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Part 1
MOTIVATION AND PROBLEM DESCRIPTION

Based on:

Woo Chang Kim, Do-Gyun Kwon, Yongjae Lee, Jang Ho Kim & Changle

Lin (2020) Personalized goal-based investing via multi-stage stochastic goal
programming, Quantitative Finance, 20:3, 515-526
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Motivation: National Pension Service of Korea

* The National Pension Service of Korea (NPS) NPS = oI =

— Public pension fund in South Korea N __A

— Third largest in the world with $8o0 billion in assets
— Largest investor in South Korea

* A while back, CEO of NPS wanted...

An ALM system that serves all NPS participants (25 million)
Includes not only NPS but also retirement and individual pensions

Provides personalized reports to all participants periodically (quarterly, at
least)

Ideally, allows users to “play with it” so that they can plan things ahead and
understand the importance of NPS



o
Example Individual

Life time spending goals with priorities
— LOW: Car purchase in 5 years ($30,000)
— MEDIUM: Home purchase in 10 years ($100,000)
— HIGH: Retirement savings in 30 years ($500,000)

Lower priority goals occur before the more important goals

Then, should individuals spend as goals occur or should they save for
future more important goals?

LOW: 30k MED: 100k HIGH@; 500k
N Q®
| | | |
now 5yrs 10 yrs 30 yrs

from now



|
Should You Spend?

* After 5years, is it optimal to purchase the car?

* What would you base your decision on?

— Need to consider: How does decision now affect the achievement of future
more important goals?

$ 30,000 =——— 72,504 PP ——p
LOW: 30k MED: 100k HIGH; 500k
N Qe
oo @ -
| | | |
now 5yrs 10 yrs 30 yrs

from now
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Should You Spend?

* It will be helpful if individuals have information on possible outcomes

* If you purchase a $30,000 car, then
— Other two goals cannot be reached
— Highest priority cannot be met even when skipping the medium goal

445,723
-30,000 purchasing house)
LOW: 30k MED: 100k HIGH@: 500k
N Qe
¥ & &
| | | |
now 5yrs 10 yrs 30 yrs
from now
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Advice: Modify Goals

It will be helpful if the individual has information on possible outcomes

Advice (1): Reduce goal amounts
— Skip purchasing a car
— Reduce home purchase goal amount to $50,000
— Reduce retirement savings goal amount to $400,000
=>» With the reduced(more realistic) goals, they can be achieved

$ 30,000 72,504 127,051 =———) 414,530
-0 -50,000 -400,000
MED: 50k HIGH@; 400k
N Q®
I I I I
I I I I
now 5yrs 10 yrs 30 yrs

from now
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Advice: Save More

* It will be helpful if the individual has information on possible outcomes

* Advice (2): Increase savings
— Increase monthly savings to $800
— Skip purchasing a car
=» Then, both high and medium goals can be achieved

-0 -100,000 -500,000
MED: 100k HIGH; 500k
N Qe
| | | |
now 5yrs 10 yrs 30 yrs
from now
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Advice: Save More

* It will be helpful if the individual has information on possible outcomes

* Advice (3): Increase savings slightly more
— Increase monthly savings to $900
=» All goals can be achieved!

-30,000 -100,000 -500,000
LOW: 30k MED: 100k HIGH; 500k
N Qe
| | | |
now 5yrs 10 yrs 30 yrs
from now
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Financial Planning Problem

* Financial Planning: (re)positioning of funds to achieve specific goals

(Mulvey, 1992)

* Financial planning problems are ubiquitous

— Sometimes called portfolio optimization, asset liability management (ALM),
goal-based investing (GBI), liability-driven investment (LDI) depending on the

context.

m Financial planning goal

Commercial Banks

Pension Funds

Insurance Companies

Individuals

Maintain sufficient liquidity of assets
while maximizing profit

Manage asset to meet liabilities while
reducing contribution cost.

Deal with randomly occurring insurance
claims while maximizing profit

Minimize cost to achieve certain goals
at predetermined time.



I ———
Prof. Dempster’s Pioneering Works on Financial Planning

Dynamic stochastic programming for asset-liability management. Annals of Operations
Research 81, 131—162 (1998)

Global Asset Liability Management. British Actuarial Journal, 9(1), 137-195 (2003)

Sequential Importance Sampling Algorithms for Dynamic Stochastic Programming. J Math
ScCi 133, 1422—1444 (2006)

Necessary and sufficient optimality conditions for control of piecewise deterministic Markov
processes, Stochastics and Stochastic Reports, 40:3-4, 125-145 (1992)

Large-Scale Linear Programming. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-
81-51 (1981)

Dynamic portfolio replication using stochastic programming, in Risk management: Value at
risk and beyond, 100-128 (2002)

Asset liability management for individual households - Abstract of the London Discussion.
British Actuarial Journal, 16(2), 441-467 (2011)

Designing minimum guaranteed return funds, Quantitative Finance, 7:2, 245-256 (2007)
Managing guarantees, The Journal of Portfolio Management, 51-61 (2006)

Generalized Bellman-Hamilton-Jacobi optimality conditions for a control problem with a
boundary condition. Appl Math Optim 33, 211—225 (1996)

The CALM stochastic programming model for dynamic asset-liability management in
“*World Wide Asset and Liability Modelling”, 464-500 (1998)

And more...



Multistage Stochastic Optimization Problem

— [Multistage Stochastic Optimization Problem]

Multi-period sequential decision making problems under uncertainty

decision(xl) e decision(x;) decision(x3) decision(x)
t=3 — t=T

observation(é;) observation(&3) observation(&r)

4

Multistage Stochastic Optimization Problems (MSOP)

* Decision Process x[r1 = (X1, X2, ..., X1).

* Stochastic Process i = (&1, 62, .-, €7).

© Woo Chang Kim, KAIST
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Multistage Stochastic Optimization Problem

[Multistage Stochastic Optimization Problem]

Nested form of MSOP

o fi(xy) + IE[xze Jrgl(gcll’fz)fz (x2,82) + gy [+ Evpepp [xTE A e frCer, §p)111

* Egy Conditional expectation operator with respect to §.

*  fi(x¢, & ): Convex objective function in x; and dependent on &;.

o Xi(x¢_1,&:): Convex feasible region for x; given x;_; and &;.

© Woo Chang Kim, KAIST



Multistage Stochastic Programming

[Multistage Stochastic Optimization Problem]

Nested form of MSOP

o filxg) + E[xzegl(&llfz)fz (x2,82) + Ejgy [+ Evjepp_ [xTE A e frCer, §p)111

* It can be solved by Multistage Stochastic Programming (MSP).

* The usual MSP approach solves MSOP by
1. Constructing a scenario tree that approximates the stochastic process §jr
with finite number of realizations
2. Solving a large deterministic equivalent convex optimization problem under
the realized scenario tree.

« Drawbacks of MSP: Curse of dimensionality

— The number of scenarios increases exponentially with respect to the number
of stages and/or the number of nodes per stage.

— Problems often become intractable.
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Multi-stage Stochastic Goal Programming (MSGP)

e MSGP Procedure

— Problems are solved sequentially to preferentially satisfy
consumption goals with higher priorities

* Example)

Goals MSP Problems Optimization Results
1) Post-Retirement Living » Maximize  Prob (Goal 1) » MaxProb (Goal 1)
(priority 1) Subjectto  Constraints
» Maximize »
(priority 2) Subjectto  Constraints
MaxProb (Goal 1)
3) Luxury Life » Maximize Prob (Goal 3) » MaxProb (Goal 3)
(priority 3) Subjectto Constraints
MaxProb (Goal 1)
4)

© Woo Chang Kim, KAIST
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Scenarios




Example

* Age, Savings, and Income

Age
Yrs 30
Stage 1
Number Of Years
Yrs 40

Estimated Income

UsD
(1K) 40

Stage 2
Number Of Years
Yrs 50

Estimated Income

UsD
(1K) 50

e Personal Information

Current Savings

usD
(1K) 30

e Investment Horizon

x Stage 3
Number Of Years
Yrs 60

Estimated Income

uUsD
(1K) °

© Woo Chang Kim, KAIST

Personalized ALM Demo: Goal Based Investment

Stage 4
Number Of Years
Yrs 80

Estimated Income

UsD
(1K) 0



Example

Goals

Stage 1 (40yr)
[] 1stPriority

Consumption Amount (1K)

o]

90%-CVaR constraint (%)

o}

[} 2nd Priority

Consumption Amount (1K)

o]

90%-CVaR constraint (%)

o}

[} 3rd Priority

Consumption Amount (1K)

0

90%-CVaR constraint (%)

o]

Stage 2 (50yr)

1st Priority

Consumption Amount (1K)

0

90%-CVaR constraint (%)

0

2nd Priority

Consumption Amount (1K)

75

90%-CVaR constraint (%)

50

3rd Priority

Consumption Amount (1K)

0

90%-CVaR constraint (%)

[¢]

e Spending Goals

Stage 3 (60yr)

1st Priority

Consumption Amount (1K)

150

90%-CVaR constraint (%)

0

2nd Priority

Consumption Amount (1K)

50

90%-CVaR constraint (%)

50

3rd Priority

Consumption Amount (1K)

100

90%-CVaR constraint (%)

0

Stage 4 (80yr)

1st Priority

Consumption Amount (1K)

100

90%-CVaR constraint (%)

0

2nd Priority

Consumption Amount (1K)

25

90%-CVaR constraint (%)

90

3rd Priority

Consumption Amount (1K)

100

90%-CVaR constraint (%)

0

© Woo Chang Kim, KAIST



Example

» Expected Wealth with Asset Allocation
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Example

* Goal Achievement —Goal 2 (Stage 2)

80k

60k

40k

20k

Consumption Achievement

DR SRR AN RS A CR S R KA R A SN

Scenario

@® Goall @® Goal2  Goal3

Highcharts.com
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Example

* Goal Achievement —Goals 1, 2, & 3 (Stage 3)

400k
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300K mmmmmmmmm
E /
(]
>
@
o = ;
< —
e 200k —---m---mm--oo-o o
5 __
+—
(=1
E —————————————————————————————————————————————————————————————————————————
=1
wv)
S 100k
O

0
NADOPANA P O NADPD O RN ANDPO LN ANDOD O Q
ANEAIEURCIE SRS I R MU G R S SN AP ORI AR
Scenario

@® Goall @® Goal2  Goal3
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Example

* Goal Achievement —Goals 1, 2 & 3 (Stage 4)
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That’s Nice, but...

