt dBt

with ψtBt = Vt − 〈φt,Pt〉F . But by (16) and (17), we havedBt = Bt〈δt , dPt〉F ;
that is to say, the bank account can be replicated by the self-financing strategy of
holding the bond maturing instantly. Hence, the dynamics of the wealth process
can be written in the form

dVt = 〈
φt + (Vt − 〈φt,Pt 〉F )δt , dPt

〉
F ,

and for every strategy{φt}t≥0 we can construct a self-financing strategy{ϕt}t≥0
via the rule

ϕt = φt + (Vt − 〈φt,Pt〉F )δt .

DEFINITION 3.6. A pre-hedging strategy for the contingent claimξ is a
strategy{φt}t∈[0,T ] such that

ξ̃ = E{ξ̃} +
∫ T

0
〈φs, dP̃s〉F .

A hedging strategy for the contingent claimξ is a self-financing pre-hedging
strategy.
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Note that a pre-hedging strategy need not be self-financing since the pre-
hedging condition is indifferent to the amount held in the bank account.

We now show that if a contingent claim can be hedged by anF ∗-valued strategy,
then under an appropriate model assumption, the hedging strategy is unique. This
is a first step toward eliminating the counterintuitive strategies found in Section 2
in the case of finite-dimensional models.

Note that under the condition (14) we necessarily have ker(σ ∗
t ) ⊃ T[0,t] sinceσ ∗

t

is almost surely a bounded operator. If we insist that this inclusion is an equality,
we have the following proposition.

PROPOSITION3.7. Suppose, for almost all (t,ω) ∈ [0, T ] × �, we have

ker(σ ∗
t ) = T[0,t].(19)

If the hedging strategies {ϕ1
t }t∈[0,T ] and {ϕ2

t }t∈[0,T ] hedge the same claim ξ ,
then ϕ1

t = ϕ2
t for almost all (t,ω) ∈ [0, T ] × �.

PROOF. Clearly the strategy{ϕt = ϕ1
t − ϕ2

t }t∈[0,T ] replicates the zero payout.

Since {ϕt }t∈[0,T ] is pre-hedging, we have
∫ T
0 〈ϕt, dP̃t〉F = 0 almost surely and

henceE{∫ T
0 ‖σ ∗

t ϕt‖2
H ∗ dt} = 0. Thus we have thatϕt ∈ T[0,t] ∩ T[t,∞) for almost

all (t,ω). Furthermore, since{ϕt }t∈[0,T ] is self-financing, we have〈ϕt,Pt 〉F = 0
for almost all(t,ω).

Fixing (t,ω), we now letj ∈ F be any function with the property thatj (t) = 1.
Note that the function1[t,∞)(Pt − j) is in F and that〈

ϕt ,1[t,∞)(Pt − j)
〉
F = 0.

Similarly, the function1[0,t](Pt − j) is also inF and〈
ϕt ,1[0,t](Pt − j)

〉
F = 0.

Hence, we have〈ϕt , j〉F = 0 for everyj ∈ F ; thusϕt = 0. �

REMARK 3.6. The above proof of uniqueness does not go through if we
had allowedF 2∗

w -valued portfolios. In particular, there exist nonzero portfolios
ϕt ∈ F 2∗

w such that

ϕt ∈ span{δs; s ≤ t}F 2∗
w ∩ span{δs; s ≥ t}F 2∗

w

and 〈ϕt ,Pt〉F = 0. For example, letϕt = rtδt − δ′
t . This is another reason for

demanding that the portfolios be valued in the smaller spaceF ∗ = F 1∗
v .

Only with infinite-dimensionalH can we hope to satisfy the conditions of the
above proposition. However, unlike the finite-dimensional case, it is not clear that
such hedging strategies exist in general. Parroting the calculation from Section 2,
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let ξ̃ be a square-integrable discounted claim and suppose that we could find a
pre-hedging strategy{φt}t≥0 such that

ξ̃ = E{ξ̃} +
∫ T

0
〈φs, dP̃s〉F = E{ξ̃} +

∫ T

0
〈σ ∗

s φs, dWs〉H .

