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Plan of the talk

• The challenge of Critical Phenomena in Economics (CPE)

• A reappraisal of Rational Expectations Economics (REE).

• What’s wrong with dynamic stochastic general equilibrium (DSGE)
models.

• Rational decisions in turbulent times: what we learn from volatility
modeling.

• Scale Invariant Dynamic Stochastic General Equilibria (SI-DSGE).

• Scale Invariance vs Time consistency.

• Conclusions and a Research Agenda
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The challenge of Critical Phenomena in Economics

• Quantitative Finance community is setting new benchmarks and new
challenges to mainstream economic sciences!!

• It is not unfair to say that interdisciplinary contributions that are
nowaday universally recognized as relevant, would have not been
published without the effort of QF founders and former editors.

• Today talk: An attempt to introduce a notion of SI-DSGE. The
minimum goal is to establish a common language to popularize critical
phenomena in macro but.... a scale invariant, time inconsistent
version of the dynamic programming principle makes its appearance.
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Litterature

• Physics: Renormalization group and Critical Phenomena, Complexity
and Spin Glasses: K. G. Wilson, G. Jona Lasinio, P.W. Anderson, G.
Parisi, P. Bak.

• Econophysics and Mathematical Finance: our editors Michael, Doyne
Famer, Jean Philippe, and Jim, editorial and advisory board as
representatives of the full community!

• Economics and Finance: L. Hansen, J. Scheinkman, M. Woodforde,
P. Kyle, X. Gabaix.
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Normative vs Descriptive Models in Economics
‘Economists should aspire to be like dentists’ (Keynes)
• Physicist analysis of economic phenomena is mostly relevant only

from a descriptive point of view.
• Lucas Critique (1976) ‘Parameters of the traditional unrestricted

macroeconometric models are unlikely to remain invariant in a
changing economic environment’.
• L. P. Hansen (2014 Nobel Lecture) ‘Uncertainty is inside and outside

an economic model ’ To generate reliable counterfactuals, a model has
to endogenize the impact of policy rules on individual and collective
expectations.

- Individual level: a macro model requires a proper
microfoundation in terms of the description of individual
decision making.

- Collective level: a game solution concept is necessary to
explore the counterfactuals in an equilibrium of agents
that act strategically
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Basics of Rational Expectations Economics.

• A proper model discussion of the selection of the optimal policy
requires a precise model of:

1. The law of motions of the underlying drivers of dynamic uncertainty.
2. The formation of agent beliefs.
3. Agent decision functions.

• Rational expectations (very strong assumption):

1. Agents use publicly available information in an efficient manner. Thus,
they do not make systematic mistakes when formulating expectations.

2. They understand the structure of the model economy and base their
expectations on this knowledge.
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Example: Asset pricing in discrete time

• Asset pricing models commonly considered in finance are based on
the assumption that agents take their decisions based on their
risk-adjusted expectations about security cash flows and discount
rates.

• In discrete time, models in structural form that describe also the
process of expectation formation read as follows:

yt = a (xt+1 + Eyt+1) ← Backward Expectation Dynamics

xt = (1− c) xt−1 + v εt ← Forward Driver of Economic Uncertainty
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Example: Asset pricing in discrete time II

• A variation of the so called dividend discount model: set Pt = yt ,
dt+n = d0 (1+ g)n xt+n, a = (1+ r)−1

• Assume v is sufficiently small that Prob (xt < 0) is negligible, take
expectations under the historical measure and solving for g , r , c > 0
and r − (1− c) g + c > 0. Then:

Pt
BED
=

+∞

∑
n=1

Et [dt+n]

(1+ r)n
FDEU
=

d0xt
r − (1− c) g + c

• Reduced form (VAR) representation of the price dynamics:

Pt = (1− c)Pt−1 +
d0v

r − (1− c) g + c
εt

• Campbell-Shiller (1988) log-linearized model is a (more sophisticate)
example derived following the same logic.
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Stability of Stationary Equilibria and Learning

• In standard macroeconomic model, rational expectations can emerge
in the long run, provided the agents’ environment remains stationary
for a sufficiently long period. (Evans and Honkapohja 2013, 68)

• Within our example E ∗t−1Pt denotes the subjective expectation:

Pt = αE ∗t−1Pt + δxt−1 + ηt

E ∗t−1Pt = βt−1xt−1

where βt−1 is the estimated parameter value given the past history.
Then the actual update will be:

Pt = (αβt−1 + δ) xt−1 + ηt

while the parameter estimate may be updated according for example
accoring to a generalized stochastic gradient.
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Stability of Stationary Equilibria and Learning

βt = βt−1 +
(Pt − βt−1xt−1)

tRt

Rt = Rt−1 +

(
x2t−1 − Rt−1

)

t

Set T (βτ) := δ + αβτ, M := E
[
x2t−1

]
, S (t − 1) := Rt−1 then:

dβτ

dτ
=

M

S (τ)
(T (βτ)− βτ)

dS (τ)

dτ
= M − S (τ)
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Expectational stability

Noting that limτ→+∞ S (τ) = M, in order to achieve convergence of βt to
the true value, it is sufficient that the equilibrium point for the dynamical
system:

dβτ

dτ
= (T (βτ)− βτ)

β∗ =
δ

1− α

is stable, which is equivalent to require the condition α < 1.

