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Existence and uniqueness of an optimal solution

Definition

Given a convex set X C R", a function f : X — R is strictly
convex if for every x,y € X where x # y and every number
0 < p <1 we have

f(px 4 (1= p)y) < pf(x) + (1 —p)f(y)
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Existence and uniqueness of an optimal solution

Definition
An n X n matrix A is positive definite if

xTAx >0

for all x € R” such that x # 0.

Theorem
Suppose f : X — R is twice-differentiable. If D*f(x) is positive
definite for all x € X, then f is strictly convex.

Proof. Example sheet.
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Existence and uniqueness of an optimal solution

Theorem (Uniqueness of optimal solutions)
Suppose x* and y* are optimal solutions to the problem
minimise f(x) subject to x € X.

If f is strictly convex, then x* = y*.
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Existence and uniqueness of an optimal solution

Proof. By definition
F(x) =f(y") < f(2)

for all z € X. Suppose for the sake of finding a contradiction that
x* #£ y*. Now z = %(x* + y*). Note that z € X by the convexity
of X, and by the strict convexity of f that

2) < 5F() + 5F(r°) = Fx') = Fly"),

a contradiction. O
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Existence and uniqueness of an optimal solution

Definition
A function f : X — R is strongly convex if there exists a constant
m > 0 such that the function x — f(x) — %'||x||? is convex.

Notation. Here ||z|| = VzT z is the usual Euclidean norm on R".
In the next slide we will let | be the n x n identity matrix.
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Existence and uniqueness of an optimal solution

Theorem
Suppose f is twice differentiable. Then f is strongly convex if there
exists m > 0 such that for all x € X the matrix

D?f(x) — ml
is non-negative definite, or equivalently,
2z D?f(x)z > m||z|?

for all z € R".
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Existence and uniqueness of an optimal solution

Notation. There is a natural partial order on the set of symmetric
matrices. We write
B-A

if B — A is non-negative definite.
The hypothesis of the theorem can be rewritten D?f(x) = ml.
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Existence and uniqueness of an optimal solution

Proof. Note D?||x||> = 2/, and apply the definition. O
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Existence and uniqueness of an optimal solution

strongly convex = strictly convex = convex
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Existence and uniqueness of an optimal solution

Theorem (Existence of an optimal solution)

Suppose X C R" is closed and that f is continuous and strongly
convex. Then there exists an optimal solution to the problem

minimise f(x) subject to x € X.
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Existence and uniqueness of an optimal solution

Proof. Let g(x) = f(x) — 2| x||> where m > 0, and assume that g
is convex. By the supporting hyperplane theorem, there is a vector
A € R" such that

g(0) + \Tx
g(0) — [IAllIx|

g(x) >
>

by Cauchy—Schwarz. Hence for ||x|| > R = 2||A||/m we have

F(x) = £(0) — [[AIffIxI] + gIIXII2 > £(0)
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Existence and uniqueness of an optimal solution

Our problem becomes
minimise f(x) subject to x € X, ||x|]| <R

From analysis, the continuous function f attains its minimum on
the compact set {x € X : ||x|| < R}, showing that there exists an
optimal solution x*. []
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Existence and uniqueness of an optimal solution

Theorem (Gradient lower bound)

Suppose f : X — R is differentiable and strongly convex with
constant m > 0. Then

IDF() 1 = 2m(f(x) — £(¥))

for any x,y € X.
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Existence and uniqueness of an optimal solution

Proof. Applying the supporting hyperplane theorem from Lecture 1
to the convex function g(x) = f(x) — Z||x||? yields

F(y) = F(x) = (v = %) DF(x) + S lly = xIP
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Existence and uniqueness of an optimal solution

Now, note that by completing the square, we have any b,z € R”

that 16[2
m b
b" —z|)? > 1.
i 2 1" = 2m
Combining these inequalities yields
|Df (x)|>
fly) — f(x) > - 122200
) -l = 1=
The conclusion follows upon rearranging. O
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Existence and uniqueness of an optimal solution

For the rest of the lecture, we let X = R”, and focus on methods
for computing an optimal solution.
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Gradient descent

Motivation.
» Suppose f is differentiable.

