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We are still considering the problem to

maximise c>x subject to Ax = b, x ≥ 0.

Suppose we know one basic feasible solution x0. Before
implementing the simplex algorithm, we need to do some
pre-processing of the problem.
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I Let B ⊂ {1, . . . , n} the set of basic indices and N the set of
non-basic indices of x0

I For x ∈ Rn, use the notation x =
(xB
xN

)
like last time.

I Furthermore, the objective function can be written

c>x = c>x0 + µ>N,0xN

where µ0 = c − A>λ0 and λ0 = (A>B )−1cB is the Lagrange
multiplier matched to the b.f.s. x0 by complementary
slackness.

I The set of feasible solutions becomes

xB + A−1B ANxN = xB,0, xB , xN ≥ 0,
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Step (0). The initial simplex tableau is

Γ =
I A−1B AN xB,0

0 µ>N,0 −c>x0

where I is the m ×m identity.
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(1) Test for optimality. If µ0 ≤ 0 then STOP! The current b.f.s. is
optimal. Otherwise go to step (2).

(2) Choose the pivot column. Pick a j ∈ N such that µj ,0 > 0.
(Rule of thumb: Pick j such that µj ,0 is largest)

(3) Choose the pivot row. Look within the pivot column j and find
the i ∈ B which minimises xi ,0/Γi ,j over all i ∈ B such that
Γi ,j > 0. If Γi ,j ≤ 0 for all i , then STOP! the problem is unbounded
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(4) Perform the pivot operation. Move to the next b.f.s. as
follows:

I Replace row i with (old row i)/Γi ,j .

I Replace row k with (old row k)− (old row i)× Γk,j/Γi ,j , for
all k 6= i

Now return to step (1).
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Remarks.

1. For the initial b.f.s we have xi ,0 > 0 and xj ,0 = 0. For the next
b.f.s we have xi ,1 = 0 and xj ,1 = xi ,0/Γi ,j > 0.

2. Indeed, the pivot operation is simply Gaussian elimination,
rewriting the problem in terms of the new basis
B1 = B0 ∪ {j}\{i}.

3. After the pivot, the first m rows of the (n + 1)-th (far-right)
column of the tableau is just the basic part of the new b.f.s.
x1. The bottom right entry Γm+1,n+1 is now −c>x1, i.e.
minus the value of the ojective function at the new b.f.s.
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Remark 4. Suppose Γi ,j ≤ 0 for all i ∈ B in step (3). Then picking
one i ∈ B and for r > 0 let xr = x0 + r(δj − Γi ,jδi ) where where
δk,` = 1 if k = ` and 0 otherwise.
That is, xr replaces xi ,0 with xi ,r = xi ,0 − rΓi ,j , replaces xj ,0 = 0
with xj ,r = r , and leaves all other entries unchanged.
Note xr is feasible since xr ≥ 0 and(

I A−1B AN

)
xr = x0

However, c>xr = c>x0 + rµj ,0 →∞ as r →∞. In particular, the
problem is unbounded.
(This proves the claim from last lecture.)
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Example. Consider the linear program to

P : maximise 3x1 + 2x2 subject to 2x1 + x2 ≤ 4, x1, x2 ≥ 0
2x1 + 3x2 ≤ 6.

Before using the simplex algorithm, we do some side computations
to see what is going on. The dual problem is to

D : minimise 4λ1 + 6λ2 subject to 2λ1 + 2λ2 ≥ 3, λ1, λ2 ≥ 0
λ1 + 3λ2 ≥ 2
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We introduce slack variables as usual to both problems, and list all
of the basic solutions, paired by complementary slackness:

x1v1 = x2v2 = z1λ1 = z2λ2 = 0.

The graph and table shows the set of feasible solutions of both
problems.
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We see that the optimal solution is at point D where
(x1, x2) = (3/2, 1) corresponding to the dual solution
(λ1, λ2) = (5/4, 1/4). Note that at this point both the primal and
dual solutions are feasible.
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(0) Start with an initial b.f.s. (x1, x2, z1, z2) = (0, 0, 4, 6) and put
the problem in the simplex tableau.

∗ ∗
x1 x2 z1 z2

z1 2 1 1 0 4
z2 2 3 0 1 6

payoff 3 2 0 0 0

Notice that we are now at point A.
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(1) Test for optimality. Not optimal, since the payoff row
(3, 2, 0, 0) is not non-positive.

(2) Choose the pivot column. Since 3 > 2, the rule of thumb says
let x1 enter basis.
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(3) Choose the pivot row. There are two choices. Choosing the
first row sends x1 to 4/2 = 2, corresponding to point B. If we tried
the second row, sending x2 to 6/2 = 3, we would go to the
infeasible point C .

∗ ∗
x1 x2 z1 z2

z1 2 1 1 0 4
z2 2 3 0 1 6

payoff 3
↑

2 0 0 0
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(4) Perform the pivot operation.

∗ ∗
x1 x2 z1 z2

x1 1 1
2

1
2 0 2

z2 0 2 −1 1 2

payoff 0 1
2 −3

2 0 −6

The new b.f.s is (x1, x2, z1, z2) = (2, 0, 0, 2), which is point B.

Mike Tehranchi IB Optimisation: Lecture 7



The simplex algorithm in practice
An example

(1) Still not optimal since the payoff row is not non-positive.
Equivalently, the point B is not feasible for the dual problem.

(2) The only possibility is to choose the second column about
which to pivot. The means that x2 will enter the basis.
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(3) Since 2/(1/2) = 4 > 2/2 = 1, we pivot about the second row.
In the diagram, this means we go to the point D, rather than to
the point F which is infeasible for the primal problem.

∗ ∗
x1 x2 z1 z2

x1 1 1
2

1
2 0 2

z2 0 2 −1 1 2

payoff 0 1
2
↑
−3

2 0 −6

Mike Tehranchi IB Optimisation: Lecture 7



The simplex algorithm in practice
An example

(4) Perform the pivot.

∗ ∗
x1 x2 z1 z2

x1 1 0 3
4 −1

4
3
2

x2 0 1 −1
2

1
2 1

payoff 0 0 −5
4 −1

4 −13
2

The new b.f.s is (x1, x2, z1, z2) = (32 , 1, 0, 0) which is point D.
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(1) Our latest b.f.s. is optimal since the payoff row is non-positive.
STOP!
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