Proposition (Evans and Honkapohja): The economy converges to the
REE under RLS learning iff the REE is E-stable. The latter occurs iff
α < 1.
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Lucas Critique

• Investors adjust their expectations based on the current observations,
e.g. they may expect that a raise in the interest rate r may lower
expected dividend rate of growth g and this may determine a change
in the demand for stocks.

• To specify this change, you need to specify decision functions to be
optimized by the monetary authority, the producer and the investor.

• In a stationary environment we can write the Bellman’s equations as a
fixed point equation, e.g.:

V (x , z) = max
c∈C (x ,z)

{
u(x , c) + β

∫

Z
V

(
f (x , z , c), z ′

)
dQ

(
z ′, z

)}

(1)
The solution to this problem will be a stationary (time-invariant)
policy function c∗ = g ∗(x , z).
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Preferences

• Exponential discounting, βn of preference is a necessary condition to
achieve time consistency of the preference functional which implies
the possibility to rely on the dynamic programming principle to
identify an (autonomous) value function in a stationary environment.

• Hansen-Scheinkman (PNAS2012) discuss existence and uniqueness of
this fixed point equation in the context of recursive utilities in a
Markov enviroment with stochastic growth that can accomodate
exotic preferences.

• Controlled state variable dynamics includes forward and backward
components to take into account the impact of expectations on
current values.
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What’s wrong with DSGE
In the words of Bouchaud and Farmer (2023):
In the real world, the random events that influence our lives are neither
stationary nor ergodic

• Buraschi and Tebaldi (MS2023) DSGE with network distress
propagation.... the empirical evidence is consistent with an
equilibrium located above but in the vicinity of a tipping point so that
critical fluctuations of aggregate distress hν

t are scale invariant....:

Pr [hν
t > H ] ≃ H−α

• Bouchaud and Farmer (JPE2023) Quasi non-ergodicity .... ergodicity
breaks down on a timescale at which realizations from the process
might realistically be observed by a human agent..... the wealth
distribution multiplicative, thereby generating a Pareto-tailed wealth
distribution.
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Rationality in turbulent times

Proposal: first steps toward a definition of a Scale-Invariant DSGE.

1

Kolmogorov’s

Theory

of

Inertial Turbulence

Turbulence in Fluids

Benoit Cushman-Roisin
Thayer School of Engineering

Dartmouth College

In a statistical description of turbulence, two variables play a fundamental role.  
These are:

u* = characteristic orbital velocity of fluid parcels in the turbulent eddies,

d = characteristic diameter of these eddies.

The turbulent fluid is populated by many 
eddies, of varying sizes and speeds, and 
as a result u* and d do not assume a 
single value but vary within a certain 
realizable range.

Basic phenomenology of fluid turbulence

As Kolmogorov hypothesized that equipartion of energies in turbulence
takes place over log scales, Lamperti shows that a self-similar process
w.r.t. t, if properly rescaled is stationary in log(t).
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Lamperti isomorphism.
• The shift operator Sτ, τ ∈ R:

(
LτX

T
)
(t) := XT (t + τ).

• Let H > 0 and λ > 0, the renormalized dilation operator RH,λ:
(
RH,λX

D
)
(t) := λ−HXD(λt)

• The Lamperti transform UH :
(
UHXT

)
(t) := tHXT (log t), t > 0

• The inverse Lamperti transform U−1H :
(
U−1H XD

)
(t) := e−HtXD

(
et
)
, t ∈ R.

For any λ > 0 :
U−1H RH,λUH = Llog λ
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Renormalization operator

• Shift operator L → L lag operator

Lεt−k = εt−k−1

• Dilation operation RH,λ → RH Haar Scale operator

RH ε
(j)
t =

ε
(j)
t + ε

(j)
t−2j

2H

ε
(j+1)
t : =

ε
(j)
t − ε

(j)
t−2j

2H

• Lamperti isometry in discrete time: the rescaling operator RH acts as
a shift operator L acting with respect to the scale index j → j + 1!

