Where Market Making Meets Market Microstructure

Quantitative Finance, Vol. 8, No. 3, April 2008, 217-224

High-frequency trading in a limit order book

MARCO AVELLANEDA and SASHA STOIKOV*

Market Making

Market Microstructure

Market Making

Academic literature on Market Making

- 1980: Ho and Stoll: general utility, monopolistic dealer
- 2008: Avellaneda and Stoikov: competitive order books, closed form
- 2012: Geant, Lehalle and Fernandez: bounded inventory
- 2014: Cartea, Jaimungal and Ricci: price impact and adverse selection
- 2017: Gueant: multi asset case
- 2022: Aydoğan, Uğur and Aksoy: stochastic volatility

Market Making

Idea

How do market makers make money?

- Making the bid/ask spread
- Quoting around the right price level
- Managing the inventory to reduce risk

What is the right price?

• The market midprice:

S

• The inventory adjusted level:

$$r = s - \beta q$$

• The optimal bid and ask quotes:

$$p^b = r - \delta$$
$$p^a = r + \delta$$

Market Making

Optimization

The mid price of the stock is Brownian motion

$$dS_t = \sigma dW_t$$

```
In [158]: S = BM(T,dt,nsims)
   plt.plot(S)
   plt.show()
```


• The arrival of buy orders is Poisson with intensity λ^b

$$\lambda^b = A \exp(-k(s - p^b))$$

• The arrival of sell orders is Poisson with intensity λ^a

$$\lambda^a = A \exp(-k(p^a - s))$$

```
In [163]: plt.plot(S[1:30,0],label='s')
    plt.plot(p_a[1:30,0],label='p_a')
    plt.plot(p_b[1:30,0],label='p_b')
    plt.legend(loc='lower right')
    plt.show()
```


The market maker's objective

Maximize exponential utility

$$u(s, x, q, t) = \max_{p^a, p^b} E_t \left[-e^{-\gamma(X_T + q_T S_T)} | S_t = s, X_t = x, q_t = q \right]$$

The wealth in cash

$$dX_t = p^a dN_t^a - p^b dN_t^b$$

The inventory

$$q_t = N_t^b - N_t^a$$

The Hamilton-Jacobi-Bellman equation

u(x, s, q, t) solves $\begin{cases} u_t + \frac{1}{2}\sigma^2 u_{ss} \\ + \max_{p^b} \lambda^b(p^b) \left[u(s, x - p^b, q + 1, t) - u(s, x, q, t) \right] \\ + \max_{p^a} \lambda^a(p^a) \left[u(s, x + p^a, q - 1, t) - u(s, x, q, t) \right] = 0 \end{cases}$ $u(S, x, q, t) = -\exp(-\gamma(x + qS)).$

The optimal quotes (approx)

• Step one: the indifference price

$$r(s, q, t) = s - q\gamma\sigma^{2}(T - t)$$

• Step two: the bid/ask quotes

$$p^{b} = r - \frac{1}{2}\gamma\sigma^{2}(T - t) - \frac{1}{\gamma}\ln\left(1 + \frac{\gamma}{k}\right)$$

and

$$p^{a} = r + \frac{1}{2}\gamma\sigma^{2}(T - t) + \frac{1}{\gamma}\ln\left(1 + \frac{\gamma}{k}\right).$$

k is a measure of the liquidity of the market.

Market Making

Simulation

- 1. The market maker's Inventory
- 2. The market maker's PNL

Inventory trajectories for the inventory strategy

Notice the inventory control is stricter at the beginning of a day

```
In [166]: plt.plot(Q_inventory)
    plt.xlabel('Time')
    plt.ylabel('Inventory level')
    plt.show()
```


Profit of the inventory strategy

```
In [28]: plt.plot(profit_inventory)
   plt.ylabel('Profit')
Out[28]: <matplotlib.text.Text at 0x7f9570fca198>
```


Histogram of profits

with and without inventory control

```
In [18]: plt.xlim((-50,150))
    plt.ylim((0,190))
    n, bins, patches = plt.hist(profit_symmetric[-1,:],alpha=0.5,bins=70,label='Symmetric strategy
    plt.hist(profit_inventory[-1,:],alpha=0.5,bins=bins,label='Inventory strategy')
    plt.legend(loc='upper left')
    plt.show()
```


Market Making

Live Trading

Running Live on Crypto

Open Source Market Making

Hummingbot is open source software that helps you build **high-frequency crypto trading bots** that specialize in market making and arbitrage strategies

Test Drive

Learn with Botcamp

Welcome to Hummingbot, an open source software client that helps you build and run high-frequency trading (HFT) bots.

Helpful links

- Get 24/7 support: https://discord.hummingbot.io
- Learn how to use Hummingbot: https://docs.hummingbot.io
- Earn liquidity rewards: https://miner.hummingbot.io

Useful commands

- connect List available exchanges and add API keys to them
- create Create a new bo
- import Import an existing bot by loading the configuration file
- help List available commands

```
>>> create
```

What is your market making strategy? >>> avellaneda_market_making
Please see https://docs.hummingbot.io/strategies/avellaneda-market-making/ while setting up the
se below configuration.

