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Correlation stress testing

I What would you consider to be the main challenges in

correlation stress testing?

I Obtaining a mathematically valid correlation matrix.

I Specifying plausible scenarios.

I Identifying risk factors.

I Linking risk factors to correlations.

I More advanced dependence measures, such as

copulas, should be used.

I Other.
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Overview

I Correlation lies at the heart of many financial applications: portfolio

risk-management, diversification, hedging.

I Principal idea: link economically meaningful scenarios to

correlation scenarios

I First paper (“London Whale”):

Packham, N. and Woebbeking, F.: A factor-model approach for cor-

relation scenarios and correlation stress-testing. Journal of Banking

and Finance, 101 (2019), 92-103. link
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Overview

I Extend the previous setup:

– Correlation factor model for any kind of financial asset portfolio

– Bayesian factor selection to incorporate a priori knowledge

– Stress testing: portfolio effect of adverse correlation scenarios

– Reverse stress testing: identify extreme yet plausible scenarios

I Second paper:
Packham, N. and Woebbeking, F.: Correlation scenarios and correla-

tion stress testing . Journal of Economic Behavior and Organization,

205 (2023), 55-67. link

Motivation 4
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Regulatory aspects

I EU / Basel-regularion (CRR = Capital Requirments Regulation):

– CRR Article 386(1)(g):

“[..]institution shall frequently conduct a rigorous programme of

stress testing, including reverse stress tests[..]”

– CRR Article 375(1):

“[..]potential for significant basis risks in hedging strategies[..]”

– CRR Article 376(3)(b):

“[..] assess [..] internal model, particularly with regard to the

treatment of concentrations.”

– CRR Article 377:

“Requirements for an internal model for correlation trading”
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The “London Whale”

I “London Whale”: 2012 Loss at JPMorgan Chase & Co. of approx.

6.2 bn USD on a credit derivatives portfolio

I Authorised trading position, hence risk management problem

I Synthetic credit portfolio (SCP): portfolio of credit index derivatives

to manage credit risk

I Approx. 120 long and short positions, CDX and iTraxx index +

tranche products, investment grade and high-yield

I Roughly 157 bn USD peak net notional

I JPMorgan is naturally exposed to (long) credit risk, hence SCP as

“Tail hedge to protect the firm against adverse credit scenarios”

London Whale 7



The “London Whale” strategy

I “Smart short” strategy: credit protection on high yield is financed by

selling protection on investment grade indices.

(← correlation risk)

I Timeline:

– End of 2011: decision to reduce SCP’s risk-weighted assets (RWA’s).

– Avoid liquidation losses by increasing positions with opposite market

sensitivity (hedges).

(← correlation risk)

– 23 March 2012: Senior executives ordered to stop trading on SCP;

net notional of 157 bn USD (up 260% from September 2011).

I Risk management of SCP focussed on value-at-risk (VaR) and

CSW-10 (credit spread widening of 10 basis points).

I Publicly available information: JPMorgan, 2013; United-States-Senate, 2013a,b
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The “London Whale”
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Figure: Cumulative PnL of the SCP in USD (2012). Single day loss of 50mln

USD on 19 January 2012, due to Kodak default. Phones down on March 23,

2012. Data source: JPMorgan (2013).
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The “London Whale” positions

Table: Top 10 Positions of SCP, 23 March 2012, USD net notional; several

positions have a market share close to 50%.

Index

Name Series Tenor Tranche (%) Protection Net Notional ($)

CDX.IG 9 10yr Untranched Seller 72,772,508,000

9 7yr Untranched Seller 32,783,985,000

9 5yr Untranched Buyer 31,675,380,000

iTraxx.EU 9 5yr Untranched Seller 23,944,939,583

9 10yr 22 – 100 Seller 21,083,785,713

16 5yr Untranched Seller 19,220,289,557

CDX.IG 16 5yr Untranched Buyer 18,478,750,000

9 10yr 30 – 100 Seller 18,132,248,430

15 5yr Untranched Buyer 17,520,500,000

iTraxx.EU 9 10yr Untranched Seller 17,254,807,398

Net Total 137,517,933,681

Data source: United-States-Senate (2013a, Exhibit 36) and DTCC (2014, Section 1, Table 7).
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Interest-rate modelling: Correlation parameterisation

I Parametric correlation models widespread in

interest-rate modelling / LIBOR market model,

e.g. Rebonato (2002); Brigo (2002); Schoenmakers and Coffey (2000);

Packham (2005)

I Simplest case: Correlation cij between two forward LIBOR’s is given by

cij = e−β|i−j|,

where β > 0 is a parameter, and i, j represent maturities.