• RH and L do not commute: you cannot be simultaeously translation
and scale invariant.
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Renormalization Group in Structural Econometrics:
Extended Wold Decomposition

• Structural Vector AutoRegression:

Lyt = yt−1 A (L) yt = ϵt

Let A−1 (L) = A0 −∑+∞
k=1 AkL

k .

• Cerreia-Vioglio Ortu Severino Tamoni T. (QE19, DEF23) introduce a
Wold decomposition w.r.t. rescaling operator R

A (L,R) yt = ϵt

where A−1 (L,R) = A0 −∑+∞
j ,k=1 Ak,jR

jLk .

• After Lamperti transformation the relevant information filtration is
across scales not across time.
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Brownian motion

Consider a unit variance Brownian Motion t1 → Bt+t1 (ω), ,t1 = eτ,
Bt+eτ (ω) and using the scaling invariance of the brownian motion we can
observe that setting:

Ot
τ (ω) := e−

τ
2Bt+eτ (ω) , τ > 0

and taking the differential one gets:

dOt
τ (ω) = −1

2
Ot

τ (ω) dτ + dWτ (ω)

A self-similar, non stationary process to an Ornstein-Uhlenbeck process
with an ergodic steady state. MA representation:

Ot
τ (ω) =

∫ τ

−∞
e−(τ−σ) 12 dWσ (ω) (2)
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Multiscale autoregressive dynamics
OU differential formula is a scale version of an AR(1) operator

G
(j+1)
t+2j+1 = 2−

1
2G

(j)
t+2j

+ ε
(j+1)
t+2j+1

Then, by recursion, I can prove that the forward process is determined by
the moving average:

G
(J)
t+2J

=
J

∑
j=Jmin

2−
J−j
2 ε

(j)
t+2j

Time scale flow inversion {t > 0, log (t)} →
{
t < 0,− log

(
− 1

t

)}

G
(j−1)
t−2j−1 = 2−

1
2G

(j)
t−2j + ε

(j−1)
t−2j−1

Then, by recursion, I can prove that the backward process is determined
by the moving average:

G
(J)
t−2J =

Jmax

∑
j=J

2−
j−J
2 ε

(j)
t−2j
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Forward Multiscale autoregressive dynamics
• The best estimate of the time t at level J is obtained by considering a

weighted average of the shocks over different (lower) frequencies
scaled by an appropriate weight.

• Notice that the above formulation applied to volatility fully motivates
a structure in line with the Corsi (2009) HAR volatility predictor:

RVt = c + β(d)RVt−1 + β(w )RV
(w )
t + β(m)RV

(m)
t + εt

• A multiscale version the Rough Vol model: the joint process of
log-prices and log-variances obeys scale similarity. A scale-stationary
VAR would read:

[
log (R)

(j)
t−2j

log
(
σ2

)(j)
t−2j

]
= A︸︷︷︸

2×2

[
log (R)

(j+1)
t−2j+1

log
(
σ2

)(j+1)
t−2j+1

]
+

[
ε
(j)
R,t−2j

ε
(j)
σ,t−2j

]

where ε
(j)
t−2j is a multivariate white noise on a time grid 2j .
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Scaling
Volatility is rough 11

Figure 16. Empirical counterpart of log(V (�)) as a function of
log(�) on S&P (above) and simulation (below).

tion Cov[log(σt ), log(σt+�)] (or sometimes Cov[σt , σt+�])
goes slowly to zero as� → ∞, and often even more precisely
that it behaves as �−γ ,† with γ < 1 as � → ∞.

Thus, the classical approach to long memory is to consider
a parametric class of models and to estimate within this class
the parameter γ , typically based on empirical autocovariances,
see Andersen et al. (2003) and figure 12. As mentioned earlier
in the introduction, the long memory of volatility is widely
accepted as a stylized fact.

Specifically, in the RFSV model, we have from corollary 3.2
that

Cov[log(σt ), log(σt+�)] ≈ A − B�2H

and from equation (3.5) that

Cov[σt , σt+�] ≈ C e−B�2H − D,

for some constants A, B, C and D. Moreover, we demonstrated
in figures 10 and 11 that these relations are consistent with the
data. Thus, the autocovariance function does not decay as a
power law in the RFSV model nor does it appear to decay as a
power law in the data.

Nevertheless, as an experiment, we can apply both to the
data and to sample paths of the RFSV model some standard
statistical procedures aimed at identifying long memory that
have been used in the financial econometrics literature. Such
procedures are of course designed to identify long memory
under rather strict modelling assumptions. Consequently, spu-
rious results may obviously then be obtained if the model
underlying the estimation procedure is misspecified, which is
the case with the RFSV model.‡

With the same model parameters as in section 3.4, we simu-
late our model over 3500 days, which corresponds to the size
of our data-set. Consider first the procedure in Andersen et al.

