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This talk is based and inspired by joint works with

Zacharia Issa, Andrew Alden, Yannick Limmer, Owen Futter...
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Motivation for our Market Generators

(Architecture, ObjF; TrainData) ⇒ Program
(Program, TestData) ⇒ Output

Task “Market Generator”:
Find (synthetic) TrainData for the network, such that
performance is optimized when TestData = Market Data.
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Motivation for our Market Generators
Task “Market Generator”: Find (synthetic) TrainData for the network, such that
performance is optimized when TestData = Market Data.

The challenge that market generators face is to produce new data samples that have
the same distribution as test data they will later be exposed to.
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Motivation for our Market Generators

Task “Market Generator”: Find (synthetic) TrainData for the network, such that
performance is optimized when TestData = Market Data.

The challenge that market generators face is to produce new data samples that have
the same distribution as test data they will later be exposed to.
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Motivation for our Market Generators
Task “Market Generator”: Deliver (synthetic) TrainData for the network, such that
performance is optimized when TestData = Market Data.

The quintessential difficulty that market generators face is to produce genuinely new
data samples that in aggregation have the same distribution as the test data they will
later be exposed to, though we will only see one realisation of the path. (By Zach Issa:)
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Challenges with real (historical) data:

(1) Data availability: In many real situations, there is very limited data available for
training/estimation). ⇒ small datasets may induce higher estimation errors.

(2) Computational limitations: Some limitations imposed on datasets (real &
synthetic) by computational- and memory considerations (examples later).

(3) Data changes over time: Markets are heteroskedastic and non-stationary
⇒ may be a possible reason for (1) limitations in (training) data availabliblty
⇒ large changes in the data may require retraining / changing the network, but...

...small changes in data & estimation errors should not throw the application off track.
Needed: Appropriate (smooth) robustification of tasks towards small changes in input

Key tool: Quantify similarity (metric) of sets of paths (processes).
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Challenges with real (historical) data:

(1) Data availability: In many real situations, there is very limited data available for
training/estimation). ⇒ small datasets may induce higher estimation errors.

(2) Computational limitations: Some limitations imposed on datasets (real &
synthetic) by computational- and memory considerations (examples later).

(3) Data changes over time: Markets are heteroskedastic and non-stationary
⇒ may be a possible reason for (1) limitations in (training) data availabliblty
⇒ large changes in the data may require retraining / changing the network, but...

...small changes in data & estimation errors should not throw the application off track.
Needed: Appropriate (smooth) robustification of tasks towards small changes in input
Key tool: Quantify similarity (metric) of sets of paths (processes).
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Task revisited
▶ Now: (Architecture, ObjF; TrainData) ⇒ Program

(Program, TestData) ⇒ Output

Task ”Market Generator”: Find (synthetic) TrainData for the network, such that
performance is optimized when TestData = Market Data. (Zach Issa, Sig-GAN:)

Key: Evaluating the “quality” (→ metrics) of training data for data streams.
▶ These include: Pathwise signature-based (MMD) metrics, and Wasserstein

distances. Older approaches include: Matching quantiles and stylized facts
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The signature mapping for data-driven modelling indisputably intriguing: In many cases,
working over path space directly is preferable in a financial setting, as the language of financial
mathematics revolves around path objects. The signature provides hope in solving some of the
more complicated problems in mathematical finance, see [Perez-Arribas PhD Thesis ’20]
▶ model-free pricing and hedging of path-dependent options,
▶ non-parametric feature extraction with applications to machine learning ....

However, it doesn’t come without challenges. At the heart of many applications lies the MMD.
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(Signature) Maximum Mean Discrepancy
Maximum mean discrepancy (MMD): µ and ν Borel probability measures on X .

MMDG(µ, ν) := supf∈G

∣∣∣∣∫
X

f(x)µ(dx)−
∫
X

f(x)µ(dx)
∣∣∣∣ .

The MMDG is a metric (point separating) if G is rich enough (e.g. a RKHS).

If (H, k) is a RKHS with kernel k and G := {f ∈ H : ||f||H ≤ 1} then
MMD2

G(µ, ν) = E
[
k(X,X′)

]
+ E

[
k(Y,Y′)

]
− 2E [k(X,Y)]

for X,X′ ∼ µ independent integrable r.v. and Y,Y′ ∼ ν independent integrable r.v.

Characteristicness of the signature kernel implies an associated signature MMD, which
can be used as a metric on path space [CO ’18]. We choose k(·, ·) to be the
(normalised) signature kernel and use MMDG(µ, ν) as a hypothesis test:

H0 : ν = µ

H1 : ν ̸= µ
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(Signature) Maximum Mean Discrepancy
Maximum mean discrepancy (MMD): µ and ν Borel probability measures on X .