I Captures stylised fact that correlations decay with increasing

maturity difference

London Whale 12



Correlation parameterisation

I Idea: Carry over “distance” measure to other risk factors, such as

geographic regions, industries, investment grade vs. high-yield, ...

I C: n× n-correlation matrix of n financial instruments’ returns.

I Factors that determine the correlations: x = (x1, . . . , xm)′.

I Correlation of securities i and j modelled as

cij = exp(−(β1|x1i − x1j |+ β2|x2i − x2j |+ · · ·+ βm|xmi − xmj |)),
i, j = 1, . . . , n,

with β1, . . . , βm positive coefficients, determined through calibration.

I Functional form implies that the greater “distance” |xki − xkj |, the

greater de-correlation amongst securities i and j.

I If two instruments are identical in all respects, then correlation is 1.

London Whale 13



Correlation parameterisation

I Given historical asset returns, parameters β1, . . . , βm are determined

e.g. by OLS on transformed correlations − ln(cij).

I Scenario (e.g. “the correlation between investment grade and

high-yield securities decreases”) is implemented by increasing

corresponding β-parameter.

I With parameters calibrated on a regular basis, the parameter history

can be used to obtain reasonable scenarios.

London Whale 14



London whale: risk factors and correlation model

I All calculations on SCP portfolio of 23 March 2012 (117 instruments).

I Risk factors: – CDX vs. iTraxx

– investment grade vs. high yield

– maturity

– index series

– index vs. tranche

I Parameterised correlation matrix:

cij = exp
(
−(β1|isCDXi−isCDXj |+β2|isIGi−isIGj |+β3|maturityi−maturityj |

+ β4|seriesi − seriesj |+ β5|isIndexi − isIndexj |)
)
.

I Daily calibration of β1, . . . , β5 from credit spread returns of 250 days.

I Time period: 1 March 2011 – 12 April 2012. Data source: Markit
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London Whale: calibration and results
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I Correlation matrices of 23 March 2012.

I Left: Empirical correlation matrix

I Right: parameterised (complete) correlation matrix

I Dark red entries: unavailable correlations

I Blocks of highly correlated data: CDX.IG, CDX.HY and iTraxx
London Whale 16



London Whale: calibration and results
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I Coefficients of CDX and itraxx positions in London Whale position;

01/03/2011–12/04/2012.

I Distances normalised to [0, 1] to make coefficients comparable.

I (See also (Cont and Wagalath, 2016) who report a correlation break-down

after trading was halted.)
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Stress-testing correlations

I Stress-test: Effect on portfolio due to an adverse scenario.
I A shift in correlation has no instantaneous effect on portfolio value,

therefore consider portfolio risk.
I Portfolio risk measured by value-at-risk (VaR) in variance-covariance

approach:

VaRα = −V0 ·N1−α · (wᵀ Σ w)
1/2

,

with

– current position value V0,

– N1−α: (1− α)-quantile of the standard normal distribution,

– vector of portfolio weights w and

– covariance matrix Σ.
I For correlation stress test, need to consider portfolio variance

wᵀ Σ w.

London Whale 19



Core and peripheral risk factors∗

I Following e.g. Kupiec (1998), stress scenario comprises

– “core” risk factors (the ones that are stressed)

– “peripheral” risk factors (affected by stress).

I βs: j < m core factor parameters that are stressed directly

I βu: remaining m− j peripheral risk factor parameters

I In normal distribution setting, optimal estimator of ∆βu conditional

on ∆βs:

E(∆βu|∆βs) = ΣusΣ
−1
ss ∆βs,

where Σus and Σss denote the covariance and variance matrices of βu
and βs.

London Whale 20



Joint stress test of correlation and volatility∗

I Correlation shocks often coincide with volatility shocks, see e.g.

(Alexander and Sheedy, 2008; Longin and Solnik, 2001; Loretan and

English, 2000).

I Simple model that combines both: multivariate t-distribution.

I In this case d-dimensional vector of asset returns X follows a normal

variance mixture distribution with decomposition (e.g. Ch. 6.2 of

McNeil et al. (2015))

X =
√
V ·A · Z,

where – Z ∼ N(0, Ik),

– V is a scalar r.v. independent of Z,

– V ∼ Ig(1/2 ν, 1/2 ν), i.e., V follows an inverse gamma

distribution,

– A is a d× k matrix such that Σ̃ = AAT .

London Whale 21
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Reverse stress testing

I Scenario selection: What is the worst scenario amongst all scenarios

that occur within some pre-given probability?

I Let β = (β1, . . . , βm)ᵀ be a random vector with E(β) = β and

covariance matrix Σβ.