But recall that the martingale representation theorem states that there exists an
adaptedH ∗-valued process{αt}t∈[0,T ] such thatE

∫ T
0 ‖αs‖2

H ∗ ds < +∞ and

ξ̃ = E{ξ̃} +
∫ T

0
〈αs, dWs〉H .(20)

See Da Prato and Zabczyk (1992) or Carmona (2004) for the infinite-dimensional
version of this result. Thus, in order to calculate a pre-hedging portfolio at timet ,
we need only computeφt = σ ∗−1

t αt . But by assumption the operatorσt is Hilbert–
Schmidt almost surely. SinceH is infinite dimensional, the inverseσ ∗−1

t is
unbounded, and at this level of generality there is no guarantee thatαt is in its
domain for anyt . Thus restricting the portfolio to be in the spaceF ∗ for all
t ≥ 0 is insufficient to replicate every square-integrable contingent claim. Björk,
Di Masi, Kabanov and Runggaldier (1997) discuss this difficulty in the Banach
space setting where the bond price process is a jump-diffusion driven by a finite-
dimensional Wiener process, and they introduce the notion of approximate market
completeness.

We could proceed by enlarging the class of allowable hedging portfolios
by insisting thatφt is in the so-calledcovariance spaceσ ∗−1

t H ∗ for almost
all (t,ω) ∈ [0, T ] × �, whereσ ∗−1H ∗ ⊃ F ∗ is the Hilbert space with norm
‖φ‖σ ∗−1H ∗ = ‖σ ∗φ‖H ∗ . De Donno and Pratelli (2004) elaborate on this approach
for models in which the price process is defined cylindrically on a Hilbert spaceF .
Notice the spacesσ ∗−1

t H ∗ generally depend ont andω, but it would be nicer if the
hedging strategy were valued in a fixed space with a more explicit characterization.
Furthermore, we would need the bond pricePt ∈ (σ ∗−1

t H ∗)∗ = σtH to be in a
much smaller space almost surely in order to construct the self-financing strategy.

Even if we knew thatαt was in the domain ofσ ∗−1
t , it would be unclear if the

portfolio φt = σ ∗−1
t αt agrees with the traders’ intuition, since the support ofφt is

interpreted as the range of maturities of the bonds in the portfolio. We see that in
order to construct a reasonable hedging portfolio, we need to know some detailed
information about the martingale representation of the payout. In the classical
Black–Scholes framework of a complete market with finitely many tradable assets,
the hedging portfolio of a contingent claim is expressed as the gradient of the
solution of a parabolic partial differential equation. Goldys and Musiela (1996)
extend this PDE approach to the bond market setting by finding conditions under
which the solution of the infinite-dimensional PDE is differentiable. In Section 5
we take a somewhat different approach to construct the hedging portfolio by
appealing to the Clark–Ocone formula of Malliavin calculus.
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Indeed, if we limit ourselves to payouts of the formξ = g(PT ), we can
find conditions on the model paramaters{σt}t≥0 and the payout functiong(·)
under which there exists a uniqueF ∗-valued hedging strategy. Furthermore, under
assumptions often satisfied by models used in practice, these conditions imply that
the portfolio is confined to a small subspace ofF ∗.

4. Malliavin calculus and the Clark–Ocone formula. For anFT -measu-
rable random variablẽξ ∈ L2(�;R), the martingale representation theorem
guarantees the existence of anH ∗-valued integrand such thatξ̃ can be written as a
stochastic integral with respect to the Wiener process. For the financial application
motivating this article, it is necessary to have an explicit formula for this integrand,
expressed in terms ofξ̃ . Fortunately, under a differentiability assumption onξ̃ , the
Clark–Ocone formula provides such an expression. In order to state this useful
result, we need to first introduce the Malliavin derivative operator and list some of
its properties. The material of this section can be found in Nualart’s (1995) book
when the Hilbert spaces are finite dimensional.

The Malliavin derivative is a linear map from a space of random variables
to a space of processes. We are concerned with the case where the random
variables are elements ofL2(�;G), in which case the processes are elements
L2([0, T ] × �;LHS(H,G)), whereG is a real separable Hilbert space.

Being a derivative, it is not surprising that this operator is unbounded on
L2(�;G). We take the approach of defining it first on a core and then extending
the definition to the closure of this set in the graph norm topology.

We now define the Malliavin derivative operatorD on this set.

DEFINITION 4.1. The random variablesX ∈ L2(�;G) of the form

X = κ

(∫ T

0
〈h1

t , dWt〉H , . . . ,

∫ T

0
〈hn

t , dWt〉H
)
,(21)

whereh1, . . . , hn ∈ L2([0, T ];H ∗) are deterministic, and where the differentiable
functionκ : Rn → G is such that

n∑
i=1

∥∥∥∥∂κ(x)

∂xi

∥∥∥∥
G

< C
(
1+ ‖x‖p

Rn

)
,(22)

for somep, C > 0, and for allx = (x1, . . . , xn) ∈ Rn, are calledsmooth, and their
Malliavin derivatives are defined to be

DX =
n∑

i=1

∂κ

∂xi

(∫ T

0
〈h1

t , dWt〉H , . . . ,

∫ T

0
〈hn

t , dWt〉H
)

⊗ hi.

