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Abstract. Suppose the at-the-money implied volatility term struc-
ture can only move by parallel shifts, in the sense that Σt(τ) =
Σ0(τ) + ξt a.s. for all (t, τ) and some process ξ. Then ξt = 0 a.s.
for all t, under a mild technical assumption on the underlying stock
price. As a by-product of the proof, a Dybvig–Ingersoll–Ross-type
theorem for long implied volatility is presented.

1. Introduction

Let Σt(τ) be the at-the-money (ATM) implied volatility of a call
option at time t ≥ 0 with time until maturity τ > 0. If the ATM
implied volatility term structure only moves by parallel shifts, that is,
if

Σt(τ) = Σ0(τ) + ξt

for all (t, τ) for some process ξ, then must it be the case that ξt = 0
for all t ≥ 0?

To put this question in context, consider the analogous problem in
interest rate theory. Let yt(τ) be the yield of a zero-coupon bond, and
suppose that

yt(τ) = y0(τ) + ηt

for some process η. Must ηt = 0 a.s. for all t ≥ 0? The answer here
is no. For instance, suppose the spot interest rate process r is a Lévy
process and the yield is given by the formula

yt(τ) = −1

τ
E[e−

∫ t+τ
t rs ds|Ft]

where (Ft)t≥0 is the filtration generated by the process r. Then a quick
calculation yield the identity

yt(τ) = y0(τ) + rt − r0.
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The author and Chris Rogers [7] have previously considered the prob-
lem, proposed to us by Steve Ross, of whether the whole implied volatil-
ity surface could only move by parallel shifts; that is, does

Σt(τ, k) = Σ0(τ, k) + ξt

for all (t, τ, k) imply ξt = 0 a.s. for all t ≥ 0? Here Σt(τ, k) is the
implied volatility at time t ≥ 0 of a call option with time to maturity
τ > 0 and log-moneyness k ∈ R, so that the ATM implied volatility
is given by Σt(τ) = Σt(τ, 0). We found that the answer is yes if, for
instance, there exists a p ∈ (0, 1) such that the map t→ − logE(Spt ) is
sub-linear, where S is the price of the underlying stock.

In contrast to the above discussion, it was also shown in [7] that it
is possible for the implied average variance surface Σt(τ, k)2 to move
only by parallel shifts. Indeed, consider stock dynamics of the form

dSt = Stf(t)dWt

where f is a deterministic function of time. Then a routine calculation
shows

Σt(τ, k)2 =
1

τ

∫ t+τ

t

f(s)2ds

If f(t) = t for all t ≥ 0, then

Σt(τ, k)2 =
1

2τ
[(t+ τ)2 − t2] = Σ0(τ, k)2 + t

for all (t, τ, k).
In this note, we show that the ATM implied volatility term structure

cannot move only by parallel shifts, subject to a technical condition on
the dynamics of the price of the underlying stock. In particular, in
most models of interest, including virtually all local and stochastic
volatility models, the implied volatility must move at different rates
over the length of term structure. The lesson is that naive modelling
of the implied volatility term structure — for instance, assuming that
it moves only by parallel shifts — may introduce arbitrage.

A main tool of the analysis is a theorem on the monotonicity of
long implied volatility. The first theorem of this type, proven by Dy-
bvig, Ingersoll, and Ross [3], says that the long rate, defined as the
limit of the zero-coupon bond yield as the maturity goes to infin-
ity, is non-decreasing. There has been recent interest in this theo-
rem. Hubalek, Klein, and Teichmann [6] provided a short proof of the
Dybvig–Ingersoll–Ross result under the assumption of the existence of
an equivalent martingale measure. See the pre-prints of Schulze [8]
and Goldammer and Schmock [4] for a discussion of the relation of the
Dybvig–Ingersoll–Ross result to various notions of no-arbitrage. The
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version of the theorem for the asymptotic difference of long implied
volatilities given in our Theorem 3.1 is most closely related to the work
of Kardaras and Platen [5].

The paper is structured as follows: In section 2, the assumptions,
notation, and main results are presented. In section 3, the connec-
tion between the dynamics of the implied volatility term structure and
the Dybvig–Ingersoll–Ross theorem of interest rate theory is explored.
Finally, the main results are proved in section 4.

2. The set-up and main results

Let S = (St)t≥0 be a positive martingale defined on a probability
space (Ω,F ,P) with filtration (Ft)t≥0 such that F0 is trivial. Without
loss of generality, we will assume S0 = 1.

