Stochastic Calculus and Applications (L24)
M. Tehranchi

This course is an introduction to the theory of continuous-time stochastic processes, with an
emphasis on the central role played by Brownian motion. It complements the material in
Advanced Probability, Advanced Financial Models, and Schramm-Loewner Evolutions.

o Review of Brownian motion. Isonormal process. Wiener’s existence theorem. Sample
path properties.

e Continuous stochastic calculus. Martingales, local martingales and semi-martingales.
Quadratic variation and co-variation. It6’s isometry and definition of stochastic integral.
Kunita—Watanabe’s theorem. It6’s formula.

o Applications to Brownian motion. Lévy’s characterization of Brownian motion. Dubins—
Schwartz theorem. Girsanov’s theorem. Transience and recurrence. Martingale represen-
tation theorems.

e Stochastic differential equations. Strong and weak solutions. Notions of existence and
uniqueness. Yamada—Watanabe theorem. Strong Markov property. Kolmogorov, Fokker—
Planck and Feynmann-Kac partial differential equations. The one-dimensional case.
Stochastic partial differential equations.

Pre-requisites

Knowledge of measure theoretic probability at the level of Part III Advanced Probability will be
assumed, especially familiarity with discrete-time martingales and basic properties of Brownian
motion.
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Additional support

Four sheets will be provided and four associated examples classes will be given. There will be
a one-hour revision class in the Easter Term.