Note that the process{DtX}t∈[0,T ] is valued inLHS(H,G) and that it satisfies

E

{∫ T

0
‖DtX‖2

LHS(H,G) dt

}
< +∞



1282 R. CARMONA AND M. TEHRANCHI

because of the growth condition (22) on the partial derivatives ofκ and the
fact that Gaussian random variables have moments of all orders. It turns out
that the Malliavin derivativeD as defined above as a densely defined operator
from L2(�;G) into L2([0, T ] × �;LHS(H,G)) is closable. We use the same
notationD for its closure, and in particular, Definition 4.1 can be extended into
the more practical one:

DEFINITION 4.2. If X is theL2(�,G) limit of a sequence{Xn}n≥1 of smooth
random variables such that{DXn}n≥1 converges inL2([0, T ] × �;LHS(H,G)),
we define

DX = lim
n→∞DXn.

REMARK 4.1 (Measurability). The Malliavin derivativeDX is defined to be
an element ofL2([0, T ] × �;LHS(H,G)). Strictly speaking, it is an equivalence
class of functions of(t,ω) which agree Leb[0,T ] ×Q almost surely. By Fubini’s
theorem we can find a representative ofDX such that, for everyt ∈ [0, T ], we
have thatDtX is measurable inω and, for everyω ∈ �, we have thatDX(ω) is
measurable int . We choose this representative to defineDX.

We use the notationH1(G) to represent the subspace ofL2(�;G) where the
derivative can be defined by Definition 4.2. This subspace is a Hilbert space for
the graph norm

‖X‖2
H1(G)

= E
{‖X‖2

G

} + E

{∫ T

0
‖DtX‖2

LHS(H,G) dt

}
.

The following simple sufficient condition for Malliavin differentiability will be
needed in the sequel.

LEMMA 4.3. If Xn → X converges in L2(�;G), then we have X ∈ H1(G)

whenever the following boundedness condition is satisfied:

sup
n

E

{∫ T

0
‖DtXn‖2

LHS(H,G) dt

}
< +∞.

PROOF. The sequence{Xn} is bounded inH1(G), and hence, there exists
a subsequence{Xnk

}k that converges weakly inH1(G). But sinceXnk
→ X

converges inL2(�;G), we see that the weak limit of{Xnk
}k is X, implying that

X ∈ H1(G). �

Now we come to the Clark–Ocone formula, the crucial result that provides
an explicit martingale representation for random variables inH1(R) in terms of
the Malliavin derivative. A version of this formula for stronger differentiability
assumptions is originally due to Clark (1970). The formulation in terms of the
Malliavin derivative is due to Ocone (1984).
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THEOREM 4.4 (Clark–Ocone formula). For every FT -measurable random
variable X ∈ H1(R), we have the representation

X = E{X} +
∫ T

0
〈E{DtX|Ft}, dWt〉H .

To prove this formula, we need the following integration by parts formula.

LEMMA 4.5. Let {βt}t∈[0,T ] be an adapted process in L2([0, T ] × �;H) and
let X ∈ H1(R). We have

E

{∫ T

0
〈DtX,βt〉H dt

}
= E

{
X

∫ T

0
〈β∗

t , dWt〉H
}
.

PROOF. First assume thatX = κ(
∫ T
0 〈h1

t , dWt〉H , . . . ,
∫ T
0 〈hn

t , dWt〉H) is
a smooth random variable. Note that conditional onFt , the Wiener integral∫ T
0 〈hs, dWs〉H is a real Gaussian random variable with mean

∫ t
0〈hs, dWs〉H and

variance
∫ T
t ‖hs‖2

H ∗ ds, so that forFt -measurableβ ∈ L2(�;H), we have

E

{∫ T

t
〈DsX,β〉H ds

∣∣∣Ft

}
= E

{
X

∫ T

t
〈β∗, dWs〉H

∣∣∣Ft

}

by definition of the Malliavin derivative for smooth random variables and the
ordinary integration by parts formula.

Now assuming there existsFti -measurableβi ∈ L2(�;H) such thatβt =∑N
i=0 1(ti ,ti+1](t)βi , we have

E

{∫ T

0
〈DtX,βt〉H dt

}
=

N∑
i=0

E

{
E

{∫ ti+1

ti

〈DtX,βi〉H dt
∣∣∣Fti

}}

=
N∑

i=0

E

{
E

{
X

∫ ti+1

ti

〈β∗
i , dWt〉H dt

∣∣∣Fti

}}

= E

{
X

∫ T

0
〈β∗

t , dWt〉H
}
.

