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The Lagrangian sufficiency theorem

We now consider the general constrained optimisation problem
minimise f(x) subject to g(x) = b, x € X.

No convexity assumptions are made now.
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The Lagrangian sufficiency theorem

Introduce a new function L : R" x R™ — R defined by
L(x,A) = f(x) + AT (b — g(x))

This function is called the Lagrangian of the problem.
For a vector A = (A1,...,Am) ', the component ); is called the
Lagrange multiplier for the i-th functional constraint.
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The Lagrangian sufficiency theorem

Theorem (The Lagrangian sufficiency theorem)

Let x* be feasible for the problem. Suppose there exists a A\* € R™
such that

L(x*, \*) < L(x,X*) for all x € X.

Then x* is optimal.
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The Lagrangian sufficiency theorem

Proof: For any feasible x and any A we have

L(x,A) = F(x) + AT (b~ g(x)) = f(x)

since g(x) = b. Hence if x* is feasible, then

F(x")

L(x*,\%)
< L(x,A*) for all x € X by assumption
f(x) for all feasible x.
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The Lagrangian sufficiency theorem

Example. Consider

minimise x? + 3x3 subject to 4x; +x, =7

[ay

Claim: (x{,x3) = (72, %) is optimal.
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The Lagrangian sufficiency theorem

Consider the Lagrangian

L(x1,x2,\) = x2 +3x3 + M7 — 4x1 — x2)
Note that

Lxi, %2, %) = (4 — ) + 30 — 1)2 +3

so
L(xi,x2, %) > L(}#, 4 9)

for all (x1,x2). We're done by the Lagrangian sufficiency theorem.
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The Lagrangian sufficiency theorem

First interpretation of the Lagrange multiplier \*: a certificate of
optimality.

For a general optimisation problem, is it always possible find
numbers (A1,...,A\m) to serve as a certificate of optimality?

Mike Tehranchi IB Optimisation: Lecture 3



The Lagrangian method

If x* and \* exist as in the Lagrangian sufficiency theorem, we have
inf L(x,\*) = f(x*) > —
Jnf L(x, A7) = F(x7) > —o0

Step (1). Identify the set of feasible Lagrange multipliers

AN={reR :Xlgi)'”(L(x,)\) > —00}.
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The Lagrangian method

Step (2). For each A € A find the optimal solution to the
unconstrained problem to

minimise L(x, \) subject to x € X.

Let x(A) be the minimiser.
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The Lagrangian method

Step (3). Find a A* € A such that x* = x(\*) is feasible for the
original problem, that is, g(x*) = b.

In general, it might not be possible to do steps (1) through (3).
But, if it is possible, the resulting x* is optimal by the Lagrangian
sufficiency theorem. (By step (2) we have that L(x*, \*) < L(x, \*)
for all x € X, and by step (3) we have that x* is feasible.)
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The Lagrangian method

Example. (Maximum likelihood estimator of the multinomial
distribution)
Given constants ny, ..., n, > 0, consider the problem to

k k

maximise Z n; log p; subject to Zp; =1, pi >0 for all /.
i=1 i=1
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The Lagrangian method

The Lagrangian is

k k
L(p,A) = Z”i log p; + A <1 - ZP:‘)
i=1 i=1
k

=+ Z(n,- log pi — Ap;)
i=1
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The Lagrangian method

Step (1). Note that if A < 0 then n;log p; — A\p; — oo as p; — 0.
Hence

N={XeR:supL(p,A) <oo}={A: >0}
p>0
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The Lagrangian method

Step (2). We solve

oL n;i n;
=— - A=0= pi(N\) = —
opi pi Pi(A) A
Since
-o 0 0
p1

D?L = 0 0

_ Nk

0 0 E:

is non-positive definite for all p, we have found the maximum.
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The Lagrangian method

Step (3) The constraint S5, p; = 18, T =1 yields

i=1

A= fozl n;. By the Lagrangian suffiuency theorem,

n;
* i
pi ki
Z_/ 1y

is optimal.
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Inequality constraints and complementary slackness

Notation. If x,y € R” then we write x > y if x; > y; for all
1<i<n
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Inequality constraints and complementary slackness

A major focus of this course are problems with inequality
constraints. Consider

P : minimise f(x) subject to g(x) < b, x € X.