* More stages are needed

* Computational time should be further reduced

© Woo Chang Kim, KAIST



Part 2

APPLYING MACHINE LEARNING TECHNIQUESTO
LARGE-SCALE MULTI-STAGE
STOCHASTIC PROGRAMMING ALGORITHM

© Woo Chang Kim, KAIST
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Recall: Multistage Stochastic Programming

[Multistage Stochastic Optimization Problem]
Nested form of MSOP

i f1 Ce) +E[ min ,  f; (%2, §2) + Eujgpyy [+ By [ o fr Cer, $r)]1]]

« Drawbacks of MSP: Curse of dimensionality

— The number of scenarios increases exponentially with respect to the number
of stages and/or the number of nodes per stage.

— Problems often become intractable.

© Woo Chang Kim, KAIST



Curse-of-dimensional Issue of MSP

* MSP algorithm solves a huge deterministic equivalent convex problem
* Size of scenario tree grows exponentially to the number of stages
* Reducing the number of stages can make the problem unrealistic

Stage 0 1 2 3

© Woo Chang Kim, KAIST
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Decomposition Methods of Stochastic Programs

i H Stage
* Scenario Decomposition tage 0 1

 Decompose problems scenario-wise
* Non-anticipativity constraint relaxed
* Requires loops over the entire scenario!
* Not suitable for problems with
extremely large scenario tree
* Ex) dual decomposition, progressive
hedging

e Stagewise Decomposition

Stage 0 1

 Decompose the problem stagewise

* Consequence of current decision is
summarized by value function.

* Goalis to approximate the value function

accurately and efficiently

e Often requires special structure in the
problem for the efficiency
* Ex) nested Benders decomposition, SDDP



|
Stagewise Decomposition

* Stagewise Decomposition Algorithm
— Decompose the MSOP problem into stagewise subproblems.

— [Stagewise Subproblems]
Fort =1,

x11nelglcl f1(x1) + Q2(x1)

Fort=2,..,T,

fe(xe, &) + Qt+1(xt» f[t])

xtext(xt 1.$t)

* where the value function Q; is recursively defined by the Bellman Equation.
— Fort=T,..,2,

= Qe(xe—1, ¢ = min __fy (%, &) + Qeea (%, E[t])

Xt €Xe(xe-1,8¢)
- Qt+1(xt» ’f[t]) = IE:-|f[t] [Qt+1(xt» f[t+1])]
— Qr+1 =0

© Woo Chang Kim, KAIST
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Stagewise Decomposition

* Stagewise Decomposition Algorithm
— Decompose the MSOP problem into stagewise subproblems.

——— [Stagewise Subproblems]

xrlréiglfl fl (xl) + IE[xZE gi(gclpfz) f2 (xz, 52) + E'lf[Z] [ + [E'l'f[T—l][

— —
Q2 (x1) Y \ /

Q3(x2»f[2]) Y

Qr(xr-1, E[T—l])

min
XT€ X7(x7-1,8T)

frCer, &r)]]]
|

© Woo Chang Kim, KAIST
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Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP)

— State-of-the-art stagewise decomposition algorithm for solving large-scale
multistage stochastic optimization problems

— SDDP was introduced by Pereira & Pinto (1991)

SDDP solves stagewise subproblems by approximating the value function
as a piecewise linear convex function based on Benders decomposition.

The piecewise linear convex function is improved gradually by using
subgradient cutting planes (called cuts) as iterating the algorithm,

Piecewise
Linear
Function

Nl

T
Gradient ajx +b, azx + by
Information

Vi (x)

SDDP

V.(x) = max{a; x + b;}



S
SDDP: Issues

Increasing Computational Burden

e Optimality cut is added every iteration

* Size of subproblem increases every
iteration

 Computation time of subproblem
increases every iteration

Distributional Approximation
with Scenario Tree

* Distribution of underlying stochastic
process has to be approximated with
scenario tree

Time Elapsed per Iteration

0 200 400 600 800 1000
Iteration

Stage 0 1 2 3

D
D
D
D > D
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Improving SDDP: Selection of Cuts

Main idea: Constructing a piecewise linear lower bound of the value
function using selected cuts that satisfy heuristic conditions.

— Reduce the size of the subproblems.

Pfeiffer et al. (2012) proposed the territory algorithm and test of
usefulness.

— Territory algorithm selects candidates of potentially useless cuts.

— And redundant cuts are removed after verifying usefulness within candidate
group by test of usefulness.

— Utilizing two algorithms is difficult to use in practice because of high
computational cost.

De Matos el al. (2015) proposed the Level N dominance cut selection
strategy.

— It constructs a piecewise linear lower bound by selecting cuts activated at
least n for the trial solutions.

— They concluded that the Level 1 dominance outperforms.



|
Improving SDDP: Generation of Cuts

Dai et al. (2021) proposed v-SDDP.

* Inv-SDDP, neural network is trained using a meta-learning approach to
generate a fixed number of corresponding cuts based on the problem
context vector.

* Thisis the novel algorithm that generates cuts using neural network.

* Drawbacks:
— Previously generated cuts are not considered to generate new ones.
— Only linear programs can be solved by v-SDDP.
— The number of cuts to be generated is fixed.



Part 2-1

PARAMETRICVALUE FUNCTION APPROXIMATION FOR
LARGE-SCALE MULTISTAGE
STOCHASTIC PROGRAMMING PROBLEMS

Based on:

Jinkyu Lee, Sanghyeon Bae, Woo Chang Kim, Yongjae Lee, 2023, Value function
gradient learning for large-scale multistage stochastic programming problem:s,
European Journal of Operational Research, 308.1, 321-335

© Woo Chang Kim, KAIST
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Value Function Gradient Learning (VFGL)

* Key Idea: Fix the parametric families of value function and learn the
parameter that well approximates the gradient of value function
* Key Characteristics:
* No extra constraint (optimality cut) is added to the problem.
* Samples directly from the underlying distribution

Piecewise-linear approximation
! VFGL
on the value function

7.(x) = max{alx + b}, () = ge(x16,)

© Woo Chang Kim, KAIST
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VFGL Choice of the Parametric Families

* Observation 1: For each subproblem, a previous decision

variable is often primarily involved in a resource constraint
* Ex) Asset realization constraint, water reservoir level, storage level

* Ry =k(xi—1,¢t)

: For each subproblem, the objective is often
(directly/indirectly) a function of available resource at that time

* Staget objective — ft(k(xt—l' ft))

r “

Claim: A good heuristic starting point for the value function
parametric families is an indefinite integral form of the
stagewise objective function

\. J




VFGL KKT Condition: with the Approximated VF

Stationarity:

Vfe(xe) + Vi1 (xc1041) — Z{'(=1 AeiVkyi(xe) + Z?:]_ teiVhe j(xe) =0

Primal Feasibility:
kei(xe) < bei(xe-1,&t) it=1,..,k
hej(xe) = —dg j(Xe-1,¢t) J=1,..,p

Dual Feasibility:

,th,i = 0,l= 1, ,k

Complementary Slackness:
MUt i (kt,i(xt) — bt,i(xt—pft)) =0,i=1,..,k

© Woo Chang Kim, KAIST



VFGL KKT Condition: with the Approximated VF

Stationarity:
ko p _
Vie(xe) + VWipr (x) + Z AtV gei(xe) + z feiVhe, (o) = VWiegq () — VW1 (x¢10¢41)
=1 i=1
Primal Feasibility: i
kei(xe) < bei(xe-1,&t) i=1,.., kt » the PV,er (x2) — VTrsn (s 0rs ) i
oser the X)) — X is
hej) = ~dej(e-1,6) T =11y tter the approximation

to O, better the approximation
Vi1 (el0t41)

Dual Feasibility:

,th,i = O,l= 1, ,k

Complementary Slackness:
MUt i (kt,i(xt) — bt,i(xt—pft)) =0,i=1,..,k

© Woo Chang Kim, KAIST
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VFGL Loss Function

Define loss function to minimize /i, (0;41; x;) = ||\7Vt+1(xt) — VVHl(xtIHHl)”

Jer1(0e41) = Ey, Vi1 (Or41;5 x0)]

1 N ;
~N i=1]t+1(0t+1' xé)

Optimize J;4+1(6¢4+1) by the stochastic gradient descent method

-
Stochastic Gradient Descent

Initialize i « 1 (iteration counter), a; (step size)
; 1 g 5 1
Sample Vet+1]t+1(9t+1»xé) ~ EZs=1 VoFt+1(Ots1; X, Et41)

Update 6¢11 < Op41 — aiVQt+1]t+1(0t+1:xti)
l<i1+1
Go to step 2 until 8, is sufficiently converged

f.“"PP"!\’!—‘

where a; satisfies )/, a; = 0,724 al_z = @

© Woo Chang Kim, KAIST
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VFGL Sampling Target Gradient

G
* But how do we sample the target gradient . ——Vin1(x, Ec41)?
tn

* Differentiate the Lagrangian at optimal

Suppose that we have primal dual optimal solution (x;, A, u}) with (%1, &)

th_lvt(xt—l:gt) = L(9~Ct—1;gt|x;, t H;)
—Z 1/11:1 X 1btl(xt 1,¢t) +Zl 1#1:1 X 1dt](xt 1,$t)

« But V. ,(x}) is required to find (x;, A7, uf)

* Bootstrap V,,; with V,,4

Gradient of the SDDP optimality cut




e —
VFGL Objective Weighting

Our loss function does not consider the scale of value function gradients.
e (Can cause bias towards decision variable with huge gradient scales

Define the average value function gradient:

9,
Vt+in = Ef[t+1] [m Vi1 (e Eea1)

Scale the loss function by the average value function gradient

0

9,
ne | 9x th+1(xt) 0 Vt+1(xt|9t+1)

Jet1(Ors1, ) = z

n=1 Vt+1n

Since V441 4y iS unobservable, we approximate this value by the sample mean
and update the approximation

~ s 1 Jd .
Vitin €~ Vt41n T+ Ox Vi1 (Xt §e41)
tn

s+1 s+1
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VFGL Framework Summary

N\

Not satisfied

Parameter Forward Parameter Stopping
initialization Sampling Updating Criterion

Satisfied

54
KKT

| Not Deviation Solution
Satisfied Evaluation

Evaluation

Parametric
family
selection

Satisfied

%4

Algorithm

Termination

© Woo Chang Kim, KAIST



Production Optimization

Objective: Optimize production to minimize the average total cost
while all demands are met.