†Indeed, the notion of empirical long memory does not make much
sense outside the power law case; the empirical values of covariances
at very large timescales are never measurable and thus one cannot
conclude whether the series of covariances converges in general.
‡Recall in particular that the RFSV model is only formally stationary.

Figure 17. Autocorrelation functions of log(σt ) (in blue) and εt (in
green) and the Bartlett standard error bands (in red), for S&P data
(above) and for simulated data (below).

(2001b), where in the context of a fractional Gaussian noise
(FGN) model with Hurst parameter Ĥ , the authors test for long
memory in the volatility by studying the scaling behaviour of
the quantity

V (�) = Var

[∫ �

0
σ 2

s ds

]

with respect to�. In the FGN model, as� → ∞, the autocor-
relation function ρ(�) behaves asymptotically as�2 Ĥ−2 and
V (�) behaves asymptotically as �2 Ĥ as � → ∞. Figure 16
presents the graph of the logarithm of the empirical counterpart
of V (�) against the logarithm of�, on the S&Pdata and within
our simulation framework.

We note from figure 16 that both our simulated model and
market data lead to very similar graphs, close to straight lines
with slope 1.86, giving Ĥ = 0.93.§ Accordingly, in the set-
ting of Andersen et al. (2001b), we would deduce power law
behaviour of the autocorrelation function with exponent 0.14
and therefore long memory. Thus, if the data are generated
by a model like the RFSV model, one can easily be wrongly
convinced that the volatility time series exhibits long memory.

In Andersen et al. (2003), in the context of an ARFIMA
(0, d, 0)model, the authors deduce long memory in the volatil-
ity by showing that the process εt obtained by fractional dif-
ferentiation of the log-volatility εt = (1 − L)d log(σt ), with
d = 0.401¶ (which is obtained by regression of the log-
periodogram using the GPH estimator Geweke and Porter-
Hudak (1983)) and L the lag operator behaves as a white noise.
To check for this, they compute the autocorrelation function
of εt . We give in figure 17 the autocorrelation functions of

§Note that there is no reason to expect that there should be any direct
connection between Ĥ estimated for the FGN model and the H we
estimated for the RFSV model.
¶It is shown in Geweke and Porter-Hudak (1983) that the
autocorrelation functions of theARFIMA(0, d, 0) and the FGN model
with Hurst parameter Ĥ have the same asymptotic behaviour as
� → ∞ if d = Ĥ − 1

2 .

Integrated Return Variance is scale invariant
(Data on S&P500 from Oxford Man Institute)
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Scaling

Volatility is rough 5

Figure 5. ζq (blue) and 0.125 × q (green), DAX (left); ζq (blue) and 0.082 × q (green), Bund (right).

Figure 6. log m(q,�) as a function of log�, S&P.

depend on q . Indeed, plotting ζq against q , we obtain that ζq ∼
H q with H equal to 0.125 for the DAX and to 0.082 for the
Bund, see figure 5.

We remark that the graphs for ζq are actually very slightly
concave. However, we observe the same small concavity effect
when we replace the log-volatility by simulations of a fBm with
the same number of points. We conclude that this effect relates
to finite sample size and is thus not significant.

2.3. S&P and NASDAQ indices

We report in figures 6 and 7 similar results for the S&P and
NASDAQ indices. The variance proxies used here are the
precomputed 5-min realized variance estimates for the whole
trading day made publicly available by the Oxford-Man Insti-
tute of Quantitative Finance.

We observe the same scaling property for the S&P and
NASDAQ indices as we observed for DAX and Bund futures

Figure 7. log m(q,�) as a function of log(�), NASDAQ.

and again, the sq do not depend on q . However, the estimated
smoothnesses are slightly higher here: H = 0.142 for the S&P
and H = 0.139 for the NASDAQ, see figure 8.

Once again, we do expect these smoothness estimates to be
biased high because we are using whole-day realized variance
estimates, as explained earlier in section 2. Finally, we remark
that as for DAX and Bund futures, the graphs for ζq are slightly
concave.

2.4. Other indices

Repeating the analysis of section 2.3 for each index in the
Oxford-Man data-set, we find the m(q,�) present a universal
scaling behaviour. For each index and for q = 0.5, 1, 1.5, 2, 3,
by doing a linear regression of log(m(q,�)) on log(�) for
� = 1, ..., 30, we obtain estimates of ζq that we summarize in
table B1 in the appendix.

Log-Variance moments are scale invariant and compatible with a
Fractional BM evolution with H = 0.1

(Data on S&P500 from Oxford Man Institute)
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Backward Multiscale autoregressive dynamics
• To compute expectations of investors, you have to compute the

backward component.

• Intuition: computation of the backward component is equivalent to
carry out a pricing exercise. Observation from the Rough Vol paper:
Skew, the price of an option strategy, is also scale-stationary.
Backward variables must also be scale stationary.