The process S models the evolution, under a fixed risk-neutral mea-
sure P, of the price of a given stock in an economy where the risk-free
interest rate is identically zero. The case where interest rates are time-
varying but deterministic can easily be handled in this framework by
passing to discounted prices, but a model with fully stochastic interest
rates is outside of the scope of this paper.

Recall that in this setting, the Black–Scholes implied volatility at
time t ≥ 0 of a European call option with log-moneyness k ∈ R and
time to maturity τ > 0 is defined as the unique non-negative solution
σ = Σt(τ, k) of the equation

E

[(
St+τ
St
− ek

)+

|Ft

]
= BS(τσ2, k)

where the Black–Scholes call price function is defined by

BS(v, k) =

{
Φ
(
− k√

v
+
√
v
2

)
− ekΦ

(
− k√

v
−
√
v
2

)
if v > 0

(1− ek)+ if v = 0.

where Φ is the standard normal distribution function. Let Σt(τ) =
Σt(τ, 0) be the at-the-money Black–Scholes implied volatility. It is
easy to see that in this case we have the explicit formula

Σt(τ) = − 2√
τ

Φ−1
(

1

2
E
[
St+τ
St
∧ 1|Ft

])
.

We are now ready to state the main results of this note. The proofs
of these results are deferred to section 4.

Theorem 2.1. Suppose the ATM implied volatility only moves by par-
allel shifts, so that the equation

Σt(τ) = Σ0(τ) + ξt
3



holds for all (t, τ) and some adapted process ξ. If
(1)

lim sup
T↑∞

√
− logE(ST ∧ 1|Ft)−

√
− logE(ST ∧ 1)√

T
= 0 a.s. for all t ≥ 0,

then ξt = 0 a.s. for all t ≥ 0.

Remark 1. If the time index set is countable, then the left-hand side of
equation (1) defines a random variable, that is, a measurable function
on the sample space Ω. However, if the time index set is uncountable,
there is no such guarantee. Therefore, we make the following conven-
tion throughout: the notation sup and inf will denote the essential
supremum and infimum respectively, and hence the left-hand side of
equation (1) should be interpreted as

lim sup
T↑∞

= ess infT>0 ess supT ′>T .

Theorem 2.1 may seem of limited interest on its face, since it is
not immediately clear how to verify equation (1). However, it turns
out that it can be applied to a large class of models. First, we note
that Theorem 2.1 applies to all models where the increments of the
logarithmic stock are independent.

Theorem 2.2. If logS has independent increments then equation (1)
holds.

The next theorem shows that, in fact, the Theorem 2.1 actually
applies to virtually all local and stochastic volatility models.

Theorem 2.3. Suppose S is a continuous martingale with dynamics

dSt = StσtdWt

where W is a Brownian motion. Suppose that the positive volatility
process σ is either

(LV) of the form σt = A(t, St) for a smooth function A or
(SV) has dynamics

dσt = α(t, σt)dt+ β(t, σt)dZt

for another Brownian motion Z and smooth functions α and β.

If the ATM implied volatility only moves by parallel shifts, then σt = σ0
a.s. for all t ≥ 0; i.e. S is a geometric Brownian motion.
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3. A Dybvig–Ingersoll–Ross-type theorem

In this section, we explore the connection between equation (1) and
the result of Dybvig, Ingersoll, and Ross [3] that says that long yields
on zero-coupon bonds can never fall.

Under the assumptions of the last section, we will prove the following
Dybvig–Ingersoll–Ross-type theorem:

Theorem 3.1. The long implied volatility never falls in the sense that
the inequality

lim inf
τ↑∞

Σt(τ, k1)− Σs(τ, k2) ≥ 0 a.s.

holds for all k1, k2 ∈ R and 0 ≤ s ≤ t.

To prove Theorem 3.1 we need several lemmas.

Lemma 3.2. Let (Xn)n be a sequence of non-negative random vari-
ables. Then

lim sup
n↑∞

X1/n
n ≤ lim sup

n↑∞
[E(Xn)]1/n a.s.

Proof. Let (Yn)n be a sequence of non-negative random variables with
E(Yn) = 1 for all n. By Markov’s inequality we have

P(Y 1/n
n > 1 + ε) = P[Yn > (1 + ε)n] ≤ (1 + ε)−n

for any ε > 0. Since the right hand side of above inequality is summa-
ble, it follows that

P(Y 1/n
n > 1 + ε infinitely often) = 0

by the first Borel–Cantelli lemma, and in particular by letting ε ↓ 0
through a countable sequence,

lim sup
n↑∞

Y 1/n
n ≤ 1 a.s.