> The rate of change of f at the point x € R” in direction
ueR"is
lim f(x + tu) — f(x)
t—0 t

= u' Df(x)

» By the Cauchy—Schwarz inequality, the rate of descent is
steepest when u is pointing in the direction of —Df(x).
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Gradient descent

Gradient descent algorithm
» Start with an initial guess xp € R”
» Pick a step size t > 0
> For every k > 0, let

Xk4+1 = Xk — th(Xk)
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Gradient descent

Question: In what sense, if any, does the sequence (xx)x converge
to an optimal solution x* 7
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Gradient descent

Theorem (Rate of convergence of gradient descent)

Suppose f is twice-differentiable and that there are constants
0 < m < M such that

ml < D?f(x) < MI

for all x € R". Applying the gradient descent algorithm with step
size t = 1/M we have

m

k
Fxk) — F(x*) < (1 — M) (f(x0) — F(x*))
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Gradient descent

Proof. Fix x,y € R". By Taylor's theorem thereisa 0 < p < 1
such that for £ = px + (1 — p)y we have

F(y) = £+ (v = )T DFG) + 5 (y = x) DAy %)
< F0) + (=) DGO + oy — X2

since D?f (&) < MI.
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Gradient descent

Hence
T M 2
f(xkt1) — F(xi) < (k1 — xk) DF(xic) + §||Xk+1 — X||
M
_ <_t+ 2t2> | DF (x¢) 12
1 2

= _WHDf(Xk)H

< () — F(x7))

>~ M Xk X .

This shows
F(xern) = F(x) < (1= 2) (F) = F(x)).

and the conclusion follows from induction. O
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Newton’s method

Motivation.
» Suppose f is twice continuously differentiable.
P> Let xg be an intitial guess for the optimiser.

» By Taylor's theorem we have
f(x) ~ f(x —x0) " Df L= x0)TD2F —
~ f(x0) + (x —x0)  Df(x0) + 5 (x — x0) (x0)(x —x0)

» Minimising the quadratic on the right (for instance, by
completing the square) yields the approximation

x* = xg — (sz(Xo))ilDf(X())
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Newton’s method

Newton’s method
» Start with an initial guess xp € R"
> For every k > 0, let

X1 = xk — (D*F(xc)) " DFf (xk)
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Newton’s method

Notation. A matrix norm. If Ais n x n, let ||A|| be the smallest
constant a > 0 such that

[Az]| < al|z]|

for all z € R". If A is non-negative definite, then ||A|| is the largest
eigenvalue of A.
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Newton’s method

Theorem (Rate of convergence of Newton's method)
Suppose f is twice-differentiable and that there are constants
m, L > 0 such that

D?f(x) = ml

and
IDf(x) = D*£ ()| < Lllx — y||
for all x,y € R". Applying Newton's method we have

3 ok+1
) = 1) < 2 (5107

2m
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Newton’s method

Proof.[Non-examinable] Letting Axx = xx+1 — Xk we have
Df (xx11) = Df (xkq1) — DF(x) — D*F(xi) Axc

1
= / [D?f(x + tAx) — D?(xi)]Ax dt
0

by the fundamental theorem of calculus.
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Newton’s method

By the triangle inequality applied to the integral, we have
1
|DF ()| < / 1D F (i + %) — D)) Bt
0
1
< L||Axk|]2/ t dt
0
1 _
= §L||(sz(xk)) "Df ()12
L 2
< 55 1DF(x)|

where we have used the fact that if A = m/ then |A71|| < 1/m.
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Newton’s method

By induction

2m? L 2
100l < 27 (rallOFt

By the conclusion follows from the lower bound on the
gradient. O
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