The fundamental theorem of linear programming

Michael Tehranchi
June 8, 2017

This note supplements the lecture notes of Optimisation. The statement of the funda-
mental theorem of linear programming and the proof of weak duality is examinable. The
proof of strong duality and the existence of optimisers is not.

1 Statement and proof

Given dimensions m,n > 1, let A be a m X n matrix, column vectors b € R™ and ¢ € R™.

Let
p=sup{c'z: x € R" Arx <b, x>0}

and
d=inf{b"A: X€R™, ATA>¢, \>0}

with the convention that sup ) = —oo and inf () = 4o0.

Theorem.(Fundamental theorem of linear programming)
Weak duality. p < d.
Strong duality. If either p > —o0 or d < +o00 then p = d.

Existence of optimisers. If both p > —oo and d < oo, then there exist vectors

r € R" and \ € R™ such that p = c¢'x = b'y = d, satisfying

primal feasibility. Ax < b, x>0,
dual feasibility. ATX\>c, X\ >0,
complementary slackness. \"(Ax —b) =0=x" (ATX\—¢).

Before giving the proof, we pause to make some observations.

Remark. Two consequences of weak duality are that

d = —oo implies {z : Az < b,z > 0} = 0.



and
p = 400 implies {\: ATA>c, A >0} =0.

Remark. Strong duality fails only in the case where both p = —oco and d = +o00; that is,
when both
{z: Az <bx>0}=0and {\: ATA>c,A>0}=0.

An example of this situation is when A = 0 is the m X n matrix of zeros, b = (—1,...,—1)"
and ¢ = (+1,...,+1)".

Our proof of the fundamental theorem of linear programming will use the following basic
results of convex analysis:

Theorem. (Separating hyperplane theorem) Given a closed convex set C C R¥ and a point
£ € RF. If € is not in C, then there exists a vector A € R* and a constant § > 0 such that

Mz —¢&) >dforallzecC.

The separating hyperplane theorem is illustrated below. The details of the proof are
given in the next section.

The next theorem seems rather obvious.

Theorem. (Linear image of a closed orthant is closed) Let M be a k x h matrix, and
C={Mz: zcR" >0} CR"

Then C is a closed and convex set.

The convexity of C follows directly from the definition. In the case where the columns of
the matrix M are linearly independent, the closedness of C is easy to show. However, while
the proof in the general case is not extremely difficult, it does require more than a few lines.
See section 3.



Proof of weak duality. If either p = —o0 or d = 400, there is nothing to show since the
inequality holds trivially. Therefore, we may suppose p > —oo and d < 4+o00. Fix x > 0 such
that Az < b and A > 0 such that A"\ > ¢. Then

clr<clae+ )\T(b — Az)
=2 (c—ATN) +b" )
<by.
The conclusion now follows by taking the supremum over such all £ and infimum over all
such A. ]

Proof of strong duality. As remarked above, strong duality is implied by weak duality in the

cases p = +00 and d = —oo. Hence, we may suppose —oco < p < d < +oo. In particular, we

are assuming that both sets {z : Az < b,z > 0} and {\: ATA\ > ¢, A > 0} are not empty.
Fix € > 0. Note that

{z: Az <bc'z=p+ez>0}=0.

()

is not a member of the closed convex set

Cz{(AxT+Z):xZO,zZO}
c'w

Define an auxiliary function L by

That is to say, the point

Lia, 2 M) = AT(Av +2 = ) + (e —p—¢)
By the separating hyperplane theorem, there is a vector (2) € R™*! such that
L(z,z,\,pu) >0

forall z > 0 and z > 0.
Letting x > 0 be such that Az < b and setting z = b — Ax > 0, we have

L(.Z’,Z,)\,,LL) :ILL(CTJ}—p—é‘) >0

Since ¢’z < p < p + ¢ for all such x by the definition of p, we conclude that u < 0. By
homogeneity, we may take u = —1.
Again, the separating hyperplane theorem implies that

Lz, z,\, 1) =2 A+2"(ATA=c)+p+e—-0'A>0



for all x > 0 and z > 0. In order for the inequality to hold for all z > 0, we must have A > 0.
Similarly, for the inequality to hold for all > 0, we must have AT\ > c.
Note by the definition of d that b' A > d. Setting = 0 and z = 0 implies

0<L(0,0,\~1)=p+e—b'A<p+e—d

and hence
d<p+e.

Since € > 0 is arbitrary and since we have d > p by weak duality, we conclude that d = p as
desired. O]

Proof of the existence of optimisers. This time we would like to show that the point

b
gz(p)
C:{(A:CCTZz):xZO,zZO}.

By the definition of p, there is a sequence (z,), such that Az, <b, z, >0 and ¢'x, — p.
Letting 2z, = b — Ax,, > 0, we see that

( Az, + 2, ) ( b )
2 — :
¢ xy p
Since C is closed, there must exist a point (i”) € R™™ with x > 0, z > 0 such that
Ar+2z\ (D
clx “\p )’

meaning Az < b,z >0 and cTx = p.
The proof of the existence of A > 0 such that ATA > c and b\ = d is analogous. O

1s a member of the set

2 Proof of the separating hyperplane theorem

We now fill in some of the details used in the proof of the fundamental theorem of linear
programming.

Theorem. (Projection onto a closed, convex set) Let C C R* be closed and convex, and
suppose ¢ € R¥ is not in C. Then there exists a point z* € C such that

|lz* =& < ||z = &]|| for all z € C.