Now, there is no loss assuming E(Xn) is strictly positive but finite for
all n. Note that for every δ > 0, we have the inequality [E(Xm)]1/m ≤
(1 + δ) lim supn↑∞[E(Xn)]1/n for m large enough. It follows that

lim sup
m↑∞

(
Xm

E(Xm)

)1/m

≥ (1 + δ)−1
lim supm↑∞X

1/m
m

lim supn↑∞[E(Xn)]1/n

The result now follows from letting Yn = Xn/E(Xn) in the above and
sending δ ↓ 0. �

Lemma 3.3. For all t ≥ 0, τ > 0, there exists a constant 0 < C ≤ 2
such that the following bounds hold almost surely:
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(1) −C ≤
√
τΣt(τ)−

√
−8 logE

(
St+τ
St
∧ 1
∣∣Ft) ≤ 0,

(2) St ∧ 1 ≤ E(St+τ∧1|Ft)
E
(
St+τ
St
∧1|Ft

) ≤ St ∨ 1, and

(3) −C −
√

8(logSt)− ≤
√
τΣt(τ) −

√
−8 logE

(
St+τ ∧ 1

∣∣Ft) ≤√
8(logSt)+

(Numerical evidence suggests that the smallest such C is approximately
1.03.)

Proof. (1) It is enough to show there is a finite constant c > 0 such
that

0 ≤
√
−2 log y + Φ−1(y/2) ≤ c

for all 0 < y ≤ 1, or equivalently, letting R(x) = ex
2/2
∫∞
x
e−s

2/2ds
denote the Gaussian Mills’ ratio,

0 ≤
√
x2 − 2 log[R(x)/R(0)]− x ≤ c

for all x ≥ 0, and to then take C = 2c.
It is well known that

R(x) ≤ ex
2/2

∫ ∞
x

s

x
e−s

2/2ds =
1

x

for x > 0. Since

R′(x) = xR(x)− 1 ≤ 0

we see that R is decreasing on [0,∞) and hence

R(x) ≤ R(0).

This shows
√
x2 − 2 log[R(x)/R(0)] ≥ x.

The existence of the finite upper bound c > 0 follows from the fact
that the function f(x) =

√
x2 − 2 log[R(x)/R(0)] − x is continuous

and f(0) = 0 = limx→∞ f(x). Numerical evidence suggests c ≈ 0.515,
but the following argument shows c ≤ 1. Birnbaum [1] noted that the
Cauchy–Schwarz inequality implies(∫ ∞

x

e−s
2/2ds

)(∫ ∞
x

s2e−s
2/2ds

)
≥
(∫ ∞

x

se−s
2/2ds

)2

which translates to

R(x)2+xR(x) ≥ 1⇒ R(x) ≥ 1

2
(
√

4 + x2−x) =
2√

4 + x2 + x
≥ 1

x+ 1
.

Hence

(exR(x))′ = ex[(x+ 1)R(x)− 1] ≥ 0
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so that

R(x) ≥ R(0)e−x.

Hence √
x2 − 2 log[R(x)/R(0)] ≤

√
x2 + 2x < x+ 1.

(2) This follows by noting the elementary inequality(
St+τ
St
∧ 1

)
(St ∧ 1) ≤ St+τ ∧ 1 ≤

(
St+τ
St
∧ 1

)
(St ∨ 1),

and taking the conditional expectation with respect to Ft.
(3) Combining (1) and (2) with the inequality

√
(a− b)+ ≥

√
a−
√
b

which holds for all a, b ≥ 0, yields

√
− logE(St+τ ∧ 1) ≥

√[
− logE

(
St+τ
St
∧ 1

)
− logSt ∨ 1

]+
≥

√
− logE

(
St+τ
St
∧ 1

)
−
√

logSt ∨ 1

≥
√
τΣt(τ)/

√
8−

√
(logSt)+.

Similary, the inequality
√
a+ b ≤

√
a+
√
b yields√

− logE(St+τ ∧ 1) ≤

√
− logE

(
St+τ
St
∧ 1

)
− logSt ∧ 1

≤

√
− logE

(
St+τ
St
∧ 1

)
+
√
− logSt ∧ 1

≤ C +
√
τΣt(τ)/

√
8 +

√
(logSt)−.

�

Proof of Theorem 3.1. In [7], it was shown that the implied volatility
surface flattens at long maturities in the sense

lim
τ↑∞

sup
k1,k2∈[−M,M ]

|Σt(τ, k1)− Σt(τ, k2)| = 0 a.s.

for all M > 0 and t ≥ 0. Therefore, it is enough consider the case
where k1 = k2 = 0.

