Stochastic Calculus and Applications (L24) M. Tehranchi

This course is an introduction to the theory of continuous-time stochastic processes, with an emphasis on the central role played by Brownian motion. It complements the material in Advanced Probability, Advanced Financial Models, and Schramm–Loewner Evolutions.

- *Review of Brownian motion*. Isonormal process. Wiener's existence theorem. Sample path properties.
- Continuous stochastic calculus. Martingales, local martingales and semi-martingales. Quadratic variation and co-variation. Itô's isometry and definition of stochastic integral. Kunita–Watanabe's theorem. Itô's formula.
- Applications to Brownian motion. Lévy's characterization of Brownian motion. Dubins– Schwartz theorem. Girsanov's theorem. Transience and recurrence. Martingale representation theorems.
- Stochastic differential equations. Strong and weak solutions. Notions of existence and uniqueness. Yamada–Watanabe theorem. Strong Markov property. Kolmogorov, Fokker–Planck and Feynmann–Kac partial differential equations. The one-dimensional case. Stochastic partial differential equations.

Pre-requisites

Knowledge of measure theoretic probability at the level of Part III Advanced Probability will be assumed, especially familiarity with discrete-time martingales and basic properties of Brownian motion.

Literature

- 1. I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer. 1998
- 2. D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer. 2001
- L.C. Rogers and D. Williams. Diffusions, Markov Processes and Martingales. Vol.1 and 2. Cambridge University Press. 2002

Additional support

Four sheets will be provided and four associated examples classes will be given. There will be a one-hour revision class in the Easter Term.