Xt i Product i produced at stage t
Vti Product i outsourced at stage ¢

St Product i stored at the end of stage t

XCy Resource cost of product i production at stage t
YCt Cost of product i outsourcing at stage t
SCt Cost of product i storing from stage t tostaget + 1
Tt Maximum resource available at stage t
Rondomvarisbie |
de; Demand of product i at stage t

© Woo Chang Kim, KAIST
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Production Optimization

Stage 1

minimize ); V1,iYC1,i t Xi 51,iSC1,i

subject to X;Xx1iXC1; <1y Resource limit
S1i=X1; + Y1 Storage balance
X1 Y1051: =0 Non-negativity
Stage t

minimize X YtiYCt,i + XiSt,iSCt,i
subject to ;X4 iXCei S Ty Resource limit

Sti = S¢—1;+Xe; +ye; —dy; Storage balance

XtirVeirSei =0 Non-negativity

Parametric Functional Form

9t (Stlet = (01'1-; 02,1':' 03,t)) = St 91’t + Zl'3=1 e_ez,t[i]st,i

Initial value of 8; = (—1,—1,—1,0,0,0)

© Woo Chang Kim, KAIST
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Production Optimization: Results

. Computation
Production Outsource . P
Time (s)
Product 1 Product 2 Product 3 Product 1 Product2  Product 3
MSP 1.00 0.00 1.00 0.00 0.00 0.00 -
SDDP 1.00 0.00 1.06 0.00 0.00 0.00 1859
VFGL 0.99 0.00 1.00 0.00 0.00 0.00 227
VFGL SDDP
1 Stage0 Decision for Each Iteration . Stage0 Decision for Each Iteration
10 A
9 54
8_
7 gl
S 6 s
5 s 37
g °] 3
E ;) £
24
3 -
2 1
1 &'wvv“ VvV
0 04
0 20 40 60 80 100 120 140 160 180 200 O 20 40 60 80 100 120 140 160 180 200
Iteration Iteration
—— Product_1 —— Product_2 —— Product_3 —— Product_1 —— Product_2 —— Product_3
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Production Optimization: Results

Parametric Function Form

gt (St|9t = (el,t’ 92,t )) = St . 91,1’ + Z?=1 e_HZ,t[i]St,i

Trained value of 8, = [—0.6559,—5.1594, —-9.7626, 1.8402,—0.5000, —0.4367]

VFGL SDDP
Time Elapsed per Iteration Time Elapsed per Iteration
2.5 4.0 1
3.5
2.0 4
3.0 4
154 2.5
()
£ 2.0 1
|_
1.0 - L5 4
1.0 4
0.5 -
0.5
0-0 T T T T T 0.0 T T T T T T T T T
0 50 100 150 200 0 25 50 75 100 125 150 175 200
Iteration Iteration
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Production Optimization: Perturbation

) VFGL MSP
Maximum
resource KK,T ) Objective  Product 1 Product 2 Product 3 Objective  Product 1 Product2  Product 3
deviation

8 1.22 227.63 1.63 0.33 1.07 227.22 2.00 0.00 1.20
8.5 1.85 215.83 1.61 0.09 1.07 214.65 2.50 0.00 1.10
9 0.98 202.38 1.58 0.00 1.02 202.44 2.00 0.00 1.00
9.5 1.35 190.08 1.49 0.00 1.01 190.39 1.50 0.00 1.00
*10 2.50 177.51 0.99 0.00 1.01 178.33 1.00 0.00 1.00
10.5 2.75 167.59 0.49 0.00 1.01 167.50 0.50 0.00 1.00
11 2.55 156.63 0.00 0.00 1.00 156.67 0.00 0.00 1.00
11.5 2.24 147.74 0.00 0.00 0.90 147.67 0.00 0.00 0.90
12 1.78 138.50 0.00 0.00 0.81 138.67 0.00 0.00 0.80
12.5 2.00 130.38 0.00 0.00 0.71 129.67 0.00 0.00 0.70
13 2.03 121.94 0.00 0.00 0.61 120.67 0.00 0.00 0.60
13.5 2.17 111.65 0.00 0.00 0.51 111.67 0.00 0.00 0.50
14 4.16 102.90 0.00 0.00 0.40 102.67 0.00 0.00 0.40
14.5 2.76 94.51 0.00 0.00 0.20 94.00 0.00 0.00 0.20
15 4.70 85.08 0.00 0.00 0.00 85.33 0.00 0.00 0.00
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Hydro-thermal Energy Planning

Objective: Optimize energy production that minimizes cost while
maximizing water level utility

rti"it Water reservoir level in the beginning of stage t

pfinal Water reservoir level in the end of stage t

Hydro electricity generation level at stage t

Thermal electricity generation level at stage t

t
Hy
Ty
e

rimit Initial water reservoir level
cH Cost of hydro electricity production per unit at stage t
cl Cost of thermal electricity production per unit at stage t
d; Electricity demand at stage t
a; Reservoir level utility coefficient
b, Reservoir level utility scaling constant

I; Water inflow to reservoir in the beginning of stage t



e —
Hydro-thermal Energy Planning

Stage 1
minimize cHy +cIT, + e—alrfinal+b1
subject to  ri™Mt =1, Initial reservoir
7,11‘l'natl = pinit _ g, Reservoir balance
H +T, =d, Demand
rlﬁnal,Hl,Tl > 0 Non-negativity
Stage t
minimize cH{,+ cTT, + o—aer! " b,
subjectto /Mt = rtfi"?‘” + 1, Initial reservoir
rtfinal = pinit _ g Reservoir balance
H +T; > d; Demand
rtfinal’ H,T, >0 Non-negativity

Parametric Function Form

gt (rtlet =] (el,t' Bz,t)) — 'r't 5 el,t + e—Gz,trt+5

Initial value of 6, = (1,1)

© Woo Chang Kim, KAIST
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Hydro-thermal Energy Planning: Results

Hydro Electricity Thermal Electricity =~ Computation
Production Production Time (s)
MSP 10.31 9.69 -
SDDP 9.84 10.16 1253
VFGL 10.67 9.33 1241
VFGL SDDP
- First Stage Decision for Each Iteration ” Stage0 Decision for Each Iteration
1] ] ol
18
17 18 -
16 . 17 -
15 16 -
14 15+
13 - 14 -
c 121 13 A
811 £ 121
S 10 £ 114
B 91 32 101
g g ] ne_ g i
6 - 4y
5 &
a- 2]
3- 2]
2 _1 3:
1 - J
0- ]
0 100 200 300 400 500 600 700 800 900 1000 0 10 2'0 30 40 5'0 60 70 a'o 90 100
Iteration Iteration

—— Hydro —— Thermal —— Hydro —— Thermal
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Hydro-thermal Energy Planning: Results

Parametric Function Form

gt (rtlet = (61c, 92,1:)) =7y - 01 + e 02Tt

Trained value of 6, = [—4.2288,1.0000]

VFGL SDDP
Time Elapsed per Iteration Time Elapsed per Iteration
25 A
2.0 -
20 -
1.5 -
Y] Q ]
g g 15
= =
1.0 -
10 A
0.5 -
5 -
0.0 — : . . ; . 01— . . ; : .
0 200 400 600 800 1000 0 20 40 60 80 100
Iteration Iteration
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Hydro-thermal Energy Planning: Perturbation

Parameter | VFGL MSP
o Hydro Thermal Thermal
w y | KKT Objective | | Objective  Hydro plant |
C; Ct o plant plant plant
deviation value value generation
generation generation generation

2 5 2.24 365.00 5.06 14.94 370.74 5.39 14.61
2 5.5 2.68 374.01 6.26 13.74 378.38 7.53 12.47
2 6 2.45 382.01 7.68 12.32 378.99 8.36 11.64
2 6.5 3.24 389.62 8.91 11.09 392.04 9.8 10.2
*2 *7 3.66 396.64 9.90 10.10 400.39 10.45 9.55
2 7.5 3.6 402.68 10.91 9.09 404.15 10.88 9.12
2 8 4.52 408.99 11.61 8.39 417.47 13.18 6.82
3 7 2.66 521.85 7.67 12.33 523.37 8.68 11.32
35 7 2.44 583.90 6.49 13.51 585.67 6.89 13.11
4 7 1.87 645.08 4.88 15.12 644.56 5.11 14.89
45 7 1.89 705.74 2.78 17.22 711.22 3.91 16.09
5 7 1.35 764.90 0.81 19.19 765.76 1.54 18.46
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Merton'’s Portfolio Optimization

Original Problem Formulation

max E [fOTe‘th(C(t))dt + eye_pTU(WT)]
where dW =[(w®)(u—1) + r)W(t) — C(t)]dt + w(t)oW (t)dB;

In(x) ify =1
U(x) =< xt-v |
E lf)/ 1

Known Analytical Solution

w*(W, t) = £

o2y

v(l + (ve — 1)eV(T‘t))_1W ifT <owandv # 0
W, t) = (T—t+e)tw if T <ooandv =0
vW if T =o0

where v = 5 — A=) —rIWw* W, )\2y +1/7)

© Woo Chang Kim, KAIST (YA



Merton'’s Portfolio Optimization

Objective: Optimize asset allocation and consumption that maximizes
total consumption utility and bequest utility.

