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Plan of the talk

The challenge of Critical Phenomena in Economics (CPE)
A reappraisal of Rational Expectations Economics (REE).

What's wrong with dynamic stochastic general equilibrium (DSGE)
models.

Rational decisions in turbulent times: what we learn from volatility
modeling.

Scale Invariant Dynamic Stochastic General Equilibria (SI-DSGE).
Scale Invariance vs Time consistency.

Conclusions and a Research Agenda
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The challenge of Critical Phenomena in Economics

Quantitative Finance community is setting new benchmarks and new
challenges to mainstream economic sciences!!

It is not unfair to say that interdisciplinary contributions that are
nowaday universally recognized as relevant, would have not been
published without the effort of QF founders and former editors.
Today talk: An attempt to introduce a notion of SI-DSGE. The
minimum goal is to establish a common language to popularize critical
phenomena in macro but.... a scale invariant, time inconsistent
version of the dynamic programming principle makes its appearance.
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Litterature

® Physics: Renormalization group and Critical Phenomena, Complexity
and Spin Glasses: K. G. Wilson, G. Jona Lasinio, P.W. Anderson, G.
Parisi, P. Bak.

® Econophysics and Mathematical Finance: our editors Michael, Doyne
Famer, Jean Philippe, and Jim, editorial and advisory board as
representatives of the full community!

® Economics and Finance: L. Hansen, J. Scheinkman, M. Woodforde,
P. Kyle, X. Gabaix.
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Normative vs Descriptive Models in Economics
‘Economists should aspire to be like dentists’ (Keynes)

® Physicist analysis of economic phenomena is mostly relevant only
from a descriptive point of view.

® Lucas Critique (1976) ‘'Parameters of the traditional unrestricted
macroeconometric models are unlikely to remain invariant in a
changing economic environment’.

® L. P. Hansen (2014 Nobel Lecture) ‘Uncertainty is inside and outside
an economic model' To generate reliable counterfactuals, a model has
to endogenize the impact of policy rules on individual and collective
expectations.

- Individual level: a macro model requires a proper
microfoundation in terms of the description of individual
decision making.

- Collective level: a game solution concept is necessary to
explore the counterfactuals in an equilibrium of agents

that act strategically
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Basics of Rational Expectations Economics.

® A proper model discussion of the selection of the optimal policy
requires a precise model of:
1. The law of motions of the underlying drivers of dynamic uncertainty.
2. The formation of agent beliefs.
3. Agent decision functions.
® Rational expectations (very strong assumption):

1. Agents use publicly available information in an efficient manner. Thus,
they do not make systematic mistakes when formulating expectations.

2. They understand the structure of the model economy and base their
expectations on this knowledge.
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Example: Asset pricing in discrete time

® Asset pricing models commonly considered in finance are based on
the assumption that agents take their decisions based on their
risk-adjusted expectations about security cash flows and discount
rates.

® |n discrete time, models in structural form that describe also the
process of expectation formation read as follows:

y¢ = a(xe+1+ Eye+1) < Backward Expectation Dynamics

x¢ = (1—c)x¢—1+ ver < Forward Driver of Economic Uncertainty
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Example: Asset pricing in discrete time |l

A variation of the so called dividend discount model: set P; = y;,
drip=do(1+8)" xesn a= (141"

Assume v is sufficiently small that Prob (x; < 0) is negligible, take
expectations under the historical measure and solving for g, r,c > 0
and r—(1—c)g+c >0. Then:

p, BED +Z°° E;: [dn) FDEU doxt
' n:1(1+r>n r—(l-c)g+c

Reduced form (VAR) representation of the price dynamics:

dov .
r—(1-cgtc’

Pt:(l—C)Pt_1+

Campbell-Shiller (1988) log-linearized model is a (more sophisticate)
example derived following the same logic.
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Stability of Stationary Equilibria and Learning

® |n standard macroeconomic model, rational expectations can emerge
in the long run, provided the agents’ environment remains stationary
for a sufficiently long period. (Evans and Honkapohja 2013, 68)

® Within our example E; ; P; denotes the subjective expectation:

Pt = aE;llPt—l—(SXt_l +17t
Ettl’Dt = Br-1Xt-1

where B:_1 is the estimated parameter value given the past history.
Then the actual update will be:

Pe = (aBt—1+9) xe—1 + 1¢

while the parameter estimate may be updated according for example
accoring to a generalized stochastic gradient.
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Stability of Stationary Equilibria and Learning

_ (Pt — Bt-1xt-1)
B: = PBi-1+ iR,

(g = Re1)
t

Rt - Rt_]_ —|—

Set T (Br) :=0+aPr, M:=E [x2 ], S(t—1) := Re_1 then:

d. M
dt - S (T) (T (.BT) - .BT)
@O s

dt
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Expectational stability

Noting that lim¢— 1 S (T) = M, in order to achieve convergence of B; to
the true value, it is sufficient that the equilibrium point for the dynamical
system:

dpr
o — (T () - o)
1)

11—«

B =

is stable, which is equivalent to require the condition & < 1.

Proposition (Evans and Honkapohja): The economy converges to the
REE under RLS learning iff the REE is E-stable. The latter occurs iff
a < 1.
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Lucas Critique

® |nvestors adjust their expectations based on the current observations,
e.g. they may expect that a raise in the interest rate r may lower
expected dividend rate of growth g and this may determine a change
in the demand for stocks.

® To specify this change, you need to specify decision functions to be
optimized by the monetary authority, the producer and the investor.

® |n a stationary environment we can write the Bellman's equations as a
fixed point equation, e.g.:

V(x.z) = max { (xc)+p [ V(Flxze) ’)dQ(z’,z)}

ceC(x,z)
(1)

The solution to this problem will be a stationary (time-invariant)
policy function ¢* = g*(x, z).
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Preferences

® Exponential discounting, B of preference is a necessary condition to
achieve time consistency of the preference functional which implies
the possibility to rely on the dynamic programming principle to
identify an (autonomous) value function in a stationary environment.

® Hansen-Scheinkman (PNAS2012) discuss existence and uniqueness of
this fixed point equation in the context of recursive utilities in a
Markov enviroment with stochastic growth that can accomodate
exotic preferences.

® Controlled state variable dynamics includes forward and backward
components to take into account the impact of expectations on
current values.
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What's wrong with DSGE

In the words of Bouchaud and Farmer (2023):
In the real world, the random events that influence our lives are neither

stationary nor ergodic

® Buraschi and Tebaldi (MS2023) DSGE with network distress
propagation.... the empirical evidence is consistent with an
equilibrium located above but in the vicinity of a tipping point so that
critical fluctuations of aggregate distress h} are scale invariant....:

Prihi > H ~H™

® Bouchaud and Farmer (JPE2023) Quasi non-ergodicity .... ergodicity
breaks down on a timescale at which realizations from the process
might realistically be observed by a human agent..... the wealth
distribution multiplicative, thereby generating a Pareto-tailed wealth
distribution.
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Rationality in turbulent times

Proposal: first steps toward a definition of a Scale-Invariant DSGE.

As Kolmogorov hypothesized that equipartion of energies in turbulence
takes place over log scales, Lamperti shows that a self-similar process
w.r.t. t, if properly rescaled is stationary in log(t).
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Lamperti isomorphism.
® The shift operator Sz, T € R:

(chT) (t) == XT(t+1).
® Let H>0and A > 0, the renormalized dilation operator R 4:
(RH,AXD) (t) := A~HXD(A¢)
® The Lamperti transform Uy:
(L{HXT> (t) == t"XT (log t), t > 0
® The inverse Lamperti transform L[,;l:
<U§1XD) (t) := e MXP (e') , t eR.

Forany A > 0:
U R aUn = Liog
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Renormalization operator
Shift operator £ — L lag operator

Ley k=€t k1

Dilation operation Ry » — Ry Haar Scale operator
U)o .0)
; e t+e
RHS(tJ) = 2Ht 2
U) _ .0)
D B Ty
t . - 2H

Lamperti isometry in discrete time: the rescaling operator Ry acts as
a shift operator L acting with respect to the scale index j — j 4 1!

