
Stochastic Calculus Michael Tehranchi
Example sheet 1 - Lent 2015

Problem 1. Let X = (Xt)t≥0 be a continuous Gaussian process (i.e. the random variables
Xt1 , . . . Xtn are jointly normal for every 0 ≤ t1 < · · · < tn) such that

E(Xt) = 0 and E(XsXt) = s ∧ t
for all s, t ≥ 0. Show that X is a Brownian motion. (Recall the notation a ∧ b = min{a, b}
for real a, b.)

Problem 2. Let W be a scalar Brownian motion. Show that Ŵ is also a Brownian motion
when Ŵ is defined by

(1) Ŵt = 1
c
Wc2t for a constant c 6= 0.

(2) Ŵt = Wt+a −Wa for a constant a ≥ 0.

(3) Ŵt = Wa −Wa−t for t ∈ [0, a] , for a constant a > 0.

Problem 3. Let W be a Brownian motion. Show that∫ t

0

E
(
|Ws|
s

)
ds <∞

and hence for any t > 0 the function s 7→ Ws(ω)/s is Lebesgue integrable on (0, t] for almost

every ω ∈ Ω. Let Ŵ0 = 0 and

Ŵt = Wt −
∫ t

0

Ws

s
ds for t > 0.

Show that Ŵ is Brownian motion. Furthermore, show that (Ŵs)s∈[0,t] andWt are independent
for all t > 0.

Problem 4. Let W be a Brownian motion. Prove the Brownian strong law of large numbers
Wt

t
→ 0 a.s. as t ↑ ∞. Hence show that Ŵ is a Brownian motion where Ŵ0 = 0 and

Ŵt = tW1/t for t > 0.
[Hint: One possibility is to use the ordinary strong law of large numbers and the square

integrability of max0≤s≤1 |Ws|.]

Problem 5. (a) Let A be the linear operator on L2[0, 1] defined by

(Af)(t) =

∫ 1

0

s ∧ t f(s)ds.

Find the eigenvalues and eigenfunctions of A, that is, numbers λ and functions g such that

Ag = λg.

(b) Let ξ1, ξ2, . . . be independent N(0, 1) random variables. Show that the series

Xt =
∞∑
n=1

√
2 sin[(n− 1/2)πt]

(n− 1/2)π
ξn

converges almost surely for every t ∈ [0, 1]. Show that the process (Xt)t∈[0,1] is Gaussian
with mean E(Xt) = 0 and covariance E(XsXt) = s ∧ t.
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[Hint: the Hilbert–Schmidt theorem says that a symmetric compact operator A has
an orthonormal basis of eigenfunctions. It is known that operators of the form Af(t) =∫ 1

0
K(s, t)f(s)ds are compact when K is bounded.]

Problem 6. A Brownian sheet is a continuous Gaussian process (Bs,t)s≥0,t≥0 with the two-
dimensional index set R2

+ such that

E(Bs,t) = 0 and E(Bs,tBs′,t′) = (s ∧ s′)(t ∧ t′).
(1) Show for fixed s > 0, the process (s−1/2Bs,t)t≥0 is a Brownian motion.
(2) Show that the process (B√t,

√
t)t≥0 is a Brownian motion.

(3) Show that a Brownian sheet exists.

Problem 7. Given a parameter 0 < α ≤ 1, a function f : [0,∞)→ R is said to be α-Hölder
continuous at a point s ≥ 0 iff there exist constants C > 0 and ε > 0 such that

|f(t)− f(s)| ≤ C|t− s|α

for all t ≥ 0 in the interval (s− ε, s+ ε). Let W be a scalar Brownian motion. Show that

P{ω : t 7→ Wt(ω) is α-Hölder continuous somewhere } = 0

for all α > 1/2.

Problem 8. Let W be a scalar Brownian motion, and let

Zω = {t ≥ 0 : Wt(ω) = 0}
be the set of zeroes. Show that for almost all ω:

(1) Zω is closed.
(2) Zω ∩ (0, ε) is non-empty for all ε > 0. [Hint: Use Brownian scaling.]
(3) Show Leb(Zω) = 0 for almost every ω. [Hint: Use Fubini’s theorem.]

Challenge: Draw a picture that illustrates simultaneously phenomena (1), (2) and (3) above.

Problem 9. The nth Hermite polynomial Hn is defined uniquely be the identity
∞∑
n=0

1

n!
Hn(x)θn = eθx−θ

2/2

for real x, θ. Find H0, H1, H2, H3 explicitly. Show that tn/2Hn(Wt/
√
t) defines a martingale

for each n ≥ 0, where W is a scalar Brownian motion.

Problem 10. The Picard–Lindelöf theorem says that the ODE

ẏ = g(t, y)

has a unique solution if t 7→ g(t, y) is continuous and there is a constant C > 0 such that

‖g(t, y1)− g(t, y2)‖ ≤ C‖y1 − y2‖ for all y1, y2 ∈ Rn and t ≥ 0.

Suppose there exists a C > 0 such that

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖ for all x1, x2 ∈ Rn.

Show that the integral equation

Xt = X0 +

∫ t

0

f(Xs)ds+ σWt
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has a unique solution, where σ > 0 is a constant and W is an n-dimensional Brownian
motion.

Problem 11. Let F = (Ft)t≥0 be a filtration. Let T be a stopping time and let

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all non-random t ≥ 0}.
(1) Prove that FT is a sigma-algebra.
(2) Show that T is FT -measurable.

Problem 12. Given a filtration F, a process X = (Xt)t≥0 is called progressively measurable
iff for all non-random t ≥ 0 the mapping (s, ω) 7→ Xs(ω) from [0, t]× Ω to R is B[0, t]⊗Ft-
measurable.

(1) Now suppose T is a stopping time such that T (ω) < ∞ for all ω ∈ Ω. If X is
progressively measurable, prove that the function XT : Ω → R defined by XT (ω) =
XT (ω)(ω) is FT -measurable.

(2) Suppose X is right-continuous and adapted. Show that X is progressively measur-
able.

Problem 13. Let T1, T2, . . . be stopping times for a filtration F. Show that supn Tn is
a stopping time. Show that infn Tn is a stopping time for the filtration (Ft+)t≥0 where
Ft+ = ∩ε>0Ft+ε.
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