S

Cy Consumption at stage t
W; Wealth in the beginning of stage t
St Amount invested into stock at stage t
B; Amount invested into bond at stage t
T
p Discount rate
y Utility risk aversion coefficient
U, o Mean return, volatility respectively, of stock
T Risk free rate of bond
€ Scaling coefficient of bequest utility
T Time horizon
dt Discretized time interval. T is a integer multiple of dt
N
& Increment of the Wiener process for dt

© Woo Chang Kim, KAIST
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Merton'’s Portfolio Optimization: Problem Formulation

Stage 1
minimize —U(Cy)
subjectto S;+B;+C; =1 Initial wealth
S1,B1,C; =0 Non-negativity
Stage t
minimize —U(C;)
subject to S, 4 But C, = rdtB,_ + e(ﬂ_%z)dtwm*gst_l Investment realization
St,Bt, Ct = 0 Non-negativity
Stage T
minimize —-U(W;)
subject to Wy = rdtBy_, + e(”_%z)dtwm*EST_l Investment realization

Parametric Function Form

9t (St' B:|6; = (91,t: 026,03 94,t)) = Z:;tl _91,tln(7'Bt + ﬁi,tSt) — 92,tln(93,tBt + 94,t5t)

( az)dt+ Vdtxé
: —— |dt+ovdt=$;
Where f; ; is a sampled value of e 2 b

Initial value of 8, = (i, i, 1, 1)

ng ng
nt - 20



o
Merton'’s Portfolio Optimization: Results

Risk Free Asset | Risky Asset Consumption | Computation
Time (s)
Analytical 0.2292 0.6875 0.0833 -
SDDP 0.2238 0.6907 0.0855 29087
VFGL 0.2214 0.6927 0.0834 677
VFGL SDDP
StageO Decision for Each Iteration Stage0 Decision for Each Iteration
1o 1.0 -
. 0.8 -
5 061 s 0.6 -
% 0.4 % 0.4
0.2 0.2
00 0 20 40 60 80 100 120 140 160 180 200 00 ] 100 200 300 400 500 600 700 800 900 1000

Iteration

Iteration

mmm RiskFree mmm Risky B Consumption mmm RiskFree mmm Risky mmm Consumption
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Time

Merton'’s Portfolio Optimization: Results

Parametric Function Form

16

14 4

12 1

50 A

o 40
1 £
'_

10

oo

[<)]
L

B
1

N
1

o

9t (Str B0, = (91,1:' 026,03 94,1:)) = Z?:tl —91,tln(7”Bt + .Bi,tSt) - 92,tln(93,tBt + 94,t5t)

(u—a—z)dt+a\/a*f ;
Where f; + is a sampled value of e 2 b

Trained value of 6, = [0.54287, 0.0747, 0.9986, 1.0014]

VFGL SDDP
Time Elapsed per Iteration Time Elapsed per Iteration

0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration
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o
Merton'’s Portfolio Optimization: Perturbation

Parameter VFGL Analytical

iitsul;free Feltikri,l \ljéifglity dKeli;l:;tion Objective Ei:ek Risky ~ Consumption | Objective lfiieik Risky  Consumption
0.04 0.060  0.20 0.0114  29.5281  0.4567 0.4600 0.0833 29.5266  0.4564 0.4603 0.0833
0.034 0.060 0.26 0.0105  29.5245  0.5122 0.4045 0.0833 29.5458  0.5120 0.4046 0.0833
0.031 0.060  0.29 0.0107  29.5399  0.5367 0.3799 0.0833 29.5565  0.5372  0.3795 0.0833
*0.030 *0.060 *0.20 0.0075  29.5112  0.2284 0.6883 0.0833 29.5508  0.6885 0.2282 0.0833
0.028 0.060 0.32 0.0106  29.5429  0.5571 0.3596 0.0833 29.5667  0.5580 0.3587 0.0833
0.025 0.060 0.35 0.0108  29.5567  0.5746 0.3421 0.0833 29.5768  0.5755 0.3412 0.0833
0.022 0.060  0.38 0.0109  29.5703  0.5900 0.3267 0.0833 29.5867  0.5910 0.3257 0.0833
0.019 0.060 0.41 0.0110  29.5791  0.6036 0.3130 0.0833 29.5966  0.6047 0.3119 0.0833
0.016 0.060 0.44 0.0110  29.5905  0.6159 0.3008 0.0833 29.6065 0.6171 0.2996 0.0833
0.013 0.060 0.47 0.0111 295993  0.6270 0.2897 0.0833 29.6163  0.6282 0.2884 0.0833
0.01 0.060 0.5 0.0112  29.6081  0.6371 0.2795 0.0833 29.6261  0.6384 0.2783 0.0833
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o
Comparison to the Conventional Algorithms: Advantage

I . I

Computational Burden Increases every iteration Remains constant
Every Iteration

Scenario tree Required Not required, but can employ
approximation them for a minibatch sampling
Parameter recycling Not possible at all Limited possibility by sharing the
(transfer learning) same parametric form or/and

initial parameter values
(computational potential in
solving many perturbed
problems)

Online/Offline Offline learning. Parallel Online learning. Parallel
computation is difficult computation is easy



o
Comparison to the Conventional Algorithms: Disadvantage

| sbDP___ VFGL

Convergence to the Guaranteed for a given Not guaranteed. Optimality only
optimal scenario tree indirectly checked by the
inspection of solution and KKT
deviation
Required user input Few parameters about Parametric form of value function
iteration and stopping and initial values need, which are

criterion needed. They do not critical for the performance
affect the solution quality
much

Optimality Gap Estimate of optimality gap Only the upper bound of the
can be computed for a given  expected objective value available
scenario tree



|
Comparison to the Conventional Algorithms

| sboP__ | VFGL

Stagewise Assumed. Can be extended to  Assumed. Can be extended to
independence of the HMM scheme. the HMM scheme.

stochastic process

assumption

Relatively complete Assumed. Feasibility cuts can Assumed. Feasibility cuts can
recourse assumption relax the assumption. relax the assumption.
Additive Separation of Assumed. Assumed.

current and past stage
decision variables



Part 2-2

DEEP VALUE FUNCTION NETWORKS
FOR LARGE-SCALE STOCHASTIC
OPTIMIZATION PROGRAMS

Based on:
Hyunglip Bae, Jinkyu Lee, Woo Chang Kim, Yongjae Lee, 2023, Deep value function
networks for large-scale multistage stochastic programs, AISTATS 2023, Accepted
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Value Function Gradient Learning (VFGL)

* Value function is approximated by a fixed parametric families
— Learn the parameter that well approximates the gradient of value function

— No extra constraint (optimality cut) is added to the problem

Piecewise-linear approximation
! VFGL
on the value function

V() = max{alx + b}, () = ge(x16,)

* The performance of VFGL is heavily dependent upon the choice of
parametric form, and it affects the convergence to the optimality

© Woo Chang Kim, KAIST



Deep Value Function Networks (DVFN)

Value function is approximated by input convex neural networks
— Learn the parameter that well approximates the gradient of value function
— No extra constraint (optimality cut) is added to the problem

— Given neural networks’ extreme capability in function approximation, users
do not need an artistic sense of choosing the appropriate functional form

* Construction of approximation in each algorithm

Vi (x)

Gradient
Information

Piecewise
Linear
Function

Nl

aix + b, alx + b,

SDDP

Combination of
Parametric
Functions

f
f3(x]03)

f1(x|61)
VFGL

Deep Neural
Networks

DVFN

V,(x) = max{a] x + b;}

Ve (x) = Tfi(x16:)

Vo) = gw®x + b))

b ‘ Vt(x)




|
Problem Definition: Stagewise Decomposition

Fort=1
Minimize,,

Subject to

Fort=2,.., T -1
Minimize,,

Subject to

Fort=T
Minimize,,

Subject to

Ve (xt—l' iQr[t]) =

inf
Xt€Xt(xe—1,¢)

{fe(xe, &) + Vt+1(xt |f[t])}

f1(x1) + Va(xq) Vers (eeléie) = By Vews (e vy
g1i(x1) < —hy; i=1,..,m
l1,j(x1) = by, Jj=1..,q

f: convex
feCxe, &) + Verr (xel&) g, h: twice-

gt,i(xt; gt) < _ht,i(xt—li ft) [ = 1,

le j(xe,$e) = by j(xe-1,6t) j=1,..

frCer, &)

9r,i(xe,§¢) < —hri(xp—q,$7) 1=1,..

I7,;(x¢) = br j(xr_1,¢7) j=1,..

© Woo Chang Kim, KAIST

» Pt

» qt

» PT

yqr

differentiable convex
[, b: linear



DVFN Loss function construction: KKT condition

Stationarity:

Vie(xe, &) + VVt+1(xt|9t+1) + Z{'(=1 ut,ivgt,i(xt» &) + Z?:l vt,iVlt,j (xt,6:) =0

Primal Feasibility:
Iri(xe,§0) < —hei(x—1,&) =1kt
lt,j(xt» ) = bt,j(xt—pft) J=1..,p

Dual Feasibility:

ut’i = 0, | = 1, - Pt

Complementary Slackness:
Ui (gt,i(xt» §¢) + hei(xe—q, ft)) =0,i=1..,p

© Woo Chang Kim, KAIST



DVFN Loss function construction: KKT condition

Stationarity:

k p R
V(e ) + VVipa (xp) + E _ 1ut,ivgt,i(xb §e) + é _ 1vt,iVlt,j(xt' §e) = Vi1 (xp) — VWVigq (x[6141)
1= 1=

Primal Feasibility: i
9ti(xt,€e) < —hei(e-1,&) =1,k

L Closer the V'V, 1 (xr) — VW1 (x¢|0p41) is
Le,j (%, §e) = by, j(Xe—1,$t) J=L..pe to 0, better the approximation

Vt+1(xt|9t+1)

Dual Feasibility: l

ut’i = 0, | = 1, - Pt

DVFN minimizes the loss

5 2
Complementary Slackness: [7Ver1 Gee) = PP Geeler) |
Ui (gt,i(xt» $e) + he i (e, ft)) =0,i=1,..,p;

© Woo Chang Kim, KAIST
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Input Convex Neural Networks

* Neural networks architecture for approximation of the value function
— The value function is convex under mild conditions

— For stability of DVFN, it is necessary to keep the neural networks convex to
the input

— We stabilize DVFN algorithm by using Input Convex Neural Networks (ICNN)
that have special network architecture to ensure convexity with respect to
inputs

e Structure of ICNN




e —
Sobolev training

* Sobolev training for gradient loss function

— The loss function for Neural Networks is usually designed to make the neural
networks to output a value that is close to the value of the target function

— DVFN approximates value functions based on their gradient information, not
outputs, so the loss function should incorporate the difference between the
gradient of ICNN