I Mahalabonis distance:

D(β) =
(

(β − β)ᵀΣ−1β (β − β)
)1/2

.

I Maha associated with ellipsoids in

normal (or elliptical) distributions.

I Find worst-case scenario within

given ellipsoid.
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Risk implications from correlation stress-testing

correlation stress plus vol stress

Maha level VaR0.99 t-VaR0.99 Change(%) t-VaR0.99 Change(%)

base case 339.32 354.98 354.98

0.9 372.89 390.10 9.89 464.40 30.83

0.99 381.08 398.67 12.31 617.38 73.92

0.999 386.88 404.74 14.02 780.37 119.84

unconstrained∗ 620.96 649.62 83.00 1252.53 252.85
∗Unconstrained w.r.t. correlation changes; vol stress level at 0.999.

I SCP portfolio’s 1-day 99% value-at-risk for different Mahalanobis

quantile constraints.

I Percentage changes denote relative distance to base VaR. For joint

stress, percentage changes refer to base t-VaR scenario.

I t-distribution parameter ν calibrated to 13.5.

I Vol stress level for joint stress test is set to quantile in column one.
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Risk-driver identification (reverse stress test)
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Figure: Box-plots of correlation parameters.

Dots: observed parameters as of 23.03.2012.

Crosses: worst-case scenario under a 99%-quantile Mahalanobis distance.
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Link correlations to risk factors

I Idea: Carry over “distance” measure to other risk factors, such as

geographic regions, industries, investment grade vs. high-yield, ...

I Association of asset i ∈ {1, . . . , p} with factor k ∈ {1, . . . , d}:

1{k,i}

[Assume this as given for the time being.]

I Correlation parameterisation:

cij = tanh
(
η +

d∑
k=1

λk|1{k,i} − 1{k,j}|︸ ︷︷ ︸
”inter”-correlations

+

d∑
k=1

νk1{k,i}1{k,j}︸ ︷︷ ︸
”intra”-correlations

)
,

with coefficients η, λ1, . . . , λd, ν1, . . . , νd ∈ R.

General approach 27



Link correlations to risk factors

I tanh : R→ [−1, 1] allows for negative correlations.

I tanh used in inferential statistics on sample correlation coefficients

( Fisher transformation).

I The following summation formula is

helpful for a rough interpretation of the

coefficients:

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
-2 -1 0 1 2
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Correlation parameterisation

I Given a sample correlation matrix at one time point, the coefficients

η, λ1, . . . , λd, ν1, . . . , νd can be determined e.g. by ordinary least

squares on arctanh(cij), the inverse of tanh.

I Simple correlation scenarios such as “the correlation between assets

exposed to factor k and assets not exposed to factor k increases” is

then implemented by increasing λk (e.g. Europe vs US).

I Likewise, a scenario such as “the correlation of firms exposed to factor

k increases” is implemented by increasing νk (e.g. within Europe).

I With parameters calibrated on a regular basis, the parameter history

can be used to obtain realistic scenarios (reverse stress testing).

General approach 29
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Principal ideas

I Risk factors in “London Whale” were tailored to specific portfolio.

I In practice, factor models use industries and countries as factors to

model asset correlations.

I Problem: How to assign factors to assets? link

I Number of factors should be small, but include all important factors.

I Prior information: country of firm’s headquarter, primary industry

I  Bayesian variable selection to determine small number of factors

driving asset return

General approach 31



Bayesian variable selection

I Different methods, e.g.

– Bayesian model selection compares posterior probabilities of

different models.

– Spike and slab priors include an indicator variable for each

coefficient and determines the indicator variable’s posterior

probability of taking value one.

I In our setting, Bayesian model selection worked best.

General approach 32



Bayesian model selection

I Denote candidate models by Mi, i = 1, . . . ,m.

I In a linear regression setting, each model Mi includes a specific subset

of independent variables (= potential risk factors) and excludes the

other variables.

I Posterior model probability:

p(Mi|y) ∝ p(y|Mi)p(Mi),

where

– y is the time series of a firm’s asset returns,

– p(Mi) is the prior model probability,

– p(y|Mi) is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir et al., 2013))
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Bayesian model comparison

I Posterior inclusion probabilities (PIP):

P(1{βk 6=0} = 1|y) =
∑

βk∈Mi

P(Mi|y).

I If number of parameters p is large, then full calculation of 2p posterior

model probabilities is infeasible.

I ⇒ Use Markov Chain Monte Carlo (MCMC) simulation.

