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Abstract. The distribution of random variables of the form
R∞
0 eξs−dηs is considered for a Lévy process

(ξ, η). In particular, we give a simple proof of a result of Carmona, Petit, and Yor [3] that the distribution
function verifies an integro-differential equation related to the characteristic triple of (ξ, η).

Let W be a standard Wiener process and c a positive constant. The purpose of this note is to offer a
short, self-contained proof of the following result:

Theorem 1 (Dufresne [5]). The random variable
∫∞
0
eWs−csds has a density f given by

f(x) =
22c

Γ(2c)
e−2/x

x1+2c
, for x > 0.

More generally, let (ξ1, . . . , ξn, η1, . . . , ηn) be a 2n-dimensional Lévy processes. We aim to describe the
joint distribution function

F (t, x) = P
(∫ t

0

eξ
1
s−dη1

s ≤ x1, . . . ,

∫ t

0

eξ
n
s−dηns ≤ xn

)
.

To this end, let us introduce an n-dimensional generalized Ornstein–Uhlenbeck process X = (X1, . . . , Xn)
defined by

Xi
t = e−ξ

i
t

(
Xi

0 −
∫ t

0

eξ
i
s−dηis

)
for each i = 1, . . . , n. The process X has two important properties. The first is the trivial equality

{Xi
t ≥ 0} =

{∫ t

0

eξ
i
s−dηis ≤ Xi

0

}
.

The second property is that X is a homogeneneous Markov process as seen by the identity

Xi
t+u = e−(ξi

t+u−ξt)

(
Xi
t −

∫ t+u

t

e(ξ
i
s−−ξ

i
t)dηis

)
,

and the independence and stationarity of the increments of a Lévy process. Define the Markov semigroup
(Pt)t≥0 by

(Ptf)(x) = E[f(Xt)|X0 = x]
for bounded measurable f , and let L denote its generator.

These two properties combine to give a useful characterization of the joint distribution function:

(1) F (t, x) = P(X1
t ≥ 0, . . . , Xn

t ≥ 0|X0 = x) = (Pt1[0,∞)n)(x)

Now we consider the situation as t ↑ ∞. Our main result is the following

Proposition 2. Suppose that for each i = 1, . . . , n, almost surely
(1) ξit → −∞, and
(2)

∫ t
0
eξ

i
s−dηis converges to a finite limit.

Then

(2) F (x) = P
(∫ ∞

0

eξ
1
s−dη1

s ≤ x1, . . . ,

∫ ∞

0

eξ
n
s−dηns ≤ xn

)
if and only if F is the distribution function of a probability measure on Rn and LF = 0.
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Corollary 3. If F is given by equation (2) and L is hypoelliptic, then F is infinitely differentiable.

Proof of Proposition 2. First the easy direction: If F is given by equation (2) then

F (x) = P
{∫ ∞

t

e(ξ
i
s−−ξ

i
t)dη1

s ≤ e−ξ
i
t

(
xi −

∫ t

0

eξ
i
s−dηis

)
for all i = 1, . . . , n

}
= E[F (Xt)|X0 = x]

by the stationarity and independence of the increments of Lévy processes. Hence PtF = F which implies
LF = 0.

For the other direction, let x0 ∈ Rn be such that

P
(∫ ∞

0

eξ
i
sdηis = xi0

)
= 0

for all i = 1, . . . , n. Note that the set of all such x0’s is dense in Rn.
Now, consider the Markov process X initialized at X0 = x0. Note that |Xi

t | → ∞ almost surely for each i
by assumptions (1) and (2). Letting Zt = F (Xt), we see Z converges almost surely to 1{X1

t→∞,...,Xn
t →∞} by

the assumption that F is the distribution function of a probability measure. Furthermore, Z is a martingale
as F is bounded and L-harmonic. Hence

F (x0) = lim
t↑∞

E[F (Xt)]

= P(X1
t →∞, . . . , Xn

t →∞)

= P
(∫ ∞

0

eξ
1
s−dη1

s ≤ x1
0, . . . ,

∫ ∞

0

eξ
n
s−dηns ≤ xn0

)
by the bounded convergence theorem. The claim now follows from the observation that a distribution
function is specified by its values on a dense set of points. �

Remark 1. Carmona, Petit, and Yor have derived this result in the cases where n = 1 and either ηt = t [2] or
ξ and η are independent [3], by calculating the invariant distibution of the generalized Ornstein–Uhlenbeck
process U defined by

Ut = eξt

(
u+

∫ t

0

e−ξs−dηs

)
.