• A scale consistent version of the dividend-discount formula:

Pt =
+∞

∑
j=1

qjEF
t

[
d
(j)
t+2j

]
, q < 1

where EF
t

[
d
(j)
t+2j

]
is the persistence-j component of the (forward

measure) expected dividend.

• ‘Excess volatility puzzle’ is circumvented: volatility of low frequency
components is reduced by the averaging and rescaling procedure and
then properly rescaled according to q.
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Scaling
Volatility is rough 3

Figure 2. The black dots are non-parametric estimates of the S&P ATM volatility skews as of 20 June 2013; the red curve is the power law
fit ψ(τ) = A τ−0.4.

In section 3.3 of Fukasawa (2011), as an example of the
application of his martingale expansion, Fukasawa shows that
a stochastic volatility model where the volatility is driven by
fractional Brownian motion with Hurst exponent H generating
an ATM volatility skew of the form ψ(τ) ∼ τ H−1/2, at least
for small τ . This is interesting in and of itself in that it provides
a counterexample to the widespread belief that the explosion
of the volatility smile as τ → 0 (as clearly seen in figures
1 and 2) implies the presence of jumps (Carr and Wu 2003).
The main point here is that for a model of the sort analysed
by Fukasawa to generate a volatility surface with a reasonable
shape, we would need to have a value of H close to zero. As
we will see in section 2, our empirical estimates of H from
time series data are in fact very small.

The volatility model that we will specify in section 3.1,
driven by fBm with H < 1/2, therefore has the potential to be
not only consistent with the empirically observed properties of
the volatility time series but also consistent with the shape of
the volatility surface. In this paper, we focus on the modelling
of the volatility time series. A more detailed analysis of the
consistency of our model with option prices is provided in
Bayer et al. (2016).

1.4. Main results and organization of the paper

In section 2, we report our estimates of the smoothness of the
log-volatility for selected assets. This smoothness parameter
lies systematically between 0.08 and 0.2 (in the sense of Hölder
regularity for example). Furthermore, we find that increments
of the log-volatility are approximately normally distributed
and that their moments enjoy a remarkable monofractal scaling
property. This leads us to model the log of volatility using a fBm
with Hurst parameter H < 1/2 in section 3. Specifically we
adopt the fractional stochastic volatility (FSV) model of Comte
and Renault (1998). We call our model Rough FSV (RSFV) to
underline that, in contrast to FSV, we take H < 1/2. We also
show in the same section that the RFSV model is remarkably
consistent with volatility time series data. The issue of volatility
persistence is considered through the lens of the RFSV model
in section 4. Our main finding is that although the RFSV model
does not have any long memory property, classical statistical

procedures aiming at detecting volatility persistence tend to
conclude the presence of long memory in data generated from
it. This sheds new light on the supposed long memory in the
volatility of financial data. In section 5, we finally apply our
model to volatility forecasting. In particular, we show that
RFSV volatility forecasts outperform conventional AR and
HAR volatility forecasts. Some proofs are relegated to the
appendix.

2. Smoothness of the volatility: empirical results

In this section, we report estimates of the smoothness of the
volatility process for four assets:

• The DAX and Bund futures contracts, for which we es-
timate integrated variance directly from high frequency
data using an estimator based on the model with uncer-
tainty zones (see Robert and Rosenbaum 2011, Robert
and Rosenbaum 2012). This model enables us to safely
use all the ultra high frequency price data in order to
perform our estimation, and thus to obtain accurate es-
timates over short time windows.

• The S&P and NASDAQ indices, for which we use pre-
computed realized variance estimates from the Oxford-
Man Institute of Quantitative Finance Realized Library.†

2.1. Estimating the smoothness of the volatility process

Let us first pretend that we have access to discrete observations
of the volatility process, on a time grid with mesh� on [0, T ]:
σ0, σ�, . . . , σk�, . . . , k ∈ {0, �T/�	}. Set N = �T/�	, then
for q ≥ 0, we define

m(q,�) = 1

N

N∑
k=1

| log(σk�)− log(σ(k−1)�)|q .

†http://realized.oxford-man.ox.ac.uk/data/download. The Oxford-
Man Institute’s Realized Library contains a selection of daily non-
parametric estimates of volatility of financial assets, including
realized variance (rv) and realized kernel (rk) estimates. A selection
of such estimators is described and their performances compared in,
for example, Gatheral and Oomen (2010).

Option Markets: Term Structure of Implied Skewness vs τH− 1
2

(Gatheral Jaisson and Rosenbaum 2018)
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Backward Multiscale Autoregressive dynamics

.