— We adopted the Sobolev training, which approximates not only the output of
the function but also its gradient

. D2m [o<{ D2
* Framework of Sobolev training 2

E : o

Dem = l1<{ Dyf




o
DVFN Framework Summary

Solve Calculate

stage-wise gradient
subproblems loss

ICNN Forward
initialization Sampling

Parameter
Not Stopping updating
Satisfied criterion with Sobolev

training

Satisfied

%4

Algorithm

Termination
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o
Numerical Experiments

* Two popular problems in optimization community are considered
— Production optimization
— Energy planning

* Each problem is solved using four different approaches
— MSP
— SDDP
— VFGL
— DVFN

* ForVFGL, we use three different types of parametric forms
— Exponential (VFGLexp)
— Quadratic (VFGLquad)
— Linear (VFGLIinear)



Production Optimization: Results

* Performance comparisons of algorithm

Algorithm Objective  Production 1  Production 2  Production 3  Time (s)
MSP 210 1.00 0.00 1.50 10215
SDDP 210 (0.30) 1.00 (0.00) 0.00 (0.00) 1.05 (0.01) 1074 (4.67)
VEGLexp 210 (0.00)  0.99 (0.00) 0.00 (0.00) 1.03 (0.01) 798 (3.73)
VFGLquad 217 (0.00) 1.99 (0.00) 0.00 (0.00) 0.00 (0.00) 774 (1.13)
VFGLIlinear 219 (0.00) 0.50 (0.49) 0.00 (0.00) 0.00 (0.00) 551 (2.66)
DVEN 210 (0.14) 0.99 (0.00) 0.00 (0.00) 1.45 (0.01) 574 (1.36)

 First stage decisions of algorithms for each iteration

Production
w £

1 WA w
o0
0 20 80 100

0 60
Iteration

Production

1.2
oduction

1.0

0.8

0.6

Y
S o
a3 a
E E E

[a}

3
W

ction

00 300
Iteration

Production
w £

|




o
Energy Planning: Results

* Performance comparisons of algorithm

Algorithm Objective Hydro Thermal Time (s)
MSP 769 3.85 16.15 1132
SDDP 769 (1.89) 3.86(0.02) 16.14(0.02) 1115 (2.43)

VFGLexp  783(2.97)  0.00 (0.00)  20.00 (0.00) 206 (1.43)
VFGLquad 1168 (2.22) 16.45(0.23) 3.55(0.23) 190 (1.02)
VEGLlinear 776 (2.24)  0.00 (0.00)  20.00 (0.00) 149 (0.14)
DVFEN 769 (1.70)  3.84(0.03)  16.16 (0.03) 519 (1.14)

 First stage decisions of algorithms for each iteration




|
Efficiency of DVFN: Time elapsed per iteration

* Portfolio optimization * Energy planning
—— SDDP 4 —— SDDP
—— DVFN —— DVFN
N
3_
E° E
- =
Q D 2
n n
&7 &
L Ll

=
Il

100 0 20 40 60 80 100 120 140
Iteration

o
N
o
&
o
(o))
o
©
o

Iteration
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Part 2-3

TRANSFORMER-BASED STAGEWISE DECOMPOSITION
FOR LARGE-SCALE MULTISTAGE STOCHASTIC
OPTIMIZATION

Based on:
Chan Yeong Kim, Jongwoong Park, Hyunglip Bae, Woo Chang Kim, 2023,
Transformer-based Stagewise Decomposition for Large-Scale Multistage Stochastic

Optimization, ICML 2023, Submitted
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Improving SDDP: Generation of Cuts

Dai et al. (2021) proposed v-SDDP.

* Inv-SDDP, neural network is trained using a meta-learning approach to
generate a fixed number of corresponding cuts based on the problem
context vector.

* Thisis the novel algorithm that generates cuts using neural network.

* Drawbacks:
— Previously generated cuts are not considered to generate new ones.
— Only linear programs can be solved by v-SDDP.
— The number of cuts to be generated is fixed.



R
Motivation

* InSDDP, calculation of new cuts depends on previously generated cuts.
* Cuts are generated sequentially

* Until the convergence condition is satisfied.
— Unable to specify the number of cuts to be generated.

J

How to apply a sequence model to the process in which cuts are generated sequentially?

 We propose a model, TranSDDP, that uses architecture of Transformer to
generate the piecewise linear function for approximating the value function
in SDDP



|
Methodology: Input and Output Sequence

[Input Sequence]

Mp, ;

My, . Mg, . N
1 At 1 Bt 1 ~ _
{(AAU, Y VAL P P TR o0 Y SO ,t)i:1} fort=1,..,T—1

» Parameters of probability distribution for A;, B, b; of feasible region.

* Subscript is coefficient of the i-th constraint of the feasible region at
stage t.

» Superscriptis the j-th of M. parameters of the distribution of the
corresponding coefficient c.

* Assume A is sampled from the prior distribution to consider the problem
defined with a parametric family.

~ o~P(- 2, -, A8%) and 20~Py ()

t=t/(T—-1)



|
Methodology: Input and Output Sequence

[Output Sequence]

{Bre, @, fk}lk{:l

* [ € R% and &, € R are the gradient and intersection of the kth cut.
— d: dimension of decision variables.

* Ti:token
— One hot encoded category information
— (1,0,0,0): padding
— (0,1,0,0): start
— (0,0,1,0): middle
- (0,0,0,1): end

*  TranSDDP generates a sequence of S, & until token indicates the end.
— Then, construct the approximated value function

= QeCre—): max, ((B) xe-1 + )



Methodology: Model Architecture

TranSDDP mainly follows the architecture of the Transformer except a

few adjustments.

|__Softmax__|
e ™
Feed
Forward
f I ~\ (CAdd & Norm :
—{Add & Norm Multi-Head
Feed Attention
Forward ) ) Nx
e é
Nx

F’m Norm | asked

Multi-Head Multi-Head

Attention Attention

O ) A —
e VRN | —,
Positional o) & Positional
Encoding Encoding

Input Output

Embedding Embedding

Inputs Qutputs

(shifted right)

Qutput
Probabilities
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Methodology: Model Architecture - TranSDDP

Encoder Layer
/ Encoder Block \
query
Injrut —»{ Linecar o ; =i : md Add g4 Norm g4 Feed Forward kd Add gd Norm
sequence value  Multi-Head Attention
q
Encoder’s
context vector
A XN/
/ Decoder Block \ Foi token
or K
Positional '
Encoding Add Add Add
Output —» Linear —@— 3 i & i & Feed Forward & Linear [ Soft-| Output
sequence Noam Notm e max sequence
| XN/
Decoder Layer

* Replace the input and output embedding layer with a linear layer.
— Input and output sequence are continuous.

* Output layer of Transformer, softmax layer, is applied only for the vectors
that pertain to 7.

* Add positional encoding only to the output sequence.
— Positional information of the input sequence is not crucial.



|
Methodology: Model Architecture —TranSDDP-Decoder

* Herein, it is noted that:
— The size of the input sequence is fixed.

— The importance of the relationship between input sequence is relatively
insignificant.

« Self-attention layer on the input sequence can have an adverse effect by
increasing computational complexity without much gain in performance.

* We propose TranSDDP-Decoder, which employs solely the decoder
component of the TranSDDP model

Input sequence

:

Linear

For token,

key *4‘—*mlu(:

ositio i 1*
ncodin 5 Add . Add Add
= 3 quory Yoy :
il e e Multsi—elllfezza.;il:c:ltion M. ¢ g Multi—H(e:;SSz;ttemion d < Mg Feed Forward gl & »l Linear |-»{EEa» R
sequence valiie 2 Norm e Norm max sequence

Decoder Layer



e —
Methodology: Learning System

— [Dataset D]

) S
Dy = {ZS = (A’ L Br ak'Tk}II§=1)5}s=1

* A:sampled parameters of the probability distribution for stochastic
elements (A, B, by).

— A= {,11'};11 where JJ~P,; ()

* Get {Br, ax, T} by solving the defined problem with SDDP.

© Woo Chang Kim, KAIST
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Methodology: Learning System

— [Loss Function]

B K 4
11 ~ (1% o N
LW) = ﬁz ZZ 1Bic = Bl + (e = @) - Z Ty 10g (Fi.c)
b=1 k= c=

* Based on the given dataset D, the model parameters W are optimized
by minimizing a loss function.

* Loss function = MSE Loss + CE Loss between the target output sequence
{Bx, @i, Tic} and the predicted output sequence { By, @, T }-

© Woo Chang Kim, KAIST



o
Methodology: Learning System — more tricks

* The decoder takes the target output sequence ranging fromk = 1to K —
1.

* Then, TranSDDP model outputs the sequence of predicted cuts and
tokens ranging fromk = 2to K.

* By feeding the decoder with the target sequence instead the predicted
sequence, we employ Teacher forcing.

* Inthis process, the 15t cut is initialized arbitrarily to serve as a substitute
for the starting token of the decoder.