This problem can be put into equality form by introducing slack
variables:

P’ : minimise f(x) subject to g(x) +z=1b, x€ X,z>0.

Notice that (%) € R"™ is feasible for problem P’ if and only if
x € R" is feasible for problem P and z = b — g(x).
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Inequality constraints and complementary slackness

The Lagrangian is
L(x,z,A) = F(x)+ AT (b—g(x)—z) = f(x)+ AT (b—g(x)) = A"z

We now apply the Lagrangian method.
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Inequality constraints and complementary slackness

Step (1). Note that if A\; > 0 for some i then
—)\TZ:—Alzl—...—)\;z;—...—)\mzm—)—oo as z; — o0.

Hence

inf  L(x,z,A\) > —oconlyif A <0
x€X,z>0
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Inequality constraints and complementary slackness

That is, the inequality constraint g(x) < b for the variable x
introduces a sign constraint A < 0 for the Lagrange multiplier \.
In particular, we have

A={AeR™:A<0, inf[f(x)+ AT (b—g(x))] > —o0}
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Inequality constraints and complementary slackness

Step (2). Note that for A < 0 we have inf,>o(—A"z) = 0. That is
to say, for each X € A, the optimal z = z(\) satisfies the
complementary slackness condition ATz = 0.
» If i-th Lagrange multiplier A; is non-zero, then z; = 0 so the
i-th functional constraint is tight, that is, holds with equality.
» If the i-th functional constraint is not tight so that z; > 0
then i-th Lagrange multiplier \; is zero.

Mike Tehranchi IB Optimisation: Lecture 3



Inequality constraints and complementary slackness

To find the x = x(\) we solve the unconstrained problem to
minimise f(x) + A" (b — g(x))

as usual.

Mike Tehranchi IB Optimisation: Lecture 3



Inequality constraints and complementary slackness

Step (3). As usual, pick A* € A so that x* = x(\*) and
z* = z(\*) are feasible, i.e. g(x*) < b.
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A worked example.

Consider
P :minimise  x; —3x subjectto xZ+x3 < 4
x1t+x < 2
Introducing slack variables, the problem is
P’': minimise  x3 —3x, subjectto xZ+ x5+ 2z = 4
X1+ xo +z2 = 2

71,2220
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A worked example.

The Lagrangian is
L=x —3X2+)\1(4—x12—X22—21)—|—/\2(2—X1 —Xxp — 22)

By the sign constraint, we consider Lagrange multipliers
A1, A2 < 0. Note that

o, [ =2\ 0
DL_( 0 —2x

so the Hessian is non-negative definite. Hence to find the
minimum we need only solve 8L =0= 8L yleldlng

1—-2M\ix1 — =0
3 =210 — X2 =0
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A worked example.

We now have to analyse cases.

e Case A\; = 0. This yields Ao =1 and A = —3, a contradiction.
e Case A1 < 0, A2 < 0. Note that by complementary slackness
z; = zp = 0 so both functional constraints are tight. Hence we
have four equations and four unknowns:

1—-2X1x1— X =0
—3-2XA1x0—X =0
X12+x22:4

X1+ X0 = 2.

Solving the bottom two equations yields the two solutions

(x1,x2) = (2,0) and (0,2). Plugging these into the first equations
yields (Xl,XQ, )\1, )\2) = (2, 0, ].7 —3) and (0, 2, —1, 1).
Unfortunately, neither solution works since the sign constraint

A < 0 is violated for both.
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A worked example.

e Case A\; < 0, A = 0. Now by complementary slackness z; = 0
so the first functional constraints is tight. Hence we have three
equations and three unknowns:

1-— 2)\1X1 =0
-3 - 2)\1X2 =0
x% + x22 =4
From the first equations we get x; = 2%1 Xp = —2%1 and from the

third equation \; = i@. But A1 < 0, so the solution

(x1.0) — ([ f)

is optimal by the Lagrangian sufficiency theorem.

Mike Tehranchi IB Optimisation: Lecture 3



	The Lagrangian sufficiency theorem
	The Lagrangian method
	Inequality constraints and complementary slackness
	A worked example.