• Madan and Wang (2022) state that risk neutral variance term
structures are characterized by their time elasticities:

γ (T − t) = − (T − t)vt (T − t)

v (T − t)
=

dln(v(T − t))

dln(T − t)

An additional month at one month is not comparable to an additional
month at five years or sixty months.

Important conclusion for ‘ergodic economists’: there is a second ergodic
problem which is relevant if you consider a dynamics w.r.t. the
time-changed scale τ = log (t).
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Learning dynamics across scales

• The stationary point in the Lamperti transformed dynamics
corresponds to a fixed point for the Renormalization Operator.

• Beyond scaling, a second important property implied by the presence
of a fixed point of a renormalziation group operator is Universality,
the fact that upon averaging different models converge to the same
fixed point.

• Universality property is equivalent to analyzing dynamics in model
space and focusing on fixed points in the parameter space. This is in
full analogy REE where rational expectations coincide with fixed
points for the learning dynamics.

• Universality in financial markets: investors with large trading interests
recognize that their trades can move the market-clearing price, which
reduces their profits and split their orders into child ones.
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Universality

Kyle and Obizhaeva (2016) hypothesize that the quantity:

I = QB
σP

N1/2
B

=
σPV

N3/2
B

=
W

N3/2
B

.

does not depend on time and on assets.

• A ‘bet’ or metaorder is a sequence of correlated orders driven by the
same information. Very similar to the notion of cascades/avalanches.

• QB quantity of dollars per ‘bet’.

• σP volatility of price per unit period.

• NB number of ‘bets’ per unit time is business time.

• V = QBNB dollar volume.

• W = σPV trading activity.
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Universality
• Market Microstructure Invariance, Kyle and Obizhaeva (2016):
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Figure 1: Plots of the mean daily exchanged risk 〈R〉N as function of the daily number N of
metaorders per asset conditional to the market capitalisation (top left panel), the economic sec-
tor (top right panel), and the time period (bottom left panel). The insets show the slopes obtained
from linear regression of the data, firstly averaged respect to N and secondly log-transformed. The
bottom right panel shows a plot of 〈R〉N as function of N for a subset of 200 stocks chosen randomly
from the pool of around three thousand US stocks: the two insets represent respectively the distri-
bution of the slopes and of the y-intercept, i.e. 〈I〉 := 〈R〉N/N3/2, obtained from linear regression
of the data, firstly averaged respect to N and secondly log-transformed of the data considering each
stock separately.

average price (vwap) of the i-th available metaorder. We then define the total daily exchanged
ANcerno risk per asset as:

R :=
N∑

i=1

Ri , with Ri = σdvipi , (3)

and where σd denotes the daily volatility per asset, computed as σd = (phigh − plow)/popen from
the high, low, and open daily prices only.4 The statistical properties of the bets, in terms of their
associated risk Ri and of their total daily number N per asset are discussed in Appendix A. The
variability of the observables over several orders of magnitude should allow to test the 3/2-law
quite convincingly.

4We checked that the results discussed in the present work are still valid using other definitions of the daily volatility
and of the price in analogy to what done for example in [1]. Specifically, the results are still valid when computing σd

with the Rogers-Satchell volatility estimator [3, 7] or as the monthly averaged daily volatility, i.e. σ̄d =
∑25

m=1 σd,m

and/or defining the price pi as the closing price of the day before the metaorder’s execution.

4

log(W ) vs log(NB)
Benzaquen Bouchaud Bucci Lillo (2019)
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Universality

• Market Microstructure Invariance, weak universality hypothesis:
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Figure 3: Empirical distributions of the ratio m = [v3/2]/[v]3/2 (left panel), η = V/Vd (central panel)
and ξ = N/Nd (right pannel), all three computed at the daily level for each asset: we randomly
group the stocks in equally sized samples and for each of them we compute the empirical distribution
respectively of m, η and ξ finding that they are, to a first approximation, stock independent.

Using pi ' p, for all the metaorders executed in a day on a stock, the above expression simplifies
to:

Iimp =
1

Yimp
√
η

[v]3/2

[v 3/2]
=

1

Yimpm
√
η
, (7)

where η := V/Vd with V :=
∑N
i=1 vi is the total ANcerno bet volume, [•] is a daily average

operation per stock, and m > 1 is the normalized 3/2th moment of v (number of shares of a
bet), which depends on the shape of the distribution of metaorder size. We have checked that m
as well as η are, to a first approximation, independent of the stock (see left and central panels
in Fig. 3) indicating that the distribution of metaorder size is, to a large degree, universal and
that the ANcerno database is representative of the trading across all stocks. These observations
explains why Iimp is also, to a large degree, stock independent.