* Similar to when actually implementing the SDDP algorithm, cuts such as
x > 0 that provide minimal guidelines for approximating the value
function can be used for initialization.



e —
Methodology: Algorithm

Algorithm 1 TranSDDP

Initialize: Dy (dataset), (3, vy, 0, 1,0, 0) (initial cut and

token). m.v < 0

fors=1.....5do > Creating dataset
Sample a stochastic element’s distribution parameters
A= {N}L ~Py()
{Bk, ak, T}y = SDDP(A)

Update the dataset~
DS o DS—I U (Aa ta {/Bka e, Tk}gzl)
end for
for epoch=1,.... P do > Training the model

foriter=1.....¢do
Sample z; ~ Dg
{Bk, Ak, Tk} By = TranSDDP(z)
Update parameters W using the Adam optimizer:
m — yym+ (1 —vy)VwL(W)
v 720+ (1= %) (VwL(W) © Vw L(W))

2 m 4 v
m < 1_71,1)5— j—

m
W — W — € A
end for
end for

© Woo Chang Kim, KAIST



o
Experiments

* Tasks
— Task 1: Production Planning
— Task 2: Energy Planning
— Task 3: Lifetime Financial Planning
— 7-and 10-stage MSP problems with 5 and 3 scenario branches

* Benchmarks
— MSP, SDDP, L1-Dominance, VFGL, Neural SDDP

* Metric: averaging from 100 repeated experiments
— Solution Quality

MSP's objective value—Candidate's objective value

* Errorratio =
MSP's objective value

— Computational time
— Infeasibility Test
— Comparison of generated cuts
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Experiments: Task 1 — Energy Planning

* Performance comparison of algorithms for energy planning

Task Algorithm Error ratio
MSP -
SDDP 3.349 £ 2.698%
Ll 0.326 £ 0.379%
T=7 VFGL 1.169 £ 0.822%
v-SDDP 40.410 = 29.742%
TranSDDP 1.191 + 0.701%
TranSDDP-Decoder  1.010 £ 0.548%
MSP -
SDDP 3.441 £ 3.357%
L1 0.35 £ 0.43%
T=10 VFGL 1.796 £ 1.100%
v-SDDP 68.070 £ 5.459%
TranSDDP 2.337 £ 1.736%

TranSDDP-Decoder 3.826 + 2.018%

— Higher error ratio compared to the L1 algorithm and VFGL
— Outperform other algorithms
— Note that: v-SDDP has poor performance

* v-SDDP can only be applied to linear programs
* Energy planning problems are not the form of a linear program

— Stable computation time with respect to the number of stages

© Woo Chang Kim, KAIST
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Experiments: Task 1 — Energy Planning

« Computation time: training time + evaluation time
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— The computation time of TranSDDP and TranSDDP-Decoder are almost
constant

— TranSDDP (TranSDDP-Decoder) has a computational advantage over SDDP
for 39 (33) or more problems.
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Experiments: Task 1 — Energy Planning

Infeasibility test
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Experiments: Task 2 — Financial Planning

* Performance comparison of algorithms for lifetime financial planning

Task Algorithm Error ratio
MSP -
SDDP 1.782 £+ 1.192%
L1 1.283 £ 1.096%
T=7 VFGL 0.200 + 0.160%
v-SDDP 515.722 + 0.802%
|TranSDDP 0.962 + 0.199%
TranSDDP-Decoder 0.611 + 0.198%
MSP -
SDDP 2.848 + 1.647%
L1 1.630 + 1.360%
T=10 VFGL 0.110 £ 0.082%
v-SDDP 317.890 + 0.448%
rrranSDDP 1.704 + 0.209%
TranSDDP-Decoder 1.364 + 0.208%

— Higher error ratio compared to the VFGL
— Outperform other algorithms
— Note that: v-SDDP has poor performance

* v-SDDP can only be applied to linear programs
* Financial planning problems are not the form of a linear program

— Stable computation time with respect to the number of stages
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Experiments: Task 2 — Financial Planning

* Computation time: training time + evaluation time

— MSP
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— The computation time of TranSDDP and TranSDDP-Decoder are almost
constant

— TranSDDP (TranSDDP-Decoder) has a computational advantage over SDDP
for 62 (47) or more problemes.
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Experiments: Task 2 — Financial Planning

* Infeasibility test
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Experiments: Task 3 — Production Planning

* Performance comparison of algorithms for production planning

Task Algorithm Error ratio
MSP -
SDDP 0.072 £ 0.115%
LI 0.239 + 0.762%
T=7 VFGL 0.692 + 0.687%
v-SDDP 7.112 + 2.648%
TranSDDP 3.628 + 3.341%
TranSDDP-Decoder  0.838 + 0.831%
MSP -
SDDP 0.076 + 0.110%
LI 0.096 + 0.259%
T=10 VFGL 0.440 + 0.430%
v-SDDP 2.770 + 2.030%
TranSDDP 3.580 + 3.510%

TranSDDP-Decoder  0.967 + 0.182%

— Improve the performance compared to v-SDDP
— Higher error ratio than other algorithms
— Stable computation time with respect to the number of stages
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Experiments: Task 3 — Production Planning

* Computation time: training time + evaluation time
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— The computation time of TranSDDP and TranSDDP-Decoder are almost
constant

— TranSDDP (TranSDDP-Decoder) has a computational advantage over SDDP
for 62 (47) or more problemes.
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Experiments: Task 3 — Production Planning

* Infeasibility test
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TranSDDP and TranSDDP-Decoder: Pros and Cons

The time it takes to solve one problem using our proposed algorithm may be
longer compared to the existing algorithms.

Additionally, the performance of TranSDDP and TranSDDP-Decoder is not
significantly better.

TranSDDP algorithm can provide benefits when there are many problems to be
solved and latency is very important.

TranSDDP uses the parameters of the probability distribution of the stochastic
elements as input, which are sampled from the prior distribution.

This allows us to solve all variant problems defined by the parameters that can be
sampled from the prior distribution, using the trained model.

In other words, we can solve similar problems with slight variations in the distribution
of stochastic elements.

Although training the proposed model takes a long time, the evaluation time, i.e.,
the time to generate cuts and compute solutions, is very short compared to
existing algorithms.

Proposed model has an advantage in solving many similar instances of MSOP.

Strengths of proposed model in real-world settings is its ability to quickly solve MSOP
in situations where latency is tight.

This is especially useful in solving problems such as financial planning in cases where
the market undergoes sudden changes or energy planning problems in cases where
water inflow changes quickly due to flooding, among others
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A Big Bank in China...

* They had 5oo million personal customers (20 times of NPS of Korea).

* They wanted to implement a personalized ALM system on a smartphone
app that could generate optimal decision in real time.

=>TranSDDP or TranSDDP-decoder, maybe?

* Also, they liked the idea of goals with priorities.
=>We needed something new
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Parametric Optimization: Conventional Approach

* Parametric optimization (PO) problem is commonly employed when
decisions are made repeatedly as the parameters change

— While the problem structure stays the same throughout the entire horizon

* General framework of PO causes delays between repetitive decisions
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Parametric Optimization: NN-Based Approach

* Neural Network (NN) can provide heuristics for decision-making
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Parametric Optimization: NN-Based Approach

* Neural Network (NN) can provide heuristics for decision-making
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Objective

* To derive conditions for Universal Approximation Theorem (UAT) to
hold for PO problem

— Can NN give good approximated solutions for all kinds of PO?

* Specifically...

— We provide sufficient conditions for UAT to hold for value function and
optimal policy for continuous PO problems

— We also address situations when these sufficient conditions are not satisfied.
In particular, we define a sampling function and its stability which makes good
approximation possible through NN even without the sufficient conditions in
original problemes.

— We directly link vast amount of literature on NN with approximating
optimization problems.
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Parametric Optimization

* Parametric optimization takes the form

maximize  f(x|8)
subject to x € C(0)

— x € X € R"is the decision variable, 8 € ® c R¥ is the parameter

— f:R™ x R¥ > Ris the objective function and C: R¥ 33 28" is a multivalued
mapping, or correspondence, representing the feasible region

* Optimal value function

— f7(8) = max{f(x[0):x € C(6)}

« Optimal policy correspondence (multi-valued function)
— C*(0) = argmax{f(x]|0):x € C(8)}
— An optimal solution x*(8) is an element of C*(6)



Universal Approximation Theorem

* Universal Approximation Theorem (UAT)
— Result about capability of Neural Network as approximator

— While there are many variations, the point is that function expressed as
Neural Network is dense on the function space of interest

— We use the most classical versions of UAT by Hornik et al., Cybenko and
Funahashi.

-

\_

THEOREM 1 (Universal Approximation Theorem). Let f be a continuous single-valued

function on a compact set K. Then, there exists a feed forward NN with a single hidden layer that

uniformly approrimates f to within an arbitrarily ¢ >0 on K.

~

J

* Note that UAT requires function such that

— 1) Continuous
— 2)Single-valued

* Thus, we aim to find “continuous single-valued function” for PO
approximation
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The Maximum Theorem

* The Maximum Theorem (Berge, 1963) state that if
— 1) C(0) is compact set and non-empty
— 2) f is continuous
— 3)C(8) is continuous
— Then, f*is continuous and C™ is upper-hemi continuous

( THEOREM 2 (The Maximum Theorem). Let X and © be topological spaces, f: X x O — R

be a continuous function on the product X x O, and C:0 = X be a compact-valued correspondence
such that C(0) # (0,¥0 € ©. Define the f*(6) and C*(6) as above. If C' is continuous (i.e. both

upper and lower hemicontinuous) at @, then f* is continuous and C* is upper hemicontinuous with

\ nonempty and compact values.

* Thus, [ satisfies conditions for UAT

 Still, C" is not guaranteed to be continuous and is not even single-
valued function

— If C* is singleton for each 8, NN does the job.
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Continuous selection of C*

* However, some important classes of optimization, including linear
programming problems, do not necessarily have lower hemi-
continuous optimal policy

— Ex)
minimize —0x1 — x5
subject to X1 +x,<1,x,20,x,20

X, +x,=1

(1,0)

C*(H) on x4 + Xy = 1

0,1
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How to Sample x*(8;) from C*(0;)?

* Atraining example for optimal policy is a pair of a parameter and its
corresponding optimal solution (8;, x*(6;)).

* Let the training data be a set of examples, T = {(;, x*(Hi))|i =1,-,m}.

* Notice that there can be more than one optimal solution for each 6;.

— In practice, it is computationally expensive, if not impossible, to obtain the entire set of
optimal solutions.

— Infact, it is difficult even to identify whether there are multiple optimal solutions or
not.

* We assume that there exists a solver that can extract exactly one element
x*(6;) from C*(6;) for any give 6;.

* However, it does not have control on the choice of x*(8;), so that the optimal
solution is obtained in a random manner from C*(6;).

* Moreover, the solver is not able to identify if C*(6;) is a singleton or not.

* ltisasifthe training data is a discrete sample path from the correspondence C*
indexed by {6;]i = 1,:--,m}.
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Continuous selection of C*

* When can we find continuous single-valued function in C*?

— Under some conditions on C*, it is possible to find a continuous function
called a “selection”

DEFINITION 2 (SELECTION). Given two sets X and Y, let ' be a correspondence from X to
Y. A function f: X — Y is said to be a selection of F, if Vx € X, f(x) € F(x).