Ry and L do not commute: you cannot be simultaeously translation
and scale invariant.
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Renormalization Group in Structural Econometrics:
Extended Wold Decomposition

® Structural Vector AutoRegression:
Ly: =yt A (L) Yt = €t

Let A71 (L) = Ag — X1 ALk
® Cerreia-Vioglio Ortu Severino Tamoni T. (QE19, DEF23) introduce a
Wold decomposition w.r.t. rescaling operator R

A (L, R) Yt = €¢
-1 _ +00 Rk
where A=* (L,R) = Ao — ijkzl A jRILE.
® After Lamperti transformation the relevant information filtration is
across scales not across time.
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Brownian motion

Consider a unit variance Brownian Motion t; — Bty (W), ,t1 = €7,
Biter (w) and using the scaling invariance of the brownian motion we can
observe that setting:

Of (w) := e 2Byyer (W), T>0
and taking the differential one gets:
1
dOf (w) = —§O§ (w) dt + dWy (w)

A self-similar, non stationary process to an Ornstein-Uhlenbeck process
with an ergodic steady state. MA representation:

Ot (w) = [

—00

T

e (D24, (w) (2)
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Multiscale autoregressive dynamics
OU differential formula is a scale version of an AR(1) operator

(+1) -3 -0 (+1)
Gt+2f+1 2 : Gt+2J + €tiaitt
Then, by recursion, | can prove that the forward process is determined by

the moving average:

J .
) _ — L)
Gt+ZJ - Z 27 Stj+2f
J=Imin
Time scale flow inversion {t > 0, log (t)} — {t < 0, — log (—%)}
G(.I 1) =272 G() (J 1)

t—2-1 t— 2J € 21
Then, by recursion, | can prove that the backward process is determined
by the moving average:

mX
iz,
Z :
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Forward Multiscale autoregressive dynamics

® The best estimate of the time t at level J is obtained by considering a
weighted average of the shocks over different (lower) frequencies
scaled by an appropriate weight.

® Notice that the above formulation applied to volatility fully motivates
a structure in line with the Corsi (2009) HAR volatility predictor:

RV, = c+ B9RV,_1 + BWRV™ 4+ pmMRYy(™ 4 ¢,

® A multiscale version the Rough Vol model: the joint process of
log-prices and log-variances obeys scale similarity. A scale-stationary
VAR would read:

. 1 .
ity T [ ] 4]
; — -2 .
log (‘72) 51_)21_ a2 L log (‘72) ijjzfll S((TJ,thJI

)

where St is a multivariate white noise on a time grid 2/.

2J
21/36



log(V(A))

Scaling

Data

log(A)

Integrated Return Variance is scale invariant
(Data on S&P500 from Oxford Man Institute)
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Scaling
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Backward Multiscale autoregressive dynamics

To compute expectations of investors, you have to compute the
backward component.
Intuition: computation of the backward component is equivalent to
carry out a pricing exercise. Observation from the Rough Vol paper:
Skew, the price of an option strategy, is also scale-stationary.
Backward variables must also be scale stationary.
A scale consistent version of the dividend-discount formula:

foo .

Po=Y dEf[d,]. a<1
j=1

t+2/
measure) expected dividend.

where Ef {d(j) ] is the persistence-j component of the (forward

‘Excess volatility puzzle' is circumvented: volatility of low frequency
components is reduced by the averaging and rescaling procedure and

then properly rescaled according to q.
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Scaling
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Option Markets: Term Structure of Implied Skewness vs H=3
(Gatheral Jaisson and Rosenbaum 2018)
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Backward Multiscale Autoregressive dynamics

® Madan and Wang (2022) state that risk neutral variance term
structures are characterized by their time elasticities:

(T—t)we(T—t) _din(v(T —1t))

1T ="y din(T — 1)

An additional month at one month is not comparable to an additional
month at five years or sixty months.

Important conclusion for ‘ergodic economists’: there is a second ergodic
problem which is relevant if you consider a dynamics w.r.t. the
time-changed scale T = log (t).
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Learning dynamics across scales

The stationary point in the Lamperti transformed dynamics
corresponds to a fixed point for the Renormalization Operator.

Beyond scaling, a second important property implied by the presence
of a fixed point of a renormalziation group operator is Universality,
the fact that upon averaging different models converge to the same
fixed point.

Universality property is equivalent to analyzing dynamics in model
space and focusing on fixed points in the parameter space. This is in
full analogy REE where rational expectations coincide with fixed
points for the learning dynamics.

Universality in financial markets: investors with large trading interests
recognize that their trades can move the market-clearing price, which
reduces their profits and split their orders into child ones.
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Universality

Kyle and Obizhaeva (2016) hypothesize that the quantity:

-0 oP oPV w
T NBT1/2 T 372 a3/2°
NY N3/ N3/

does not depend on time and on assets.