By Lemma 3.2 we have

lim inf
T↑∞

− 1

T
logE(ST∧1|Ft)+

1

T
logE(ST∧1|Fs) = − lim sup

T↑∞

1

T
log

E(ST ∧ 1|Ft)
E(ST ∧ 1|Fs)

≥ 0 a.s.

for all 0 ≤ s ≤ t.
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The real analysis fact that for non-negative sequences (an)n and
(bn)n,

lim inf
n

an − bn ≥ 0⇒ lim inf
n

√
an −

√
bn ≥ 0

together with Lemma 3.3 (3) implies

lim inf
τ↑∞

Σt(τ)−
√

1 + (t− s)/τΣs(t− s+ τ) ≥ 0

all 0 ≤ s ≤ t.
Since S is a martingale, the conditional version of Jensen’s inequality

implies τ 7→ E[St+τ ∧ 1|Ft] is decreasing almost surely for each t ≥ 0,
and hence τ 7→

√
τΣt(τ) is increasing. This observation implies√
1 + (t− s)/τΣs(t− s+ τ) ≥ Σs(τ)

almost surely for all 0 ≤ s ≤ t and τ > 0, concluding the proof. �

Remark 2. Using the ideas of Hubalek, Klein, and Teichman [6], the
weaker inequality

lim sup
τ↑∞

Σt(τ, k1)− Σs(τ, k2) ≥ 0 a.s.

was shown in [7] to hold for all all k1, k2 ∈ R and 0 ≤ s ≤ t. The same
method of proof used there also shows the following inequality

lim sup
τ↑∞

Σt(τ, k1) ≥ lim sup
τ↑∞

Σs(τ, k2) a.s.

Above inequality is similar to the formulation of the Dybvig–Ingersoll–
Ross theorem in [4]. On the other hand, the same method of proof
used for Theorem 3.1 shows

lim inf
τ↑∞

Σt(τ, k1) ≥ lim inf
τ↑∞

Σs(τ, k2) a.s.

This formulation resembles the formulation in [5].

We now address the mysterious technical condition given by equation
(1) in Theorem 2.1. Indeed, Lemma 3.3 (3) shows

lim sup
T↑∞

√
− logE(ST ∧ 1|Ft)−

√
− logE(ST ∧ 1)√

T
= lim sup

τ↑∞
Σt(τ)−

√
1 + t/τΣ0(t+τ)

Hence, we have the following useful lemma:

Lemma 3.4. Equation (1) is equivalent to

lim sup
τ↑∞

Σt(τ)−
√

1 + t/τΣ0(t+ τ) = 0 a.s.

for all t ≥ 0.
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Remark 3. Note that the proof of Theorem 3.1 already gives the bound

lim inf
τ↑∞

Σt(τ)−
√

1 + t/τΣ0(t+ τ) ≥ 0 a.s.

4. The proofs of the main results

In this section, we prove the results of Section 2.

Proof of Theorem 2.1. Suppose the implied volatility term structure
moves only by parallel shifts and assume that equation (1) holds.

Let F (n) =
√
nΣ0(n) so that

F (m+ n) = F (m) +
√
mξn − an(m)

where

an(m) =
√
mΣn(m)−

√
m+ nΣ0(m+ n).

Letting m = ni and summing over i yields

F (kn) =
k∑
i=1

√
inξn −

k∑
i=1

an(ni).

Now by Lemma 3.4 we have

m−1/2an(m)→ 0

as m ↑ ∞ and hence

k−3/2
k∑
i=1

an(ni)→ 0

Since k−3/2
∑k

i=1

√
i→ 2

3
we have

lim
m→∞

F (m)

m3/2
= lim

m→∞

Σ0(m)

m
=

2

3

ξn
n
.

That is, there is a non-random constant ` ≥ 0 such that ξn = 3
2
n`. It

remains to show ` = 0.
In particular, ξn is not random for all n ≥ 0 and hence

E
(
Sm+n

Sn
∧ 1|Fn

)
= E

(
Sm+n

Sn
∧ 1

)
Lemma 3.3(2) yields

(2) E
(
Sm+n

Sn
∧ 1

)
≤ E(Sm+n ∧ 1)

E(Sn ∧ 1)
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Let G(m) =
√
−8 logE(Sm ∧ 1) so that 0 ≤ G(m) − F (m) ≤ C for

all m and some constant C > 0, by Lemma 3.3. Then

3

2

√
mn`+G(m) ≥ 3

2
n
√
m`+ F (m)