ProrosiTION 1 (Existence of a continuous selection). C* has a continuous selection if it

18 convex-valued and lower hemaicontinuous.
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Construction of continuous function for C*

* Oneideais to construct continuous single-valued function for C*
— LetT = {(Hi,x*(ei))ﬁ =1, ---,m} be training data
— Denote convex hull of 84, 85, ..., 8,, as Conv ({64, 05, ..., 0, })
— We consider a finite collection § = {S;, ..., S;} of subset of {0, 0,, ..., 0,,,} s.t

a) Foreachi € {1, ...,d}, |S;| = k + 1i.e Conv(S;) is k-dimensional simplex
b) Conv({8y,80,, ..., 6} = UL, Conv(S))
c) Conv(S;) N Conv(Sj) = Conv(5; N S;)

« Givensuch collection §, 8 € Conv({04, 0,, ..., 0,,}) can be expressed as

0 = 2505+ + A1 0L O} = 5 € 5
e A1 =0+ Ay =

— Our key idea is approximate x*(8) as AX x*(0}) + -+ AL, x*(0,1)



Main Result: sufficient conditions for convergence

Definition of e-suboptimality and e-infeasibility

* MainTheorem
/ Suppose that f, C satisfy all conditions for Theorem 2. Define a training data \

( DEFINITION 3.

Let f be the function and C' be the correspondence in the formulation given

by (1). Then,
(a) z(0) is e-infeasible solution if #(0) € B.(C(6))

(b) z(#) is e-suboptimal solution if |f(z(6),0) — f(x*(0),0)| < e.

J

THEOREM 3.

set T = {(0;,2*(6;))|0; € ©,i=1,---,

m} where x*(0;) is an arbitrarily chosen point from C*(0;).
,0,,}), consider a finite collection S as above and its one element S; =

For 6 € Conv({60,,0,,...,
.01 }. For 0 € Conv(S;), write 0 =\0] +...+ X., 01, ,. Define diam(S;) = max{||p—q||:
p,q € Conv(S;)} and #(0) = Na*(8]) + ...+ X, ,2*(6.,,). Then, the followings hold.

(a) If Conv(C*(0)) C C(8), for given € >0, there exists § >0 such that if diam(S;) <6, 2(0) is

e-infeasible solution.

(b) If f(x,0) = f*(0),YVx € Conv(C*(8)), for given ¢ > 0,
\dz’am(Sj) < 4§, (0) is e-suboptimal solution

there exists 6 > 0 such that if




Proof for (a) of Theorem 3

Proof (a) Assume Conv(C*(6)) C C(0) and let £ > 0. Since f, C satisfy all conditions for

Theorem 2, C* is upper hemicontinuous. Thus, a set
Dg={6>0:]0-0||<d=C*(0') CB.(C*(09))}

is not empty.
Define 8§y = supAy. Choose § = 8. If diam(S;) < 6, || — 6| < J i.e. C*(8]) C B.(C*(H)),Vl =
1,...,k+ 1. Then, with the assumption and C*(8) C Conv(C*(0)),

z*(8]) € C*(6,) C B.(C*(0)) C B.(Conv(C*(9))) CB-(C(#)),Vl=1,2,...,k+1

Thus, z*(0)) € B.(Conv(C*(0))) C B.(C(0)). Note that, since Conv(C*(#)) is convex set,

B-(Conv(C*(0))) is also convex set. This means the convex combination

A (931) s ’\iﬂx*(giﬂ)

is in B.(Conv(C*(0))). Thus, 2(0) € B.(C(6)).




Proof for (b) of Theorem 3

(b) Assume f(z,0) = f*(8),Vx € Conv(C*(0)) and let £ > 0. We first show there exists ¢’ > 0

such that,
I]-f a/I '/* <5’=‘\ :C,’Q . 9 <= s U’»IQBF C 9 .
;r*EColnv(C*(B)) ” £ “ |f( ) f ( )l g, VI \—( ( ))

Since C is compact-valued correspondence, B.(C(6)) x 8 is compact set. Thus, f is uniformly

continuous on B.(C(#)) x 8. Thus, there exist 6” > 0 such that,

ly —2ll < 0" = |f(y,0) — f(2,0)| <&,Vy,z € B.(C(6))

Choose ¢ = ¢”. Note that C* is compact-valued correspondence from Theorem 2. Thus,

C'onv(C*(0)) is also compact set from Lemma 1. Hence,

*

Lonin = argminm* cConv(C*(9)) ”:E, =l ” = arg min;r*EConv(C*(G)) ”IE, -z ”
is in Conv(C*(#)). Now we have

eodn 8 = <8 = [ = | <8 = 8" = |F(,6) = F(&in )| <

Since z*

min

€ Conv(C*(0)), f(x},;,,0) = f*(0). Thus, |f(z',0)— f*(0)| <e

min?




Proof for (b) of Theorem 3

Now, we prove part (b) of the theorem. From the above statement, there exists ¢’ > 0 such that,

inf |z' —z*|| < &' = | f(2,0) — f*(0)| <e,Vz' € B.(C(0))

z*€Conv(C*(0))

Also, since f, C satisfy all conditions for Theorem 2, C* is upper hemicontinuous. Thus, a set
By={6>0]if |0 -0 <5,C"(¢') C B;(C"(0))}

is not empty.
Define d; = supA,. Choose § = dy. If diam(S;) < 4, ||0 — 6]|| < 6 i.e. C*(8]) C By (C*(0)), VI =
1,...,k+1. Then with C*(8) C Conv(C*(6)),

z*(6]) € C*(8)) C Bs(C*(8)) C Bs(Conv(C*(6))),VI=1,...,k+1

Since Conv(C*(#)) is convex set, By (Conv(C*(#))) is also convex set. This means the convex
combination

#(0) =Xz (@) +... + Mz (6h,,)

is in By (Conv(C*(0))). Also, note that z(0) € B.(C(f)) from part (a) since assumption in (b)
indicates Conv(C*(6)) C C*(0) C C(6). Accordingly, |f(2(),0) — f*(0)| <e. O

© Woo Chang Kim, KAIST
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Construction of continuous function for C*

* Since x*(0) is arbitrarily chosen from C*(8), there exist PO problems
where convergence of errors is not guaranteed

minimize  f(x,0) = (x — 1)?(x — 3)?
subject to c(0) = [1,3]

— ThenC*(0) = {1,3}, VO
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— The construction always has suboptimality 1

(f*((0:+62)/2) — f(2,(0:+6,)/2) = 1)



Stable Sampling Function

Definition of stable sampling function

\_

~

DEFINITION 4. Define a sampling function s:0 — [ J, C*(0) as s(0) = 2*(¢). Sampling function
s is stable with respect to C* if there exists a non-empty, compact, and convex-valued upper

hemicontinuous correspondence C* such that s(6) € C*(6) C C*(0) V6.

J

If stable sampling function exists, the sufficient conditions of main theorem
become redundant

~

THEOREM 4. Let s be a stable sampling function and C* be the non-empty, compact, and

convex-valued upper hemicontinuous correspondence with respect to C*. Then the followings hold.

(a) Conv(C*(6)) C C(6)

x,0) = f*(0),Vx € Conv(C*(0
\(b)f( )=f"(0),Va € (C*(9)) )




R
Proof for Theorem 4

4 )
Proof Since C*(#) is convex, Conv(C*(6)) = C*(6). With this fact, we have

(a) Conu(C*(8)) = C*(6) C C*(0) S C(0).

(b) C*(0) C C*(0) implies f(x,0) = f*(0),Vx € Conv(C*(0)). O
\ J

© Woo Chang Kim, KAIST



Approximation of Target Function with NN

* We approximate constructed continuous single-valued function with NN
— If NN is close to target function sufficiently, this is good approximation for PO
e

linear approximation on Conv({6,,0s,...,0,,}). Consider a finite collection S as above and its one
element S; ={67,... ,9{_4_1}. Then, the followings hold.
(a) For e >0, there exists 6 >0 such that, if diam(S;) <d and ||2(0) —xznn(0)| <, zyN(0) is

~

HEOREM 5. Let xnyn(60) be an approzimation from NN and let &(0) be a constructed piecewise

an e-infeasible solution

(b) For € >0, there exists 0 > 0 such that, if diam(S;) <9 and ||2(0) —xznn(0)| < I, zyN(0) is

Qe-suboptz'mal solution /




Proof for (a) of Theorem 5

.

roof (a) From part (a) of Theorem 3, for £/2 > 0, there exists §; > 0 such that,

Choose 6 = min{d;,£/2}. Then, we have

~

diam(S;) <9, [|2(0) — xnn ()] <0 = 2(0) € B/2(C(0)), xnn (0) € Be2(C(6))

\Thus, xnn(0) € Be2(2(0)) € B-(C(9))

/

© Woo Chang Kim, KAIST



Proof for (b) of Theorem 5

/(b) From part (b) of Theorem 3, for £/2 > 0, there exists d; > 0 such that, \

diam(S;) < 6, = | f(£(0),0) — f(x*(0),0)| < /2

Also, since f is continuous, there exists 0, > 0 such that,
12(0) —xyn(0)|| <02 = |f(2(0),0) — f(xnn(0),0)] <e/2
Choose 6 =min{d;,d>}. Then, if diam(S;) < and ||2(0) —xnn(0)| <9,
| f(27(0),0) — f(xnn(6),0)]

= [f(27(0),0) — f(2(0),0) + f(2(0),0) — f(xnn(6),0)
<|f(27(0),0) — f(2(0),0)| + [f(£(0),0) — f(znn(6),0)]

\ <ef2+¢ef2=¢ /




Three financial planning models: Simple ALM

* Simple ALM problem

— Investor makes an investment at the beginning to achieve a single goal at the
final stage.