For the total cost normalisation, our understanding of the invariance property relies on the
following empirical fact. The average spread is proportional to the volatility per trade, that is
S = cpσd/

√
Nd, where c is a stock independent numerical constant, see [15, 16]. Indeed, the above

arguments taken together show that the dimensionless quantity I can be written as:

I =
1

Yspdc
√
ξ + Yimpm

√
η
, (8)

where ξ := N/Nd is found to be stock independent (see right panel in Fig. 3). Therefore I is also
stock independent. However, the fact that the CV of I is less than both those of Ispd and Iimp

suggests that the Kyle-Obizhaeva “invariant” reflects the fact that metaorders are commensurate
to the total cost of trading, including both the spread cost and the impact cost.

5 Conclusions

In this work we empirically investigated the market microstructure invariance hypothesis recently
proposed by Kyle and Obizhaeva [1, 2]. Their conjecture is that the expected dollar cost of
executing a bet is constant across assets and time. The ANcerno dataset provides a unique
laboratory to test this intriguing hypothesis through its available metaorders which can be treated
as a proxy for bets, i.e. a decision to buy or sell a quantity of institutional size generated by a
specific trading idea. Let us summarise what we have achieved in this paper:

• Using bets issued for around three thousand stocks, we showed that, at the daily timescale
interval, the N3/2 scaling law between exchanged risk R and number of bets is observed
independently of the year, the economic sector and the market capitalisation.

7

Invariance requires normalization of the Kyle Obizhaeva invariant by an
index reflecting total trading costs

Benzaquen Bouchaud Bucci Lillo (2019)
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Renormalization Group

• ‘Scaling and efficiency determine the irreversible evolution of a
market’ Stella Baldovin PNAS (2007) and Challet and Peirano (2008)

pt,T (r) =
1√

(T + t)2D − t2D
g


 r√

(T + t)2D − t2D




• Omori Law Lillo and Mantegna (2001), Baldovin Stella et al. (2013)
Omori Law, N(t) cumulative number of aftershocks:

N (T ) =
K

1− p

[
(T + t)1−p − (t)1−p

]

• All these equations, in order to exploit scale invariance, become
non-time translation invariant.
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The formation of agent beliefs and preferences

• To avoid Lucas critique, it is necessary to discuss how the shift from
translation invariance to scale invariance impacts preferences

• We notice that this time change is fundamentally inconsistent with
time translation-invariance of the preference, which is quite
reasonable in relation to the fact that a process that is stationary in
the log time will be self-similar in time.

• There is a large literature analyzing individual preferences w.r.t. time
Hyperbolic preference: Lowenstein and Prelec (QJE1992)
The discount function is a generalized hyperbola:

d(t) = (1+ αt)−
β
α α, β > 0

The α-coefficient determines how much the function departs from
constant discounting.
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The formation of agent beliefs and preferences

A striking evidence of time inconsistency: procrastination of conference
registration by Alfi Parisi Pietronero (Nature2007):

The probability p(t) to register at time t is then p(t) = C/ (T ∗ − t),
where T ∗ is the deadline and the constant C will be fixed by the total
number of participants Ntot . The number of registrations at time t is
given by N(t) = C ln (T ⋆/ (T ⋆ − t)).
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Conference registration: how people react to a deadline
To the Editor — The ‘Statphys’ conferences 
on statistical physics take place every three 
years on a different continent. The number 
of participants can fluctuate greatly from 
conference to conference, and it is important 
that the organizers have an idea of this 
number as early as possible.

Statphys 23 took place in Genova, Italy, 
on 9–13 July 2007 (ref. 1). The registration 
website was activated around the end of 
January, with the deadline for registration 
and abstract submission on 31 March. The 
influx of registrations showed, from the 
outset, clear linear behaviour. The problem 
was, however, that the extrapolation of this 
linear behaviour to the deadline gave a 
very low number of expected participants. 
Clearly people tend to register late and 
one should expect a steepening of the 
distribution as the deadline approaches — 
but by how much? Is it possible to predict 
accurately the final number of registrants?

In the case of another meeting — the 
International Conference on Electronic 
Properties of Two-dimensional Systems2

(EP2DS 17), organized by Vittorio Pellegrini 
and Alessandro Tredicucci (who kindly 
gave us their data) and also in Genova but 
with an earlier deadline — registrations also 
followed the initial linear behaviour, but 
with a different slope as the total number 
of participants was smaller. We rescaled the 
slope and used these data to produce an 
expectation curve for Statphys registrations, 
enabling us to predict that the final number 
of registrations for Statphys should exceed 
1,000 — a value which is about three times 
larger than that expected from a linear 
extrapolation. We then tracked the actual 
registrations for Statphys (Fig. 1), and 
they did indeed reproduce the expected 
behaviour accurately (the small mismatches 
corresponding to weekends).