Since the smooth random variables are dense inH1(R) and the simple integrands
are dense inL2([0, T ] × �;H ∗), a straightforward limiting procedure completes
the proof. �

PROOF OFTHEOREM 4.4. SinceX ∈ L2(�;R), by the martingale represen-
tation theorem there exists an adapted process{αt}t∈[0,T ] ∈ L2(� × [0, T ];H ∗)
such that

X = E{X} +
∫ T

0
〈αt , dWt〉H .
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Without any loss of generality we can assume thatE{X} = 0. Now let{βt}t∈[0,T ]
be an adapted measurable process inL2([0, T ] × �;H). By Proposition 4.5 and
Itô’s isometry, we have

E

{∫ T

0
〈DtX,βt〉H dt

}
= E

{∫ T

0
〈αt, dWt〉H

∫ T

0
〈β∗

t , dWt〉H
}

= E

{∫ T

0
〈αt, βt〉H dt

}
,

implying

E

{∫ T

0
〈λt, βt〉H dt

}
= 0,(23)

whereλt = DtX−αt . The process{λt}t∈[0,T ] is in L2([0, T ]×�;H ∗) by assump-
tion, but it is not adapted to the filtration. Since the optional projection process
{E{λt |Ft }}t∈[0,T ] is obviously adapted to the filtration, and since{λt}t∈[0,T ] is
measurable and the filtration is right continuous, we have that{E{λt |Ft }}t∈[0,T ]
is adapted and measurable. Lettingβ∗

t = E{λt |Ft } in (23), we get

E

{∫ T

0
‖E{λt |Ft }‖2

H ∗ dt

}
= 0,

implying thatαt = E{DtX|Ft } for almost every(t,ω) as desired. �

We close this section with two results that allow us to calculate explicit formulas
in what follows. The first one is a generalization of the chain rule in the spirit of
Proposition 1.2.3 of Nualart (1995).

PROPOSITION 4.6. Given a random variable X ∈ H1(F ) and a function
κ :F → G such that

‖κ(x) − κ(y)‖G ≤ C‖x − y‖F

for all x, y ∈ F and some C > 0. Then κ(X) ∈ H1(G) and there exists a random
variable ∇κ(X) satisfying the bound ‖∇κ(X)‖L(F,G) ≤ C almost surely and such
that

Dκ(X) = ∇κ(X)DX.

REMARK 4.2. We are not claiming that the functionκ is differentiable.
Instead, we merely state that the random variable∇κ(X) plays the role of a
derivative in the sense of the chain rule. Of course ifκ is Fréchet differentiable,
then∇κ(X) is its Fréchet derivative evaluated atX. In Section 5, we use this result
in the cases whereκ = g :F → R and whenκ = σ(t, ·) :F → LHS(H,F ).
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PROOF OF PROPOSITION 4.6. According to Lemma 4.3, in order to show
that κ(X) ∈ H1(G), we need only find a sequence of functions{κn}n such
that κn(X) → κ(X) strongly in L2(�;F) and that {Dκn(X)}n is bounded
in L2([0, T ] × �;H ∗).

Let {ei}∞i=1 be a basis ofF and let{ri}ni=1 be a basis forRn. Let

�n =
n∑

i=1

ei ⊗ ri ∈ L(Rn,F ) and �′
n =

n∑
i=1

ri ⊗ e∗i ∈ L(F,Rn).

For everyn, let jn :Rn → R be a twice differentiable positive bounded function
supported on the unit ball inRn and such that

∫
Rn jn(x) dx = 1, and for every

ε > 0, define the approximate identityjε
n by jε

n(x) = ε−njn(x/ε). Setε = 1/n and
chooseκn to be defined by the Bochner integral

κn(x) =
∫

Rn
jε
n(�′

nx − y)κ(�ny) dy =
∫

Rn
jε
n(y)κ(�n�

′
nx − �ny) dy.

Note thatκn is differentiable and that

E
{‖κ(X) − κn(X)‖2

G

} ≤ E

{(∫
Rn

jε
n(y)‖κ(�n�

′
nX − �ny) − κ(X)‖G dy

)2}

≤ C2E

{(∫
Rn

jε
n(y)

(‖(�n�
′
nX − X)‖F + ‖y‖Rn

)
dy

)2}

≤ 2C2E
{‖(�n�

′
n − I )X‖2

F

} + 2C2/n2 → 0

by the dominated convergence theorem. By the finite-dimensional chain rule, we
have