Their key observation is

P
(∫ t

0

eξs−dηs ≤ x

)
= P(Ut ≤ x|U0 = 0)

which is in the spirit of our equation (1). Donati-Martin, Ghomrasni, and Yor [4] use the same technique in
the multi-dimensional setting.

The key difference between these approaches and ours is that we are concerned with the transition prob-
abilities of our process X from x to 0, as opposed to the transition of U from 0 to x.

We are now ready to treat Dufresne’s result.

Example 1. Let W be a standard Wiener process and c a positive constant. The corresponding generalized
Ornstein–Uhlenbeck process

Xt = e−Wt+ct

(
X0 −

∫ t

0

eWs−csds

)
satisfies the SDE

dXt =
[(
c+

1
2

)
x− 1

]
dt−XtdWt

and hence has generator

L =
[(
c+

1
2

)
x− 1

]
∂

∂x
+
x2

2
∂2

∂x2
.

But since

F (x) =
∫ x

0

22c

Γ(2c)
e−2/y

y1+2c
dy, x > 0
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satisfies LF = 0, we have proven Dufresne’s theorem.

We now give another Brownian example:

Example 2. Let W and B be independent Wiener processes, c a positive constant, a a real constant. The
random variable

∫∞
0
eWs−cs(a ds+ dBs) has a density g given by

g(x) = C
e2a tan−1 x

(1 + x2)c+1/2

where C > 0 is such that
∫∞
−∞ g(x)dx = 1. In this case, the relevant process X is given by

Xt = e−Wt+ct

(
X0 −

∫ t

0

eWs−cs(a ds+ dBs)
)

which satisfies the SDE

dXt =
[(
c+

1
2

)
x− a

]
dt−XtdWt − dBt.

We simply check that the generator of X is given by

L =
[(
c+

1
2

)
− a

]
∂

∂x
+

1
2
(x2 + 1)

∂2

∂x2

and that LG = 0 where G(x) =
∫ x
−∞ g(x)dx. This example also appears in the paper of Carmona, Petit,

and Yor [3].
We note in passing that we can handle the more general case

∫∞
0
eWs−cs(a ds+ dZs) where W and Z are

Wiener processes with correlation ρ, by appealing to the identity∫ ∞

0

eWs−cs(a ds+ dZs) =
∫ ∞

0

eWs−cs(a ds+ ρdWs +
√

1− ρ2dBs)

= −1 +
∫ ∞

0

eWs−cs
[(
a+ ρc− ρ

2

)
ds+

√
1− ρ2dBs

]
which follows from the limit

∫ t
0
eWs−cs[dWs + ( 1

2 − c)ds] = eWt−ct − 1 → −1 almost surely.

Remark 2. Several other proofs of Dufresne’s result have appeared in the literature, in addition to the
Carmona, Petit, and Yor papers [2, 3] mentioned above. The following list is not exhaustive, but merely
indicates the various techniques that have been proposed. For instance, Yor [8] has shown that the distibution
of the Dufresne integral is equal to the distribution of the first passage time of a Bessel process via Lamperti’s
relation. Matsumoto and Yor [7] recover the distribution from inverting a Laplace transform. Finally, Bailleul
[1] has shown directly that if the Dufresne integral has a smooth density function f , then f must satisfy a
certain ODE. The difficult part of this last proof is the verification, via Malliavin calculus, of the existence
of this smooth density. The proof given here bypasses this technicality. It is inspired by an observation of
Goodman [6] in the c = 1/2 case.