The similarity of the two curves 
suggests that there may be a universal 
behaviour for the dynamics of registration, 
and points to the possibility of defining 
a general model to describe how people 
respond to a deadline. The simplest 
assumption in this respect is that the 
‘pressure’ to register increases as the inverse 
of the remaining time to the deadline. The 
probability p(t) to register at time t is then 
p(t) = C/(t – T*), where T* is the deadline 
and the constant C will be fixed by the total 
number of participants Ntot. The number of 
registrations at time t is given by
N(t) = C ∫p(t´)dt´ = C ln(T*/(T* − t)). This 
leads to a logarithmic singularity that can 
be regularized using the discreteness of 
each registration day. As can be seen in 

Fig. 1, this simple model fits the observed 
behaviour extremely well.

In principle, a term (N´ − N(t)) should 
be included in the integral, where N´ is the 
total number of people who have considered 
registering. The fact that the fit is so good 
without this term implies, in our opinion, 
that N´ >> Ntot: then (N´ − N(t)) is essentially 
constant and can be absorbed in the 
constant C.

The model only assumes that the 
probability to register is uniform for the 
whole of the remaining time. In this respect, 
there is no real tendency to postpone the 
registration towards the deadline. This 
might seem curious, but note that the data 
refer only to the registration — payment 
could be made at a later time. The insert in 
Fig. 1 shows the distribution of payment 
times (only those made by credit card, 
for which the time can be precisely 
recorded; these are about half of the total 
registrations): the simple model does not 
describe these data. In fact, here it is natural 
to introduce a ‘utility function’ to describe 
the tendency to postpone the payment, 
if not the registration, until closer to the 
deadline. In analogy with the Boltzmann 
factor, this function can be modelled 
as exp(–(T* – t)/τ), where τ represents 
a characteristic time for the pressure to 
postpone. With this modification, the model 

fits the payment data rather well, as shown 
in the inset to Fig. 1, and τ is estimated to be 
19.5 days.

People’s behaviour around a deadline 
does indeed seem to be universal. If the 
action is reversible (as is simple registration), 
the pressure to do it is inversely proportional 
to the available time before the deadline. For 
an irreversible action (such as payment), 
there is a tendency to postpone it until even 
closer to the deadline, which can be described 
by a utility function. The rule of thumb 
to guess the final number of registrants is 
to consider the extrapolation of the initial 
linear behaviour and multiply it by three — a 
result that may be useful for organizers of 
future events. Finally, we note that one could 
consider the response to a deadline also from 
the point of view of microscopic models of 
human dynamics3.
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Figure 1 The distribution of registrations is shown for Statphys 23 (red triangles), up to the main deadline for 
abstract submission (T*), and for the EP2DS 17 conference (blue circles), rescaled with respect to the total 
number of participants; the solid line corresponds to a simple model in which the pressure to register is inversely 
proportional to the time left before the deadline. The level of agreement between the data for the two conferences 
and the model suggests that there is a simple universal behaviour in response to a deadline. The inset shows the 
distribution in time of payment of the conference fee (credit-card payments only): the distribution is more peaked 
towards the deadline because, although registration is reversible, payment is irreversible. The simple model (dashed 
line) is not accurate in this case, and it is necessary to include an exponential utility function (solid line).
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The formation of agent beliefs and preferences

• This results in a time inconsistent optimal control problem (a change
in the initial point will change the definition of the optima) that
deserves more attention:

Jt0(x ; u(·))

≜ E(0,x)



∫ ∞

t0
(αt)−

β
α





P(t) [X (t)− c1(t)]
2

+Q(t) [Y (t)− c2(t)]
2

+R(t)u2(t) + S (t)Z (t)2





dt


 .

subject to the FBSDE constraint:

dX (t) = b(t,X (t),Y (t), u(t))dt + σ(t,X (t),Y (t), u(t))dW (t), t > t0,

dY (t) = [−g̃(t,X (t),Y (t), u(t))]dt + Z (t)dW (t), t ≥ 0,

X (0) = x ∈ Rn.
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The formation of agent beliefs and preferences

• If you shift from t to log (t) you restore a scale-invariant version of
the time consistency property.

• You loose time-translational invariance of preference, but you can
save the dynamic programming principle. It simply states that you do
not want your current decision to be self-contraddictory over different
horizons.

• A new dynamic programming principle equivalent to dynamic
renormalization: you need to shift the time variable from t to log (t) :

∂

∂t
−HJB [.]→ t

∂

∂t
−HJB [.]

• The role of first order optimality conditions under this new
information filtration to be understood.
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Conclusions

If you take seriously the empirical evidence and are trying to set up a
SI-DSGE........

shift from time-translation invariant to scale-consistent preferences.

a large body of work yet to be done!
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