Dκn(X) =
∫

Rn
κ(�ny) ⊗ (∇jε

n (y − �′
nX)D�′

nX
)
dy,

where∇ is the gradient inRn, so that

E

{∫ T

0
‖Dtκn(X)‖2

LHS(H,G) dt

}
≤ C2E

{∫ T

0
‖DtX‖2

LHS(H,F ) dt

}
,

and we can apply Lemma 4.3.
Finally, we note that∇κn(X) is bounded inL∞(�;L(F,G)) and hence by the

Banach–Alaoglu theorem there exists a subsequence{∇κnk
(X)}k and a random

operator∇κ(X) such that

E

{∫ T

0
trace

(
AtDtκnk

(X)
)
dt

}
= E

{∫ T

0
trace

(
At∇κnk

(X)DtX
)
dt

}

→ E

{∫ T

0
trace

(
At∇κ(X)DtX

)
dt

}
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for everyA ∈ L2([0, T ] × �;LHS(F,H)). On the other hand,

E

{∫ T

0
trace

(
AtDtκnk

(X)
)
dt

}
→ E

{∫ T

0
trace

(
AtDtκ(X)

)
dt

}

so thatDtκ(X) = ∇κ(X)DtX as claimed. �

The second result which we state without proof is the infinite-dimensional
analog of (1.46) of Nualart (1995).

PROPOSITION 4.7. If the adapted continuous square-integrable process
{αt }t∈[0,T ] is such that, for all t ∈ [0, T ], the random variable αt ∈ H1(LHS(H,F ))

is differentiable, then

Dt

∫ T

0
αs dWs = αt +

∫ T

t
Dtαs dWs.

Note that whenα andW are scalar, the above result is true without assuming
that α is adapted provided the stochastic integral is interpreted as a Skorohod
integral instead of an Itô integral. We shall not need such a general form of this
result.

5. Hedging strategies for Lipschitz claims. In this section we find explicit
hedging strategies for an important class of contingent claims, and we characterize
their properties. The results presented here are new. First we show that under
natural conditions on the discounted bond price model and the payout function of
the option, the hedging strategy is bounded in theF ∗-norm, effectively avoiding
the difficulties mentioned in Section 3 for hedging generic claims. Furthermore,
we prove a general lemma which can be used to show that the hedging strategy is
often confined to a small subspace ofF ∗. We apply this lemma to a model which
has the essential features of a classical HJM model, yet exhibits some notion of
maturity specific risk. For this class of models, we show that the counterintuitive
strategies which are possible for finite-factor models are not allowed.

For the remainder of this article we make the following standing assumption.

ASSUMPTION 5.1. The contingent claim is European with expirationT

and payout given byξ = g(PT ). The payout functiong :F → R is such that
the modified functiong̃ :F → R given by g̃(x) = x(T )g(x/x(T )) satisfies the
Lipschitz bound

|g̃(x) − g̃(y)| ≤ C1‖x − y‖F(24)

for all x, y ∈ F and some constantC1 > 0. Furthermore, for allx1, x2 ∈ F such
thatx1(s) = x2(s) for all s ≥ T , we have

g(x1) = g(x2).(25)
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We remark that the condition (25) implies that the payout is insensitive to
the part of the price curve corresponding to expired bonds. We also note that
the Lipschitz assumption is reasonable. For instance, the payout function of a
call option with expirationT and strikeK on a bond with maturityT1 > T is
g(x) = (x(T1) − K)+ and thus the modified payout function is given by

g̃(x) = x(T )

(
x(T1)

x(T )
− K

)+
= (

x(T ) − Kx(T )
)+

,

which is clearly Lipschitz since the point evaluationsδT andδT1 are bounded linear
functions onF .

If we can prove that̃PT ∈ H1(F ), condition (24) and Proposition 4.6 imply that
the Clark–Ocone formula applies. Our aim is to find an explicit representation
of the Malliavin derivativeDP̃T so that we can characterize the strategy that
hedgesξ .

For the remainder of this article we work in a Markovian setting. The dynamics
of the discounted bond prices will be given by Assumption 3.3 with the added
provision thatσt = σ(t, P̃t ) for all t ≥ 0. We list here the relevant assumptions
onσ(·, ·).