@rameters for investor: \

e w : Initial wealth

e (G : Amount of goal

e ¢ : Reward for exceeding G
e 1 : Cost for not meeting GG
®
®

s : Probability that scenario s occurs
Ent.s @ Return of asset n from stage ¢ — 1 to stage ¢ under scenario s

Decision variables:

o 7, Amount of wealth invested in asset n in stage ¢ under scenario s
e y, : Surplus for GG in scenario s

Kws : Shortage for GG in scenario s /




Three financial planning models: Simple GBI

* Simple GBI problem

— Slight extension of the Simple ALM problem by adding additional goals with
different priority levels and additional investment I; in stage t

— We assume that only one goal can be placed in each stage

Parameters for investor:

wo : Initial wealth

GV : Amount of goal in stage t at step p

q : Reward for exceeding GG

r : Cost for not meeting G

ms : Probability that scenario s occurs

&nts @ Return of asset n from stage t — 1 to stage ¢ under scenario s
I; : Additional investment in stage ¢

Decision variables:

® 7,5 : Amount of wealth invested in asset n in stage t under scenario s
e y;, : Surplus for GY in scenario s
e w! : Shortage for G} in scenario s

Results from previous step:

e uP : Optimal utility function value for p-th goals




Three financial planning models: Advanced GBI

Advanced GBI problem

— Model proposed by “Personalized goal-based investing via multi-stage
stochastic goal programming (Kim et al., 2020)"

Parameters for scenario tree:

Fits

Return of asset i from stage t — [ to stage ¢ under
scenario §

Inflation rate from stage ¢ — 1 to stage t under
scenario §

Probability of scenario s in stage

Discount factor from stage 0 to stage ¢ under
scenario §

Parameters set by investor (all in monetary values):

o
X1.0

p
G;

I;

Cash (or cash equivalent) savings at time ()
Consumption goal in stage t with priority p
expressed in monetary value

Additional investment in stage ¢

Decision variables at step p:

P
& t,§

Dar
X7
y—
Xi0
2
i,0

’XJI,I—>

1.5

O

Lt.s

R

1,8

x[)

1,5

Decision from step p — 1:

p—1
Ct,s

Cumulative consumption for the goals with prior-
ities 1 to p in stage ¢ under scenario s

Purchase amount of asset i in stage 0 at step p
Sell amount of asset i in stage 0 at step p

Final amount of asset i in stage O at step p
Amount of asset i at the beginning of stage r under
scenario s at step p

Purchase amount of asset i in stage 7 under sce-
nario s at step p

Sell amount of asset i in stage ¢ under scenario s
at step p

Final amount of asset i in stage t under scenario s
atstep p

Cumulative consumption for the goals with prior-
ities 1 to p — 1 1n stage ¢ under scenario s
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Target of Neural Networks

* We aim to approximate scenario-wise expectation of
— Asset allocation weights Eg[a]
— Goal allocation weight E[g]
— Goal achievement rate for each stage E|[c]

— mn:asset, t: stage, s: scenario, p: priority, 0,,: stage corresponding priority p
* Simple ALM

f(G' WO) = (Es [an,t,s]rEs [gs]: E [Cs]);
vn=1,.. Nvt=1,..T

* Simple and Advanced GBI

f(GerOJ It) = (Es [an,t,s]:Es [ggp,s] , E [Cgp,s]) )
vn=1,..,N,vt=1,..,T
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Theoretical foundation for Deep Financial Planning

* Parametric optimization takes the form

maximize  f(x,0)
subject to x € F(0)

* From “On Learning Parametric Optimization with Artificial Neural
Networks”, for good approximation, we need

— Upper hemi-continuity of F*(0)
— For upper hemi-continuity of F*(6), we need continuity of F(8)

* Suppose there are total n goals. Let f;(x, 8) be objective function for
i-th goal and F (@) be initial feasible region.

— Then, goal programming proceeds by sequentially solving the following
optimization problemfromi = 1ton

maximize  f;(x,0)
i—1

subjectto x € F;(0) =F(0) U (U{xlfj(X, 0) < f;7(0)})
j=1
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Theoretical foundation for Deep Financial Planning

* We show the final feasible region F,,(0) is continuous correspondence

— Then, E;(0) is upper hemi-continuous

LEMMA 4.2 Let C1(0),Ca2(),...,Cn(0) be continuous correspondence, then C(8) = J;—, Ci(0) is
also continuous correspondence

ﬂmof. We first show that C is upper hemicontinuous. Let ¢ > 0 and 0y € © Sinc\
Ci1(0),C2(0),...,Cy(0) are continuous, for each C;(#),36; > 0 such that
0 € Bs,(A0) = Ci(0) C B:(Ci(6o)) C B-(C(6p))
If we choose § = min; §;
0 € Bs(6o) = Ci(0) C B:(Ci(6o)) € B=(C(6bo)), Vi

Since C(0) = |J;—; C:(0), it means

0 e 65(90) = Uci(g) = C(H) 3 BE(C(QO))
=1

\Thus, C(0) is upper hemicontinuous. One can prove lower hemicontinuous with similar argument/




Theoretical foundation for Deep Financial Planning

THEOREM 4.3  Supposed that f;(x,0) is continuous Vi = 1,2,...,n and F(@) is continuous corre-
spondence. Then, F;(0) is continuous correspondence, ¥i = 1,2,...,n

Proof. We prove this theorem by mathematical induction. Since F(#) = F(6), holds when i = 1.
Suppose that theorem holds for ¢ = k, and let ¢ = k + 1. Since fi(x.6) and Fj.(€) are continuous,
fi(0) is continuous from The Maximum Theorem. We now show that correspondence for goal
constraint Gy11(0) = {x|fi(x,0) < fi:(8)} is continuous. Let grp(x.0) = fi(x,0) — fi(6). Then,
Grse1(0) = {z|gi(x.0) < 0} and gp(z,0) is continuous. Let ¢ > 0 and 6y € © and let & =
SUPeB, (G, (6,)) Ik(T-00). then B.(Gry1(09)) = {x|gi(x.6y) < £'}. Since gy (x,0) is continuous, 30
such that

0 € Bs(60) = g(x,600) — &' < gr(2,0) < gi(x.0) + €
The left side indicates
gi(z,0) < 0= gr(x,6p) < g’

Thus, Gr+1(0) € B-(Gr+1(6p)) and Gr41(0) is upper hemicontinuous by definition. Also. the right
side indicates

g}_.(.lf.e(]) <0= y};(.l.'.g) <é

Thus, Grs1(60p) € B:-(Grs+1(0)) and Giy1(0) is lower hemicontinuous by definition. Therefore,
Gi41(8) is continuous correspondence and Fjp1(6) = Fi(0) U Gry1(6) is continuous by previous
lemma. By mathematical induction, F;(#) is continuous correspondence, Vi = 1,2, ..., n (]
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Theoretical foundation for Deep Financial Planning

» Deep Financial Planning aim to approximate scenario-wise expectation
— We further prove the linear mapping preserve upper hemi-continuous

THEOREM 4.4 Let T be linear transformation. If C(6) is upper hemicontinuous, T'(C(8)) is also
upper hemicontinuous

/Pmof. Write T'(z) = Az + b and let ¢ > 0 and ¢’ = /|| A|| where ||A]| is norm of A Since C(8) is

upper hemicontinuous, 36 such that

0 € Bs(6p) = C(6) € BL(C())
If 2 € BL(C(80)), ||z — y|| < €,Vy € C(,). Thus, ||Az — Ay|| < ||A|||lx — y|| < €'||A|| This implies,

T(C(0)) € T(B=(C(60))) S Berjja(T(C(6o))) = Be(T'(C(60)))

\Thus, T(C(0)) is upper hemicontinuous l:l/




o
Empirical Results: Simple ALM

* Train data: 100,000; Test data: 10,000

Target R?
Esla; ] 0.9988
Eslaz, 0.9988
Esla; ;5] 0.9995
Eslaz,s) 0.9995
Eslaiss] 0.9998
Eslay ] 0.9998

E [cs] 0.9998

© Woo Chang Kim, KAIST
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Empirical Results: Simple GBI

* Train data: 1,152,000; Test data: 144,000

Target R? Target R2
Eslaq ] 0.9989 Es[g?. ] 0.9938
Eglaz ] 0.9989 Es[g2, ] 1.0000
Egla; ) 0.9996 Es[g3. ] 1.0000
Eglazzs) 0.9993 Eq[ck 0.9992
Eslaiss 1.0000 E[c2, 0.9996
Eslazss 1.0000 E[c3 0.9997




o
Empirical Results: Advanced GBI

* Train data: 4,608,000; Test data: 576,000

Target R? Target R? Target R?
Eglai,s] 0.9950 Es[ays ] 0.9995 E[g2, 5] 0.9999
Eslaszs] 0.9954 Eglasss) 0.9994 Eglcl §] 0.9988
Eslazq,s| 0.9992 Es[az4) 0.9995 Eq[c2 ] 0.9993
Eslas ) 0.9933 E[aza,s) 0.9997 Eg[c2, 4] 0.9986
Eglazzs) 0.9954 Es[g2. ] 0.9978
Eslas ) 0.9990 Es[gZ s 0.9999




o
Parametric Optimization: NN-Based Approach

* Neural Network (NN) can provide heuristics for decision-making
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Parametric Optimization: NN-Based Approach

* Neural Network (NN) can provide heuristics for decision-making
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Empirical Results: Transfer learning

* Itis possible to transfer information from small-sized financial

planning problems to large ones?

* We considered two identical Advanced GBI problems except for the

number of scenarios

— We repeat training and testing 100 times independently and compared the
average MSE loss with and without transfer learning for datasets of five

different sizes

With Transfer learning

Without transfer learning

Big-size Small-size Big-size
# of scenarios 3360 200 3360
# of Training data (Exp 1) 173,250, 9,000,000 192,000
# of Training data (Exp 2) 138,600, 7,200,000 153,600
# of Training data (Exp 3) 103,950, 5,400,000 115,200
# of Training data (Exp 4) 69,300, 3,600,000 76,800
# of Training data (Exp 5) 34,650, 1,800,000 38,400
# of Test data 24,000 - 24,000
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Empirical Results: Transfer learning

Compare of MSE loss (Average)

0.00035

— loss_transfer
— loss_not_transfer
0.00030 -
0.00025 -
0.00020 -
0.00015 -
ex'pl ex'pz ex'p3 ex'p4 ex;)S
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Remaining Questions

What's the proper architecture of NN for DFP?
Any better way for transfer learning?
Does transfer learning work for general parametric optimization?

If so, does it make sense to construct a pretrained model (like VGG-16,
ResNet5o, DenseNet12, InceptionV3, Xception, etc.) for PO?

If not, can we build a pretrained model for specific tasks such as financial
planning, production management, energy planning, etc.?

=> Given what we have observed, this might be a good bet.
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Thank you for listening and enjoy the lunch!
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