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Introduction

Our typical problem is of the form

minimise f(x) subject to g(x) = b, x € X.

> f:R"” — R is the objective function.

> X C R" defines a regional constraint.
» g:R" — R™ and b € R™ defines m functional constraints.
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Introduction

We will use the terminology:
» A feasible solution is any x € X such that g(x) = b.

» An optimal solution is a feasible solution x* such that
f(x*) < f(x) for all feasible x.

» The problem is feasible if there exists at least one feasible
solution.

» The problem is bounded if

inf{f(x): g(x)=b, xe€X}>—-c0
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Introduction

We also consider problems of the form

P: maximise f(x) subject to g(x) = b, x € X.

» Feasibility of a solution is defined as before

» An optimal solution is a feasible solution x* such that
f(x*) > f(x) for all feasible x.

This problem is equivalent to

P’: minimise — f(x) subject to g(x) = b, x € X.

» Problems P and P’ have the same set of feasible solutions.

» Problems P and P’ have the same set of optimal solutions.
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Optimisation on an interval

Consider the problem
minimise f(x) subject to a < x < b

in the case where f : R — R is twice differentiable..

Theorem (Necessary conditions for optimality)

Let x* be optimal for the problem, and suppose a < x* < b then
f'(x*)=0
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Optimisation on an interval

Proof. Let € > 0 be small enough that both x* — ¢ and x* + ¢ are
feasible. Since

f(x*) — f(x* —¢) <0< f(x*+e)—f(x)

Sending & N\, 0 yields f'(x*) < 0 < f/(x*) as desired. O
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Optimisation on an interval

Theorem (Sufficient conditions for optimality)

Suppose that x* is feasible and f'(x*) = 0. If f"'(x) > 0 for all
feasible x, then x* is optimal.
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Optimisation on an interval

Proof. Let x be a feasible solution. By Taylor's theorem
1
F) = F() + F(x)(x = ) + SF(E)(x = ).

where ¢ is some point between x and x*. Since f'(x*) =0 and
f"(£) > 0 by assumption, we have f(x) > f(x*). 0
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Convex sets and convex functions

Notational conventions
» a point in R” is an n-dimensional column vector

» If f is differentiable, then Df(x) € R" is the gradient of the
function f at the point x

> If f is twice differentiable, then D?f(x) is the n x n Hessian
matrix of second order partial derivatives.

Mike Tehranchi IB Optimisation: Lecture 1



Convex sets and convex functions

Definition
A set X C R" is convex if for every pair of points x,y € X and
number 0 < p < 1 we have

px+(1—p)y € X
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Convex sets and convex functions

Let X C R” be convex.

Definition
A function f : X — R is convex if for every pair of points x,y € X
and number 0 < p < 1 we have

f(px+ (1= p)y) < pf(x)+ (1 —p)f(y)
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Convex sets and convex functions

Theorem (Supporting hyperplane)

Let X C R"™ be convex. The function f : X — R is convex < for
every x € X there exists a vector A\(x) € R" such that

fly) — F(x) > A(x)"(y — x)

for all y € X.
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Convex sets and convex functions

Proof of <=. First suppose A(x) exists for all x. Fix y,z € X and
0<p<1, andlet x=py+ (1—p)z. Then

fly) — F(x) > X(x)"(y — x)
f(z) — f(x) > A(x) " (z = x)

Hence
pf(y) + (1= p)f(z) — F(x) > Ax) " (py + (1= p)z—x) =0

so f is convex. O
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Convex sets and convex functions

Proof of = when f is differentiable. Now suppose f is convex. By
definition, for 0 < p < 1 we have

fix+ply =x)) = f(x)

p < fy) = f(x).

Now send p ™\ 0 and simplify the left-hand side using vector
calculus. The vector A(x) = Df(x) satisfies the desired
inequality. O
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Convex sets and convex functions

Consider the problem
minimise f(x) subject to x € X

where f : X — R is differentiable.

Theorem (Sufficient conditions for optimality)

Suppose that x* is feasible and that Df (x*) = 0. If f is convex,
then x* is optimal.
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Convex sets and convex functions

Proof. Let x be feasible. By the supporting hyperplane theorem
f(x) — f(x*) > (x — x*) T DF(x*)

But the right-hand side is zero by assumption, hence
f(x) > f(x*). 0.
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Non-negative definite matrices

Definition
A symmetric n X n matrix is non-negative definite if for every
x € R™ we have x" Ax > 0.
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Non-negative definite matrices

Let X C R"” be convex and suppose f : X — R" is
twice-differentiable.
Theorem (Hessian of a convex function)

If the matrix D?f(x) is non-negative definite for all x, then the
function f is convex.
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Non-negative definite matrices

Proof. For any two x,y € X we have by Taylor's theorem that
fly)=f — x)" Df Yy —xTD2F -
(v) = F(3) + (y = ) TDF(x) + 5 (v —x) T DAF(E)(y — %)
where £ = px + (1 — p)y for some 0 < p < 1. Hence

Fly) — f(x) > Xx)"(y — x)

for all x,y € X, where A\(x) = Df(x). Then f is convex by the
supporting hyperplane theorem. O
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