ASSUMPTION5.2. Letσ(·, ·) :R+×F → LHS(H,F 2
w) be such thatσ(·, x) is

continuous for allx ∈ F such thatσ(t,0) = 0 for all t > 0, and such that we have
the Lipschitz bound

‖σ(t, x) − σ(t, y)‖LHS(H,F ) ≤ C‖x − y‖F(26)

for all t ≥ 0, x, y ∈ F and someC > 0. We assume that, for everyx1, x2 ∈ F such
thatx1(s) = x2(s) for all s ≥ t , we have

σ(t, x1) = σ(t, x2).(27)

REMARK 5.1. Recall we work in the spaceF 2
w of differentiable functions

described in Section 3 so that we can speak sensibly of interest rates, and in
particular the bond price process is an Itô process. The conditions

‖σ(t, x)∗δs‖H ∗ ≤ K|x(s)|,
‖σ(t, x) − σ(t, y)‖LHS(H,F 2

w) ≤ K‖x − y‖F 2
w
,

are sufficient to ensure that the bond prices are positive and condition (15) of
Assumption 3.3 is satisfied. We will not make use of such conditions in the
remainder of this paper. However, we are interested in hedging portfolios valued
in the dual spaceF ∗ = F 1∗

v , so we will explicitly make use of condition (26).
Condition (27) implies that the volatility of the discountedprices is insensitive to
the part of the curve corresponding to expired bonds.

First, we show that the Malliavin derivative of the discounted bond price exists.
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LEMMA 5.3. For all T ≥ 0, we have that P̃T ∈ H1(F ).

PROOF. By Lemma 4.3, we need only to find a sequence of Malliavin
differentiable random elements, sayP̃ n

T , which converge toward̃PT in L2(�;F),
and such thatDP̃ n

T is bounded inL2([0, T ]×�;LHS(H,F )). A natural candidate
is provided by the elements of the Picard iteration scheme. Indeed, applying
Proposition 4.7 to thenth step of the scheme, we obtain

DtP̃
n
T = σt(P̃

n−1
t ) +

∫ T

t
Dtσs(P̃

n−1
s ) dWs.

Now, since for alls ∈ [0, T ] the functionσ(s, ·) is Lipschitz, we can apply
Proposition 4.6 and conclude by induction thatP̃T ∈ H1(F ). Indeed we have

E
{‖Dt P̃

n
T ‖2

LHS(H,F )

}
= E

{‖σ(t, P̃ n−1
t )‖2

LHS(H,F )

}
+ E

{∫ T

t
‖Dtσ(s, P̃ n−1

s )‖2
LHS(H,LHS(H,F )) ds

}

≤ C2E
{‖P̃ n−1

t ‖2
F

} + C2E

{∫ T

t
‖Dt P̃

n−1
s ‖2

LHS(H,F ) ds

}
.

Since the Picard iterates satisfy the bound

E{‖P̃ n−1
t ‖2

F } ≤ ‖P̃0‖2
F eC2t

for all n ≥ 1, we have

E
{‖Dt P̃

n
T ‖2

LHS(H,F )

} ≤ C2‖P̃0‖2
F eC2T ,

by Gronwall’s inequality. This completes the proof.�

Since we know thatP̃t ∈ H1(F ) for all t ≥ 0, we can conclude by Proposi-
tion 4.6 that forσ(t, P̃t ) ∈ H1(LHS(H,F )), and by Proposition 4.7, we see that
{DtP̃s}s∈[t,T ] satisfies the linear equation

DtP̃s = σt +
∫ s

t
∇σuDt P̃u dWu.(28)

Note that, for allt ≥ 0, the random variable∇σt takes values inL(F,LHS(H,F )),
and that for eachs, t , we have DtP̃s ∈ LHS(H,F ), so that ∇σsDt P̃s ∈
LHS(H,LHS(H,F )).

We now appeal to Skorohod’s theory of strong random operators as developed
in Skorohod (1984). A strong random operator fromF into G is a G-valued
stochastic process{Zt(x)}t≥0,x∈F which is linear inx ∈ F . If such a process is
adapted (in an obvious sense) and if, for example,G = LHS(H,F ), then by setting[∫ b

a
Zs dWs

]
(x) =

∫ b

a
Zs(x) dWs,
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we define a strong random operator
∫ b
a Zs dWs on F (i.e., from F into F ). In

particular, if for eacht > 0, {Yt,s(x)}s≥t, x∈F is a strong random operator onF ,
then {∇σsYt,s(x)}s≥t, x∈F is a strong random operator fromF into LHS(H,F ).
Then with this definition of the integrand, the stochastic integral

∫ b
a ∇σsYt,s dWs

is a strong operator onF . In this sense of equality of strong random operators
onF , we would like to interpret the stochastic differential equation

Yt,s = I +
∫ s

t
∇σuYt,u · dWu,(29)

whereI ∈ L(F,F ) is the identity. We are interested in solving such an equation
because the solution process (if any) is in some sense the derivative ofP̃T with
respect toP̃t . Moreover, the Malliavin derivative of the terminal underlying price
should be related to this new process by

DtP̃T = Yt,T σt .(30)

We settle the existence of a solution for this equation in the following proposition.