We now describe describe the generator of the process X in the general case. Suppose the characteristic
function of (ξt, ηt) is given by

E(eiu·ξt+iv·ηt) = etψ(u,v)

where by the Lévy–Khintchine formula ψ is of the form

ψ(u, v) = ia ·u+ ib · v− 1
2
u ·Au−u ·Bv− 1

2
v ·Cv+

∫
Rn×Rn

(eiu·p+iv·q−1− i(u ·p+ v · q)1{|p|+|q|<1})ν(dp, dq)

where a and b are vectors in Rn, A, B, and C are n × n matrices such that the matrix
(

A B
BT C

)
is

symmetric and non-negative definite, and ν is a Borel measure such that
∫

Rn×Rn 1∧ (|p|+ |q|)ν(dp, dq) <∞.
3



Then the generator of the Markov semigroup is the integro-differential operator defined by

Lf(x) =
n∑
i=1

[(
1
2
Aii − ai

)
xi − bi

]
∂f(x)
∂xi

+
1
2

n∑
i,j=1

(xixjAij + 2xiBij + Cij)
∂2f(x)
∂xi∂xj

+
∫

Rn×Rn

[
f(exp(−p)x− q)− f(x) +

n∑
i=1

(xipi + qi)
∂f(x)
∂xi

1{|p|+|q|<1}

]
ν(dp, dq)

where exp(−p) in the integral denotes the diagonal matrix with ith diagonal component e−pi .

We conclude this note by giving sufficient conditions for the hypotheses of Proposition 2 to hold:

Proposition 4. Let ξ be a scalar Lévy process with triple (a, σ2, µ). If∫
{|p|≥1}

|p| µ(dp) <∞ and a+
∫
{|p|≥1}

p ν(dp, dq) < 0

then ξt → −∞ almost surely. If in addition η is a Lévy process with Lévy measure ν such that∫
{|q|<1}

|q| ν(dq) <∞ and
∫
|q|≥1

log |q| ν(dq) <∞

then
∫ t
0
eξs−dηs converges almost surely.

Proof. The first condition is sufficient for E(|ξ1|) < ∞ and E(ξ1) < 0. Since 1
t ξt → E(ξ1) almost surely by

the strong law of large numbers, it follows that there exists a random time T <∞ such that ξt < 1
2E(ξ1) for

all t ≥ T . This proves ξt → −∞.
Now, if

∫
{|q|<1} |q| ν(dq) < ∞ then η can be decomposed into the sum of a Brownian motion with drift

and a pure jump process
ηt = bt+ cWt + τ+

t − τ−t

for subordinators τ+ and τ−. The integral
∫∞
0
eξsds exists since∫ ∞

0

eξsds <

∫ T

0

eξsds+
∫ ∞

T

e−rsds <∞

almost surely, where r = 1
2E(ξ1). Similarly, the Itô integral

∫∞
0
eξsdWs exists since

∫∞
0
e2ξsds < ∞ almost

surely. Now, we need only show
∫∞
0
eξsdτs < ∞ almost surely for a pure-jump subordinator τ . Since τ is

increasing, the integral is a path-wise Lebesgue–Stieltjes integral. Hence, it suffices to show It =
∫ t
0
e−rsdτs

converges almost surely to a finite limit. But since t 7→ It(ω)is non-decreasing, the limit I∞ always exists
as a random variable valued in [0,∞]. We now show that (It)t≥0 converges in distribution to a finite-valued
random variable.

Letting φ(u) =
∫∞
0

(eiuq − 1)ν(dq) then

E(eiuIt) = e
R t
0 φ(ue−rs)ds = e

1
r

R 1
e−rt

1
xφ(ux)dx

Taking u > 0 without loss, we have the computation∫ 1

0

1
x
|φ(ux)|dx ≤

∫ ∞

0

∫ 1

0

(
2
x

)
∧ (uq) dx ν(dq)

=
∫ ∞

0

[(uq) ∧ 2 + 2 log+(uq/2)]ν(dq)

where we have used the bound |eiz − 1| < 2 ∧ |z|. The expression on the last line is finite for all u > 0 and
converges to 0 as u ↓ 0. Therefore, the characteristic function of It converges pointwise to

g(u) = e
1
r

R 1
0

1
xφ(ux)dx.

Since g is continuous at u = 0, Lévy’s continuity theorem implies (It)t≥0 converges in distribution. �
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