=
√
mξn +

√
mΣ0(m)

=
√
mΣn(m)

≥ −C +

√
−8 logE

(
Sm+n

Sn
∧ 1

)
≥ −C +

√
G(m+ n)2 −G(n)2

where the last line follows from equation (2).
Letting m = n again, dividing by n3/2, sending n ↑ ∞, and using the

limit limn↑∞ n
−3/2G(n) = ` yields

5

2
` ≥
√

7`

so that ` = 0 as desired. �

Proof of Theorem 2.2. If logS has independent increments then the

conditional expectation E
(
ST
St
∧ 1|Ft

)
is not random. As before, taking

unconditional expectations of the bounds in Lemma 3.3(2) yields

St ∧ 1

E(St ∨ 1)
≤ E(ST ∧ 1|Ft)

E(ST ∧ 1)
≤ St ∨ 1

E(St ∧ 1)

uniformly in T > t. The limit

lim
T↑∞

logE(ST ∧ 1|Ft)− logE(ST ∧ 1)

T
= 0 a.s. for all t ≥ 0

is now immediate. To conclude the proof, note that an−bn → 0 implies√
an −

√
bn → 0 for non-negative sequences (an)n and (bn)n. �

Proof of Theorem 2.3. Since S is a continuous martingale with a con-
tinuous volatility process, it is well known that the ATM implied volatil-
ity converges as τ ↓ 0 to the spot volatility; see [2], for instance, for
a proof. Now, if the implied volatility term structure only moves by
parallel shifts, then we have

ξt = Σt(0)− Σ0(0) = σt − σ0.

On the other hand, the Dybvig–Ingersoll–Ross-type inequality

ξt − ξs = lim inf
τ↑∞

Σt(τ)− Σs(τ) ≥ 0 a.s.
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of Theorem 3.1 holds for all 0 ≤ s ≤ t. In particular, since ξ is
non-decreasing, we must conclude that σ is of bounded variation, so
the local martingale term in its semimartingale decomposition must
vanish.

In the case (LV), we have

dσt =

(
∂A

∂t
+
∂2A

∂S2
S2
t σ

2
t

)
dt+

∂A

∂S
StσtdW

and therefore ∂A
∂S

= 0 identically so that A(t, S) = A(t, S0) for all S > 0.
In particular, the volatility σt = A(t, S0) is deterministic for all t ≥ 0.

Similarly, in the case (SV), we conclude β(t, σt) = 0 a.s. for all t ≥ 0.
Hence, the process σ satisfies the ODE

dσt = α(t, σt)dt.

Since F0 is trivial by assumption, the initial stock price S0 is almost
surely constant, and hence so is the volatility σt for each t ≥ 0.

In both cases, then, log S has independent increments since

logSt = −1

2

∫ t

0

σ2
sds+

∫ t

0

σsdWs.

Theorem 2.2 now says that S verifies equation (1) and hence the con-
clusion follows from Theorem 2.1. �

5. Acknowledgement

I would like to thank Peter Carr for an interesting exchange of emails
regarding implied volatility dynamics.

References

[1] Z.W. Birnbaum. An inequality for Mill’s ratio. Annals of Mathematical Statistics
13: 245–246 (1942)

[2] V. Durrleman. Convergence of at-the-money implied volatilities to the spot
volatility. Journal of Applied Probability 45(2): 542–550 (2008)

[3] Ph. Dybvig, J. Ingersoll, and S. Ross. Long forward and zero-coupon rates can
never fall. Journal of Business 69: 1-25 (1996)

[4] V. Goldammer and U. Schmock. Generalizations of the Dybvig–Ingersoll–Ross
theorem and asymptotic minimality. Pre-print. Vienna University of Technology
(2009)

[5] C. Kardaras and E. Platen. On the Dybvig–Ingersoll–Ross theorem.
arXiv:0901.2080v1 (2009)

[6] F. Hubalek, I. Klein, and J. Teichmann. A general proof of the Dybvig-Ingersoll-
Ross theorem: long forward rates can never fall. Mathematical Finance 12(4):
447–451 (2002)

[7] L.C.G. Rogers and M. Tehranchi. Can the implied volatility surface move by
parallel shifts? To appear in Finance and Stochastics (2009)

11



[8] K. Schulze. Asymptotic maturity behavior of bond markets. Pre-print. Univer-
sity of Bonn (2009)

E-mail address: m.tehranchi@statslab.cam.ac.uk

Statistical Laboratory, Centre for Mathematical Sciences, Cam-
bridge CB3 0WB, UK

12