PROPOSITION5.4. Under the Lipschitz assumption (26), the linear equation

Yt,s = I +
∫ s

t
∇σuYt,u · dWu

has a strong L(F,F )-valued martingale solution {Yt,s}s∈[t,T ]. Furthermore, we
have the bound

E
{‖Yt,T x‖2

F |Ft

} ≤ ‖x‖2
F eC2(T −t).(31)

PROOF. We prove that a Picard iteration scheme converges. LetY 0
t,s = I

for s ∈ [t, T ] and let

Yn+1
t,s = I +

∫ s

t
∇σuY

n
t,u · dWu.

Using the Lipschitz assumption and the martingale inequality, we have, for
everyx ∈ F ,

E

{
sup

s∈[t,T ]
‖(Y n+1

t,s − Yn
t,s)x‖2

F

∣∣∣Ft

}

≤ 4 E

{∫ T

t
‖∇σs(Y

n
t,s − Yn−1

t,s )x‖2
LHS(H,F ) ds

∣∣∣Ft

}

≤ 4C2
∫ T

t
E

{‖(Y n
t,s − Yn−1

t,s )x‖2
F |Ft

}
ds.

So by induction, we have

E

{
sup

s∈[t,T ]
‖(Y n+1

t,s − Yn
t,s)x‖2

F

∣∣∣Ft

}
≤ ‖x‖2

F

C2n(T − t)n

n! ,
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proving by a Borel–Cantelli lemma that the sequence of processes{Yn
t,·}n

converges almost surely toward a process which is continuous in the strong
topology ofL(F,F ). Furthermore, we have

E{‖Yt,sx‖2
F |Ft } = ‖x‖2

F + E

{∫ s

t
‖∇σuYt,ux‖2

LHS(H,F ) du
∣∣∣Ft

}

≤ ‖x‖2
F + C2

∫ s

t
E{‖Yt,ux‖2

F |Ft }du,

which implies the desired bound by Gronwall’s inequality.�

We assume that̃g is Lipschitz, so we have the chain rule

Dg̃(P̃T ) = ∇g̃(P̃T )DP̃T ,

whereDP̃T ∈ LHS(H,F ) and∇g̃(P̃T ) ∈ L(F,R) = F ∗.
We now use the Clark–Ocone formula, the chain rule and (30) to identify a

candidate pre-hedging strategy from the following formal calculation:

g̃(P̃T ) = E{g̃(P̃T )} +
∫ T

0

〈
E{∇g̃(P̃T )|Ft }, Yt,T σt dWt

〉
F

= E{g̃(P̃T )} +
∫ T

0

〈
E{Y ∗

t,T ∇g̃(P̃T )|Ft }, dP̃t

〉
F .

PROPOSITION5.5. The process {φt }t∈[0,T ] given by the weak integral

φt = E{Y ∗
t,T ∇g̃(P̃T )|Ft }

is a pre-hedging strategy for the claim g(PT ).

REMARK 5.2. By the formal calculation above, we only need to show that
φt ∈ T[t,∞) for almost all(t,ω) ∈ [0, T ] × �. First, we note thatφt is bounded in
F ∗ uniformly in t ∈ [0, T ] almost surely. Indeed, we have

‖φt‖F ∗ = sup
‖x‖F ≤1

E
{〈∇g̃(P̃T ), Yt,T x〉F |Ft

}

≤ sup
‖x‖F ≤1

C1E
{‖Yt,T x‖2

F |Ft

}1/2

≤ C1e
C2(T −t)/2

by the Lipschitz bound (24) and the exponential growth bound (31). In fact, we
haveφt ∈ T[t,∞) for almost all(t,ω) ∈ [0, T ] × � thanks to the following lemma.

LEMMA 5.6. Let {St }t≥0 be a decreasing family of closed subspaces of F ∗
such that, for s ≤ t , we have St ⊂ Ss and such that δt ∈ St for all t ∈ [0, T ].
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Suppose:

(i) the payout function g(·) :F → R is such that, for all x ∈ F and all y ∈ S⊥
T ,

we have

g(x + y) = g(x);(32)

(ii) the volatility function σ(·, ·) :R+ ×F → LHS(H,F ) is such that, for each
t ≥ 0 and all x ∈ F , y ∈ S⊥

t and µ ∈ St , we have

σ(t, x + y)∗µ = σ(t, x)∗µ.(33)

Then for almost all (t,ω) ∈ [0, T ] × �, the random variable φt =
E{Y ∗

t,T ∇g̃(P̃T )|Ft } is valued in St .

