Stochastic Calculus

Michael Tehranchi

Example sheet 1 - Lent 2015

Problem 1. Let $X = (X_t)_{t\geq 0}$ be a continuous Gaussian process (i.e. the random variables $X_{t_1}, \ldots X_{t_n}$ are jointly normal for every $0 \leq t_1 < \cdots < t_n$) such that

$$\mathbb{E}(X_t) = 0$$
 and $\mathbb{E}(X_s X_t) = s \wedge t$

for all $s, t \ge 0$. Show that X is a Brownian motion. (Recall the notation $a \land b = \min\{a, b\}$ for real a, b.)

Problem 2. Let W be a scalar Brownian motion. Show that \hat{W} is also a Brownian motion when \hat{W} is defined by

- (1) $\hat{W}_t = \frac{1}{c} W_{c^2 t}$ for a constant $c \neq 0$.
- (2) $\hat{W}_t = W_{t+a} W_a$ for a constant $a \ge 0$.
- (3) $\hat{W}_t = W_a W_{a-t}$ for $t \in [0, a]$, for a constant a > 0.

Problem 3. Let W be a Brownian motion. Show that

$$\int_0^t \mathbb{E}\left(\frac{|W_s|}{s}\right) ds < \infty$$

and hence for any t > 0 the function $s \mapsto W_s(\omega)/s$ is Lebesgue integrable on (0, t] for almost every $\omega \in \Omega$. Let $\hat{W}_0 = 0$ and

$$\hat{W}_t = W_t - \int_0^t \frac{W_s}{s} ds \text{ for } t > 0.$$

Show that \hat{W} is Brownian motion. Furthermore, show that $(\hat{W}_s)_{s \in [0,t]}$ and W_t are independent for all t > 0.

Problem 4. Let W be a Brownian motion. Prove the Brownian strong law of large numbers $\frac{W_t}{t} \to 0$ a.s. as $t \uparrow \infty$. Hence show that \hat{W} is a Brownian motion where $\hat{W}_0 = 0$ and $\hat{W}_t = tW_{1/t}$ for t > 0.

[Hint: One possibility is to use the ordinary strong law of large numbers and the square integrability of $\max_{0 \le s \le 1} |W_s|$.]

Problem 5. (a) Let A be the linear operator on $L^{2}[0, 1]$ defined by

$$(Af)(t) = \int_0^1 s \wedge t \ f(s) ds.$$

Find the eigenvalues and eigenfunctions of A, that is, numbers λ and functions g such that

$$Ag = \lambda g.$$

(b) Let ξ_1, ξ_2, \ldots be independent N(0, 1) random variables. Show that the series

$$X_t = \sum_{n=1}^{\infty} \frac{\sqrt{2} \sin[(n-1/2)\pi t]}{(n-1/2)\pi} \xi_n$$

converges almost surely for every $t \in [0, 1]$. Show that the process $(X_t)_{t \in [0, 1]}$ is Gaussian with mean $\mathbb{E}(X_t) = 0$ and covariance $\mathbb{E}(X_s X_t) = s \wedge t$.

[Hint: the Hilbert–Schmidt theorem says that a symmetric compact operator A has an orthonormal basis of eigenfunctions. It is known that operators of the form $Af(t) = \int_0^1 K(s,t)f(s)ds$ are compact when K is bounded.]

Problem 6. A Brownian sheet is a continuous Gaussian process $(B_{s,t})_{s \ge 0, t \ge 0}$ with the twodimensional index set \mathbb{R}^2_+ such that

$$\mathbb{E}(B_{s,t}) = 0$$
 and $\mathbb{E}(B_{s,t}B_{s',t'}) = (s \wedge s')(t \wedge t').$

- (1) Show for fixed s > 0, the process $(s^{-1/2}B_{s,t})_{t \ge 0}$ is a Brownian motion.
- (2) Show that the process $(B_{\sqrt{t},\sqrt{t}})_{t\geq 0}$ is a Brownian motion.
- (3) Show that a Brownian sheet exists.

