
Stochastic Calculus Michael Tehranchi
Example sheet 4 - Lent 2015

Problem 1. Construct a filtered probability space on which a Brownian motion W and an
adapted process X are defined and such that

dXt =
Xt

t
dt+ dWt, X0 = 0.

Is X adapted to filtration generated by W? Is W a Brownian motion in the filtration
generated by X? [Hint: See example sheet 1, problem 3.]

Problem 2. (a) Prove Bihari’s inequality: Suppose f is satisfies the inequality

f(t) ≤ a+

∫ t

0

k(f(s))ds for all t ≥ 0

for a constant a and where the function k is positive and increasing and k ◦ f is locally
integrable. Show that ∫ f(t)

a

du

k(u)
≤ t for all t ≥ 0.

(b) Show that if

0 ≤ f(t) ≤
∫ t

0

k(f(s))ds for all t ≥ 0

and ∫ r

0

du

k(u)
=∞ for all r > 0

then f(t) = 0 for all t ≥ 0.
(c) Prove Osgood’s uniqueness theorem: Suppose for every n ≥ 1 there exists a positive,
increasing function kn such that

‖b(x)− b(y)‖ ≤ kn(‖x− y‖) for all x, y ∈ Rd, ‖x‖ ≤ n, ‖y‖ ≤ n.

Furthermore, suppose that for all n,∫ r

0

du

kn(u)
=∞ for all r > 0.

Show that for each x0 ∈ Rd there is at most one solution to the ODE

ẋ = b(x)

with x(0) = x0.
(d) Formulate and prove a similar pathwise uniqueness theorem for the SDE

dXt = b(Xt)dt+ σ(Xt)dWt.

Problem 3. Let b be bounded and measurable. Use Girsanov’s theorem to construct a weak
solution to the SDE

dXt = b(Xt)dt+ dWt

over the finite (non-random) time interval [0, T ].
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Problem 4. By inspecting the proof of Novikov’s condition, show that if there exists an
increasing sequence tn →∞ such that

E(e
1
2
(〈M〉tn−〈M〉tn−1 )) <∞

then E(M) is a true martingale. Hence, show that if b : Rd → Rd is measurable and satisfies
the linear growth condition

‖b(x)‖ ≤ C(1 + ‖x‖) for all x ∈ Rd

for a constant C > 0, then the SDE

dXt = b(Xt)dt+ dWt

has a weak solution over any finite time interval [0, T ]. You may want to use this form of
Jensen’s inequality:

e
∫ t
s au du ≤ 1

t− s

∫ t

s

e(t−s)audu.

Problem 5. Show that the SDE

dXt = 3X
1/3
t dt+ 3X

2/3
t dWt, X0 = 0

has strong existence, but not pathwise uniqueness.

Problem 6. Let X be the Markov process associated with the scalar SDE

dXt = b(Xt)dt+ σ(Xt)dWt.

Let the C2 function u : [0,∞)× R→ R satisfy the PDE

∂u

∂t
= b(x)

∂u

∂x
+
σ(x)2

2

∂2u

∂x2
+ g(x)

with boundary condition u(0, x) = 0 for all x. Assuming that g is bounded, and that u is
bounded on any strip [0, t]× R, then show that

u(t, x) = E
[∫ t

0

g(Xs)ds|X0 = x

]
.

Problem 7. Find the unique strong solution of the SDE

dXt =
1

2
Xtdt+

√
1 +X2

t dWt, X0 = x.

[Hint: consider the change of variables Yt = sinh−1Xt.]

Problem 8. Let W and B be independent Brownian motions, and let

Xt = e−Wt

(
x+

∫ t

0

eWsdBs

)
Show that there exists a Brownian motion Z such that

dXt =
1

2
Xtdt+

√
1 +X2

t dZt, X0 = x.

Use the previous problem to find the density function of the random variable
∫ t

0
eWsdBs.
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Problem 9. Let X be a solution of the SDE

dXt = Xtg(Xt)dWt

where g is bounded and non-random X0 > 0.
(a) Show that P(Xt > 0 for all t ≥ 0) = 1. [Hint: Apply Itô’s formula to E(

∫
g(X)dW )−1X.]

(b) Show that E(Xt) = X0 for all t ≥ 0.

(c) Fix a non-random time horizon T > 0. Show that there exists an equivalent measure P̂
on (Ω,FT ) and a P̂-Brownian motion Ŵ such that

dYt = Ytg(1/Yt)dŴt

where Yt = 1/Xt.

Problem 10. (square-root diffusion) Let W be an n-dimensional Brownian motion, and
define an n-dimensional process X to be the solution to the SDE

dXt = −Xtdt+ dWt

with X0 = x ∈ Rn. If Rt = ‖Xt‖2, show that there exists a scalar Brownian motion Z such
that

dRt = (n− 2Rt)dt+ 2
√
RtdZt.

Problem 11. By finding the stationary solution of the Fokker–Plank PDE, find a formula
for the invariant density of the scalar SDE

dXt = b(Xt)dt+ σ(Xt)dWt,

assuming it exists. Apply your formula to the process R in the previous question. Comment
of your answer in light of example sheet 3, problem 9.

Problem 12. Consider the SDE
dXt = X2

t dWt.

(a) Use example sheet 3, problem 5 to construct a weak solution.

(b) Verify that both u1(t, x) = x
[
2Φ
(

1
x
√
t

)
− 1
]

and u2(t, x) = x solve the PDE

∂u

∂t
=
x4

2

∂u2

∂x2
, u(0, x) = x

(c) Which of these solutions corresponds to u(t, x) = E(Xt|X0 = x)?

Problem 13. (a) Suppose X is a weak solution of the SDE dXt = b(Xt)dt + σ(Xt)dWt.
Show that the process

f(Xt)−
∫ t

0

[
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)

]
ds

is a local martingale for all f ∈ C2.
(b) Let X be a scalar, continuous, adapted process such that

f(Xt)−
∫ t

0

[
b(Xs)f

′(Xs) +
1

2
σ(Xs)

2f ′′(Xs)

]
ds

is a local martingale for each f ∈ C2. Suppose σ is continuous and σ(x) > 0 for all x. Show
that there exists a Brownian motion such that dXt = b(Xt)dt+ σ(Xt)dWt. [Hint: Consider
example sheet 3 problem 3.]

3



Problem 14. (Brownian bridge) Let W be a standard Brownian motion.
(a) Let Bt = Wt − tW1. This is called a Brownian bridge. Can you see why? Show that
(Bt)t∈[0,1] is a continuous, mean-zero Gaussian process. What is the covariance c(s, t) =
E(BsBt)?
(b) Is B adapted to the filtration generated by W?
(c) Let

dXt = − Xt

1− t
dt+ dWt, X0 = 0.

Verify that Xt = (1− t)
∫ t

0
dWs

1−s for 0 ≤ t < 1. Show Xt → 0 as t ↑ 1. [Hint: show that there

exists a Brownian motion Z such that
∫ t

0
dWs

1−s = Zt/(1−t) and apply the Brownian strong law
of large numbers.]
(d) Show that X is a continuous, mean-zero, Gaussian process with the same covariance as
B, i.e. X is a Brownian bridge.
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