PROOF. First we prove that

〈∇g̃(X), y〉F = 0 for anyX ∈ H1(F ) and y ∈ S⊥
T ,(34)

where∇g̃(X) is the boundedF ∗-valued random variable such thatDg̃(X) =
∇g̃(X)DX. Following the proof of Proposition 4.6, we letg̃n(x) be given by

g̃n(x) =
∫

Rn
jε
n(u − �nx)g̃(�nu) du,

and recall that we have thatg̃n(X) converges strongly tõg(X), and that there exists
a subsequence such that∇g̃n(X) converges to∇g̃(X) in the weak-* topology of
L∞(�,F ∗). Let y ∈ S⊥

T and notice

∣∣〈∇g̃n(X), y〉F
∣∣ =

∣∣∣∣
∫

Rn
〈∇jε

n(u − �nx), �ny〉Rn g̃(�nu) du

∣∣∣∣
≤

∫
Rn

lim
h→0

∣∣∣∣ g̃(�′
nu + h�′

n�ny) − g̃(�′
nu)

h

∣∣∣∣jε
n(u − �nx) du

=
∫

Rn
lim
h→0

∣∣∣∣ g̃(�′
nu + h�′

n�ny) − g̃(�′
nu + hy)

h

∣∣∣∣jε
n(u − �nx) du

≤ C1‖(I − �′
n�n)y‖F → 0.

Similarly, we note that (33) implies that, for ally ∈ S⊥
t andµ ∈ St , we have

(∇σ(t,X)y)∗µ = 0 and hence∇σ(t,X) ∈ L(S⊥
t ,LHS(H,S⊥

t )).

The identityI ∈ L(F,F ) obviously takesS⊥
t into S⊥

t and hence (29) has the
strong operator solution{Yt,s}s∈[t,T ] valued inL(S⊥

t ,S⊥
t ). Thus for everyy ∈ S⊥

t ,
we have

〈φt, y〉F = E
{〈∇g̃(P̃T ), Yt,T y〉F |Ft

} = 0

by (34), implyingφt ∈ S⊥⊥
t = St as desired. �
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PROOF OFPROPOSITION5.5. Apply Lemma 5.6 with the decreasing family
of subspaces given bySt = T[t,∞). Note that the hypotheses are fulfilled since (27)
implies

σ(t, x + y) = σ(t, x) for all y ∈ T ⊥[t,∞),

and by assumption (25) we haveg̃(x + y) = g̃(x) for all y ∈ T ⊥[T,∞). �

Revisiting the motivating example of Section 3, for any contingent claim
maturing at timeT , we denote byT ′ > T the longest maturity of the bonds
underlying the claim. The following theorem shows that under the appropriate
assumptions in the case of infinite-factor HJM models, the bonds in the hedging
strategy for this claim have maturities less than or equal toT ′. This intuitively
appealing result is inspired by classical HJM models, of the type

dP̃t(s) = P̃t (s)

〈∫ s

t
κ(ft (u)) du, dWt

〉
Rd

for a deterministic functionκ :R → Rd . Note for these models, the volatilityσ ∗
t δs

of the discounted bond price depends only on the forward ratesft (u) = − P̃ ′
t (u)

P̃ ′
t (u)

for

u ∈ [t, s].

THEOREM 5.7. Suppose that for every s ≥ t , we have

σ(t, x1)
∗δs = σ(t, x2)

∗δs

whenever x1(u) = x2(u) for all u ∈ [t, s]. If the payout function g has the property
that there exists a T ′ > T such that g(x1) = g(x2) for all x1, x2 ∈ F such that
x1(s) = x2(s) for all s ∈ [T,T ′], then there exists a hedging strategy {ϕt }t∈[0,T ]
that replicates the payout g(PT ) and it is such that ϕt ∈ T[t,T ′] for almost all
(t,ω) ∈ [0, T ] × �.

Furthermore, if for all x ∈ F and t ≥ 0, we have

ker(σ (t, x)∗) = T[0,t],

then the hedging strategy is unique.

PROOF. Apply Lemma 5.6 withSt = T[t,T ′] to the pre-hedging strategy given
by

φt = E{Y ∗
t,T ∇g̃(P̃T )|Ft }.

Sinceφt ∈ T[t,T ′], we have the self-financing hedging strategyϕt = φt + (Vt −
〈φt,Pt〉F )δt is also valued inT[t,T ′]. Uniqueness follows from Proposition 3.7.

�
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This theorem implies that hedging strategies for this class of contingent claims
have the property that the support of the portfolio at almost all times is confined
to an interval. Moreover, the right endpoint of this interval is given by the longest
maturity of the bonds underlying the claim, confirming our intuition about maturity
specific risk.
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