Problem 7. Given a parameter $0 < \alpha \leq 1$, a function $f : [0, \infty) \to \mathbb{R}$ is said to be α -Hölder continuous at a point $s \geq 0$ iff there exist constants C > 0 and $\varepsilon > 0$ such that

$$|f(t) - f(s)| \le C|t - s|^{\epsilon}$$

for all $t \ge 0$ in the interval $(s - \varepsilon, s + \varepsilon)$. Let W be a scalar Brownian motion. Show that

 $\mathbb{P}\{\omega: t \mapsto W_t(\omega) \text{ is } \alpha \text{-H\"older continuous somewhere } \} = 0$

for all $\alpha > 1/2$.

Problem 8. Let W be a scalar Brownian motion, and let

$$\mathcal{Z}_{\omega} = \{t \ge 0 : W_t(\omega) = 0\}$$

be the set of zeroes. Show that for almost all ω :

- (1) \mathcal{Z}_{ω} is closed.
- (2) $\mathcal{Z}_{\omega} \cap (0, \epsilon)$ is non-empty for all $\epsilon > 0$. [Hint: Use Brownian scaling.]
- (3) Show $\text{Leb}(\mathcal{Z}_{\omega}) = 0$ for almost every ω . [Hint: Use Fubini's theorem.]

Challenge: Draw a picture that illustrates simultaneously phenomena (1), (2) and (3) above.

Problem 9. The *n*th Hermite polynomial H_n is defined uniquely be the identity

$$\sum_{n=0}^{\infty} \frac{1}{n!} H_n(x) \theta^n = e^{\theta x - \theta^2/2}$$

for real x, θ . Find H_0, H_1, H_2, H_3 explicitly. Show that $t^{n/2}H_n(W_t/\sqrt{t})$ defines a martingale for each $n \ge 0$, where W is a scalar Brownian motion.

Problem 10. The Picard–Lindelöf theorem says that the ODE

$$\dot{y} = g(t, y)$$

has a unique solution if $t \mapsto g(t, y)$ is continuous and there is a constant C > 0 such that

$$||g(t, y_1) - g(t, y_2)|| \le C ||y_1 - y_2||$$
 for all $y_1, y_2 \in \mathbb{R}^n$ and $t \ge 0$.

Suppose there exists a C > 0 such that

$$||f(x_1) - f(x_2)|| \le C ||x_1 - x_2||$$
 for all $x_1, x_2 \in \mathbb{R}^n$.

Show that the integral equation

$$X_t = X_0 + \int_0^t f(X_s)ds + \sigma W_t$$

has a unique solution, where $\sigma > 0$ is a constant and W is an n-dimensional Brownian motion.

Problem 11. Let $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ be a filtration. Let T be a stopping time and let

 $\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t \text{ for all non-random } t \ge 0 \}.$

- (1) Prove that \mathcal{F}_T is a sigma-algebra.
- (2) Show that T is \mathcal{F}_T -measurable.

Problem 12. Given a filtration \mathbb{F} , a process $X = (X_t)_{t\geq 0}$ is called progressively measurable iff for all non-random $t \geq 0$ the mapping $(s, \omega) \mapsto X_s(\omega)$ from $[0, t] \times \Omega$ to \mathbb{R} is $\mathcal{B}[0, t] \otimes \mathcal{F}_t$ -measurable.

- (1) Now suppose T is a stopping time such that $T(\omega) < \infty$ for all $\omega \in \Omega$. If X is progressively measurable, prove that the function $X_T : \Omega \to \mathbb{R}$ defined by $X_T(\omega) = X_{T(\omega)}(\omega)$ is \mathcal{F}_T -measurable.
- (2) Suppose X is right-continuous and adapted. Show that X is progressively measurable.

Problem 13. Let T_1, T_2, \ldots be stopping times for a filtration \mathbb{F} . Show that $\sup_n T_n$ is a stopping time. Show that $\inf_n T_n$ is a stopping time for the filtration $(\mathcal{F}_{t+})_{t\geq 0}$ where $\mathcal{F}_{t+} = \bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}$.