Proof. Let § = inf,cc ||z — £||*. Let (z,), be a sequence in C such that ||z, — &||* — 6.
Applying the parallelogram law ||a + b||* + |la — b||* = 2||a||* + 2||b||* we have

2
l2m = zall® =2ll@m — €17 + 2llzn — pl* = 4/[3(2m + 20) — €|
<2l|zm — EII* + 2f|zn — E|I* — 40 — 0

as m,n — oo, where we have used the convexity of C to assert that 1(z,, + z,) € C and

hence || (z, + 2,) — §||2 > 0. We have established that the sequence (z,,), is Cauchy, and
thus converges to some point x*. Since C is closed, we have x* € C as claimed. O

Proof of the separating hyperplane theorem. Let z* be the point in C closest to . Let
A=2z"—¢and § = ||A\|>. Fix a point z € C and 0 < 6 < 1, and note that the point
(1 —@)z* + Oz is in C by convexity. Then

0=[z*—¢|* =0
<|[(1 = 0)z" + 0z — &> =6
=[|0(z — ")+ N> =6
=0%||x — 2*||* + 207" (z — 2¥).

By first dividing by 6 and then taking the limit as 6 | 0 in the above inequality, we conclude
A (x —2*) > 0. Hence

M-8 =\(z—2)+\ (2" =& >0

as desired. O

3 Proof that a linear image of a closed orthant is closed

Consider the set
C={Mz:2zcX}CRF

where X C R" and M is a k x h matrix. In this section we will show that C is closed when
X ={z € R": x>0} is the non-negative orthant.

We first consider the case there the columns of M are linearly independent. In this case,
the map sending = to Mz is a bijection from R” to the range of M C R* with a continuous
inverse sending y to (M TM)™*M Ty. In particular, the set C is closed if and only if the set
X is closed. So theorem really is obvious in this case.

Remark. Tt is routine linear algebra to conclude that the square matrix M T M is invertible
when the columns of M are linearly independent. Indeed, if M T Mx = 0 for some x € R”,
we have then 0 = 2" M " Mx = ||[Mz|* and hence Mz = 0. But if the columns of M are
linearly independent, this implies x = 0.



To start to see why things are more subtle in the general case, note that the set C is not

necessarily closed even if X is closed and convex. For example, let

1
X:{(xl): 71| <4 /1 — —, xzzl}gRQ
T2 T2

which is closed and convex. Consider the 1 x 2 matrix M = (1 0). In this case, the linear
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image {Mz : 2z € X} = {z; : —1 < x; < 1} is open! We will see that we must exploit the

extra structure of the non-negative orthant {z : = > 0} C R" in our proof.

Theorem. (Carathéodory’s theorem) Let M be a k x h matrix with columns my, ..., my.

Fix a point z € R"* with > 0, and let
y= Mzx.

There is a set
B={i,...,i,} C{1,...,h}

and a point zg € R” with g > 0 such that

y= Mpup

where Mp is a k X r matrix with linearly independent columns m;,,...,m;,.

Furthermore, xg can recovered from y by the formula
rp = (MpMp)™ Mgy
when B is not empty.

Proof. We will construct the basis B by the following algorithm:
(1) If the columns of M are linearly independent, we set simply take B = {i

6

X >0}



(2) Suppose the columns of M are linearly dependent, so there exist constants ay, ..., a
such that
aymi + ...+ apmy =0,

and without loss of generality we may assume at least one of coefficients «; is strictly positive.
Notice that for any real A we have

=T1Mi...+TpMy
=xymy ... +xpmy — Nogmy + ...+ apmy,)
= (Il — )\()él)ml + ...+ (LEh — )\ah)mh.

)\:min{ﬂzai>0}.
Q;

r; — Aoy > 0 for all ¢

Now let

For this choice of A we have

and there exists at least one ¢* such that
T+ — /\ozi* = 0.

Notice that we have shown that

y= DMz
where M is the k x h — 1 matrix
M = my o ... Myx—1 Myxyp ... My,
and & € R"! is given by
X1 — )\041

Tix—1 — )\ai*—l

=>
I

Tieg1 — AQeyq

Ther — Ay,
Now return to step (1) but now with M playing the role of M and z that of x.

In each iteration of the algorithm, the number of columns of the matrix M is reduced by
one. The algorithm terminates when the remaining columns are linearly independent. [

Proof that the linear image of a closed orthant is closed. Let y be a limit point of C. That
means there is a sequence (), in R" with x,, > 0 such that Mz, =y, — y. We must show
that there is a point « € R” with z > 0 such that y= Mz.
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By Carathéodory’s theorem there is a sequence of bases B,, of cardinality r,, and vectors
xp, n of dimension r,, with xp, , > 0 such that

MBnﬁBn,n = Yn-

Since there are only a finite number of such bases, one basis B must appear an infinite
number of times in the sequence (B,,),. Therefore, we can pass to a subsequence where all
the bases B,, = B are equal, so that

MB'TB,n = Yn-
Hence we have the convergence
Tpn — 5

where
£ = (MgMgp)"'Mpy.

Since zp, > 0 for each n, we have £ > 0. Create a new vector z € R" by

__[& ifi=ieB
1 0 otherwise

Note that
Mz, — Mx and z > 0.

This shows that the set C is closed. O]