I Factors with PIP greater 0.5 are selected

General approach 34



Example: VW

I Daily returns (2002-2018):

– VW stock returns

– MSCI indices; 11 industries and 24 countries as factors

I Factors with PIP greater 0.5 are selected:

I CD (Consumer Discretionary) and GR (Germany) have prior inclusion

probability of 1.

I Other prior inclusion probabilities such that eight factors on average.

General approach 35
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Stress-testing correlations

I As before, use Value-at-risk. link

I Stress-test: Effect on portfolio due to an adverse scenario.

I A shift in correlation has no instantaneous effect on portfolio value,

therefore consider portfolio risk.

I Portfolio risk measured by value-at-risk (VaR) sensitive to portfolio

variance, which depends on correlations.

I VaR at level α (e.g. 95%) is the

maximum amount that can be

lost with a probability of α. Only

with a probability of 1− α, losses

exceed VaR.

General approach 37



Reverse stress testing

I What is the worst scenario amongst all scenarios that occur within

some pre-given range?

I Restrict risk-factor distribution (η, λ1, . . . , λd, ν1, . . . , νd)

I Univariate setting: quantile

I Multivariate setting:

– Mahalanobis distance (Mahalanobis, 1936),

– highest density regions (HDR) (Hyndman, 1996a),

– concepts based on norms, e.g.(Serfling, 2002).

I Maha is closely tied to the normal or to elliptical distributions.

I HDR allows for more flexibility (e.g. skewness and tail heaviness).

General approach 38



Highest density region (HDR)

I Let f(x) be the density function of a random vector X

I The 100(1− q)% HDR is the subset

of R(fq) of the sample space of X

such that

R(fq) = {x : f(x) ≥ fq}

where fq is the largest constant such

that P(X ∈ R(fq)) ≥ 1− q.
(Hyndman, 1996b)

I Worst-case scenario within given HDR:

β∗ = argmax
{β∈R(fq)}

VaRα(β).

General approach 39
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Factor selection

I Factors: MSCI stock indices representing 11 industries and 6 regional

indices (3 mature, 3 EM markets)

I Individual stocks: 505 S&P constituents, 30 DAX constituents

I Daily data from 1999-2018 (Source: Bloomberg, MSCI, Refinitiv

Eikon)

I Factor assignment re-calibrated every quarter, based on 3-years of daily

data (88 quarters)

I Prior: hard-code primary country and industry; include 6 factors on

expectation

I All other calculations are conducted daily on a rolling time window of

250 trading days

Application (equity portfolio) 41



Factor selection

I Number of quarters that each factor is included for SAP

I German IT company
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Factor selection

I Number of quarters that each factor is included for Amazon:

I US based online retailer with strong presence in Europe

I World’s largest provider of computing services (AWS)
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Correlations at beginning of Covid-19 pandemic

I Empirical & fitted correlations; top: 18 Feb, bottom: 18 Mar 2020.
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Factor coefficients
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I Fitted parameters for risk factors with high loads.
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Factor coefficients

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
timestamp

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
EM-Americas
EM-Asia
EM-EMEA
MM-Americas
MM-Europe
MM-Pacific

I Fitted “inter” parameters for selected risk factors (“λk”’s)
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Factor coefficients
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I Fitted “intra” parameters for selected risk factors (“νk”’s)
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Value-at-risk impact
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I Blue: VaR99%,1 day on equally-weighted portfolio of DAX and S&P 500

I Orange: Stressed VaR99%,1 day on reverse stress scenario of 5 April

2021.
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Risk-factor distribution

I Fit time series of risk factor parameters (η, λ1, . . . , λd, ν1, . . . , νd) to

Normal-Inverse Gaussian (NIG) distribution

I NIG: generalisation of normal dist. that allows for skewness and higher

variation in tails

I Calibration via using expectation-maximization (EM) algorithm,

(McNeil et al., 2005, Chapter 3) and Dempster et al. (1977)

Application (equity portfolio) 50



Reverse stress testing (Covid-19 pandemic)
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I Worst-case scenario within 95% HDR (18 Feb 2020)

I Triangles: worst-case scenarios (MC sim., Hist. sim.)

I Stars: Scenarios on 18 Feb (green) and 18 March (blue)
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Conclusion

I We develop a correlation stress testing framework, linking risk factors

with correlations.

I Risk factors (e.g. industries, countries) are linked firms via Bayesian

variable selection methods.

I Reverse stress tests are conducted by assigning the factor loadings a

distribution and determining the worst-case scenario within a HDR.
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Outlook

I Current research focusses on extending universe of stress scenarios (not

limited to correlation) by using latent factors.

I For example: Use PCA to build global risk factor.

I More generally: assign economic interpretation to latent factors from

dimension reduction methods commonly used in Machine Learning.
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