® A ‘bet’ or metaorder is a sequence of correlated orders driven by the
same information. Very similar to the notion of cascades/avalanches.

Qg quantity of dollars per 'bet’.

o P volatility of price per unit period.

Ng number of ‘bets’ per unit time is business time.

V = QgNg dollar volume.
® W = oPV trading activity.
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® Market Microstructure Invariance, Kyle and Obizhaeva (2016):

Universality
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Universality

® Market Microstructure Invariance, weak universality hypothesis:
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Invariance requires normalization of the Kyle Obizhaeva invariant by an
index reflecting total trading costs

Benzaquen Bouchaud Bucci Lillo (2019)
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Renormalization Group

® 'Scaling and efficiency determine the irreversible evolution of a
market' Stella Baldovin PNAS (2007) and Challet and Peirano (2008)

1 r
pu (r) = \/(T+t)2D—t2Dg \/(T+t)2D—t2D

® Omori Law Lillo and Mantegna (2001), Baldovin Stella et al. (2013)
Omori Law, N(t) cumulative number of aftershocks:

K

N(T) =1

[(T+ P - (t)lﬂ

® All these equations, in order to exploit scale invariance, become
non-time translation invariant.
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The formation of agent beliefs and preferences

® To avoid Lucas critique, it is necessary to discuss how the shift from
translation invariance to scale invariance impacts preferences

® We notice that this time change is fundamentally inconsistent with
time translation-invariance of the preference, which is quite
reasonable in relation to the fact that a process that is stationary in
the log time will be self-similar in time.

® There is a large literature analyzing individual preferences w.r.t. time
Hyperbolic preference: Lowenstein and Prelec (QJE1992)
The discount function is a generalized hyperbola:

2>

d(t)=(1+at) « a,p>0

The a-coefficient determines how much the function departs from
constant discounting.
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The formation of agent beliefs and preferences

A striking evidence of time inconsistency: procrastination of conference
registration by Alfi Parisi Pietronero (Nature2007):

The probability p(t) to register at time t is then p(t) = C/ (T* —t),
where T* is the deadline and the constant C will be fixed by the total

number of participants Ny . The number of registrations at time t is
given by N(t) = CIn(T*/ (T* —t)).
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Figure 1 The distribution of registrations is shown for Statphys 23 (red triangles), up to the main deadline for
abstract submission (7%, and for the EP2DS 17 conference (blue circles), rescaled with respect to the total

number of participants; the solid line corresponds to a simple model in which the pressure to register is inversely
proportional to the time left before the deadline. The level of agreement between the data for the two conferences
and the model suggests that there is a simple universal behaviour in response to a deadline. The inset shows the
distribution in time of payment of the conference fee (credit-card payments only): the distribution is more peaked
towards the deadline because, although registration is reversible, payment is irreversible. The simple model (dashed
line) is not accurate in this case, and it is necessary to include an exponential utility function (solid line).


mailto:luciano.pietronero@roma1.infn.it
http://www.statphys23.org
http://www.ep2ds-mss.infm.it
www.nature.com/naturephysics
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The formation of agent beliefs and preferences

® This results in a time inconsistent optimal control problem (a change
in the initial point will change the definition of the optima) that
deserves more attention:

o (x; u(2))

. P(t) [X(t) — a(t)]?
2 Egx / @) 5 Q) [Y(t) — w()]? bt
° +R(t)u?(t) + S (1) Z (t)°

subject to the FBSDE constraint:

dX(t) = b(t, X(t),Y(t),u(t))dt+o(t, X(t), Y(t), u(t))dW(t),
dY(t) = [—g(t, X(t),Y(t),u(t))]dt+ Z(t)dW(t), t>0,
X(0) = xeR".
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The formation of agent beliefs and preferences

If you shift from t to log (t) you restore a scale-invariant version of
the time consistency property.

You loose time-translational invariance of preference, but you can
save the dynamic programming principle. It simply states that you do
not want your current decision to be self-contraddictory over different
horizons.

A new dynamic programming principle equivalent to dynamic
renormalization: you need to shift the time variable from t to log (t) :

d d
5, ~HIB[] =t —HIB]

The role of first order optimality conditions under this new
information filtration to be understood.
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Conclusions

If you take seriously the empirical evidence and are trying to set up a
SI-DSGE........

shift from time-translation invariant to scale-consistent preferences.

a large body of work yet to be done!
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