Input your maker spot connector >>> kucoin_paper_trade

Enter the token trading pair you would like to trade on kucoin_paper_trade (e.g. ETH-USDT) >>> BTC-USDT

Select the execution timeframe (infinite/from_date_to_date/daily_between_times) >>> infinite

What is the amount of BTC per order? >>> 0.1

Enter risk factor (y) >>> 2

How often do you want to cancel and replace bids and asks (in seconds)? >>> 10

What is the inventory target for the base asset? Enter 50 for 50% >>> 50

Enter a new file name for your configuration >>> conf_avellaneda_market_making_3.yml A new config file has been created: conf_avellaneda_market_making_3.yml

Preliminary checks:

- Strategy check: All required parameters confirmed.
- Exchange check: All connections confirmed.
- All checks: Confirmed.

Enter "start" to start market making.

Strategy Configurations:

Key	Value -+	
strategy		
exchange	kucoin_paper_trade	
market	BTC-USDT	
execution_timeframe_mode	infinite	
order_amount	0.1	
order_optimization_enabled	True	
risk_factor	2	
order_amount_shape_factor	i 0	
min_spread	j 0	
order_refresh_time	10.0	
max_order_age	1800.0	
order_refresh_tolerance_pct	0	
filled_order_delay	60.0	
inventory_target_base_pct	50	
add_transaction_costs	False	
volatility_buffer_size	200	
trading_intensity_buffer_size	200	
order_levels_mode	single_order_level	
order_override	None	
hanging_orders_mode	ignore_hanging_orders	
should_wait_order_cancel_confirmation	True	

> status

```
Paper Trading Active: All orders are simulated, and no real orders are placed.
```

```
Markets:
Exchange Market Best Bid Best Ask MidPrice Reservation Price Optimal Spread kucoin_PaperTrade BTC-USDT 22978.7 22978.8 22978.75 22976.22505 4.28982
```

Assets:

	ыс	ועפט
Total Balance	0.9	17295.5392
Available Balance	0.9	14998.1312
Current Value (USDT)	20680.875	17295.5392
Current %	5/ 5%	45 5%

Orders:

```
Level Type Price Spread Amount (Orig) Amount (Adj) Age 1 buy 22974.08 0.02% 0.1 0.1 00:00:07
```

Strategy parameters:
 risk_factor(γ)= 2.00000E+0
 order_book_intensity_factor(A)= 3.59787E+0
 order_book_depth_factor(κ)= 7.25608E+0
 volatility= 0.009%

time until end of trading cycle = N/A

023-02-07 09:33:57) Maker BUY order 0.1000000 BTC @ 22974.0800000000 USDT is filled.

Good news

My inventory was under control

```
In [118]: df_AS['inventory'].plot()
Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x7fce7b5d5160>
```


Bad news

The PNL was awful

```
In [117]: df_AS['pnl'].plot()
```

Out[117]: <matplotlib.axes._subplots.AxesSubplot at 0x7fce7b58b240>

What happened?

- Price of bitcoin went down
- Parameters not fine tuned
- Inventory was kept under control
- The midprice has no alpha

Is the midprice the right price?

Market Microstructure

Two kinds of market microstructures

- Large ticksize (relative to price)
- Small ticksize (relative to price)

Large ticksize

- Futures
- Low priced stocks
- Liquid etfs

Nasdaq futures

Imbalance is the least well kept secret in HFT

- $I_t = \frac{Q_t^b}{Q_t^b + Q_t^a}$ is related to the probability of the price moving up
- When imbalance is close to 1, traders are more likely to want to buy
- When imbalance is close to 0, traders are more likely to want to sell
- This is empirically true

In [9]: plot_trade_imbalance(df)

The Microprice

Define

$$P_t^{micro} = \lim_{i \to \infty} P_t^i$$

where

$$P_t^i = \mathbb{E}\left[M_{\tau_i}|\mathcal{F}_t\right]$$

 τ_1, \ldots, τ_n are (random) times when the mid-price M_t changes

 \mathcal{F}_t is the information contained in the order book at time t, for example the spread and the imbalance

A toy example

Bank of America: a large tick asset

```
In [28]: imb=np.linspace(0,1,n_imb)
G1,B,Q,Q2,R1,R2,K=estimate(T)
Gstar=plot_Gstar(ticker,G1,B,T,10)
```


Chevron: a medium tick asset

```
In [30]: Gstar=plot_Gstar(ticker,G1,B,T,10)
```


Bitcoin is a small tick asset

VAMP:

Volume adjusted mid price

$$P_b^{VWAP} = \frac{\sum_{i=1}^{n} P_b^i Q_b^i}{Q}$$

$$P_a^{VWAP} = \frac{\sum_{i=1}^{n} P_a^i Q_a^i}{Q}$$

$$VAMP = \frac{P_b^{VWAP} + P_a^{VWAP}}{2}$$

Covario Master thesis (2022)

Backtesting a simple market maker

Formulas in Hummingbot (2022)

$$r(s, q, t, \sigma) = s - q\gamma\sigma$$

$$\delta^{a} + \delta^{b} = \gamma\sigma + \frac{2}{\gamma}ln(1 + \frac{\gamma}{\kappa})$$

Formulas in this simplified backtest

$$r(s, q, t, \sigma) = s - \beta q$$

$$\delta^a + \delta^b = k$$

Goal: Compare s=MIDPRICE to s=VAMP

Market Making is not easy!