MMDG(µ, ν) := supf∈G

∣∣∣∣∫
X

f(x)µ(dx)−
∫
X

f(x)µ(dx)
∣∣∣∣ .

The MMDG is a metric (point separating) if G is rich enough (e.g. a RKHS).

If (H, k) is a RKHS with kernel k and G := {f ∈ H : ||f||H ≤ 1} then
MMD2

G(µ, ν) = E
[
k(X,X′)

]
+ E

[
k(Y,Y′)

]
− 2E [k(X,Y)]

for X,X′ ∼ µ independent integrable r.v. and Y,Y′ ∼ ν independent integrable r.v.

Characteristicness of the signature kernel implies an associated signature MMD, which
can be used as a metric on path space [CO ’18]. We choose k(·, ·) to be the
(normalised) signature kernel and use MMDG(µ, ν) as a hypothesis test:

H0 : ν = µ

H1 : ν ̸= µ
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(Signature) Maximum Mean Discrepancy
Maximum mean discrepancy (MMD): µ and ν Borel probability measures on X .

MMDG(µ, ν) := supf∈G

∣∣∣∣∫
X

f(x)µ(dx)−
∫
X

f(x)µ(dx)
∣∣∣∣ .

The MMDG is a metric (point separating) if G is rich enough (e.g. a RKHS).

If (H, k) is a RKHS with kernel k and G := {f ∈ H : ||f||H ≤ 1} then
MMD2

G(µ, ν) = E
[
k(X,X′)

]
+ E

[
k(Y,Y′)

]
− 2E [k(X,Y)]

for X,X′ ∼ µ independent integrable r.v. and Y,Y′ ∼ ν independent integrable r.v.

Characteristicness of the signature kernel implies an associated signature MMD, which
can be used as a metric on path space [CO ’18]. We choose k(·, ·) to be the
(normalised) signature kernel and use MMDG(µ, ν) as a hypothesis test:

H0 : ν = µ

H1 : ν ̸= µ
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The Signature MMD as a Two-Sample Test
The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

Image: Andrew Alden
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The Signature MMD as a Two-Sample Test
The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

Image: Andrew Alden
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The Signature MMD as a Two-Sample Test

The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

For (independent) samples X1, . . . ,Xn ∼ PX and Y1, . . . ,Yn ∼ PY there is an unbiased
estimator MMD2

n(X1, . . . ,Xn;Y1, . . . ,Yn) and strongly consistent. It for n → ∞ it
converges to the (theoretical) MMD

MMD2
n(X1, . . . ,Xn;Y1, . . . ,Yn) −→n→∞ MMD2

G(PX,PY) a.s.
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The Signature MMD as a Two-Sample Test

Claim: In this setting, robustification comes (in some parts) naturally through small
sample sizes of data:

Image: Andrew Alden
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The Signature MMD Two-Sample Test (Base Case,
truncated signatures)

To asses whether a generative model generate “realistic” paths, sample real paths
Y1, . . . ,Yn, for some n ∈ N, and sample generated paths X1, . . . ,Xn and apply the
two-sample test in [Chevyrev and Oberhauser ’18]. Signature-based MMD test statistic
T(X1, . . . ,Xn;Y1, . . . ,Yn) where k(·, ·) is the signature kernel:

T(X1, . . . ,Xn;Y1, . . . ,Yn) :=
1

n(n−1)

∑
i,j;i̸=j

k(Xi,Xj)− 2
n2

∑
i,j

k(Xi,Yj) +
1

n(n−1)

∑
i,j;i̸=j

k(Yi,Yj),

Then, given a confidence level α ∈ (0, 1), compute cα(n) := 4
√

−n−1 logα
(threshold). Generated paths are realistic with a confidence α if T2

n < cα(n).
Note how threshold depends on the number n of samples considered.

This base-case has been considered in “Signature-based validation of real-world
economic scenarios” [Andres, Boumezoued, Jourdain ’23] for n ̸= m.
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The Signature MMD Two-Sample Test (Base Case,
truncated signatures)

To asses whether a generative model generate “realistic” paths, sample real paths
Y1, . . . ,Yn, for some n ∈ N, and sample generated paths X1, . . . ,Xn and apply the
two-sample test in [Chevyrev and Oberhauser ’18]. Signature-based MMD test statistic
T(X1, . . . ,Xn;Y1, . . . ,Yn) where k(·, ·) is the signature kernel:

T(X1, . . . ,Xn;Y1, . . . ,Yn) :=
1

n(n−1)

∑
i,j;i̸=j

k(Xi,Xj)− 2
n2

∑
i,j

k(Xi,Yj) +
1

n(n−1)

∑
i,j;i̸=j

k(Yi,Yj),

Then, given a confidence level α ∈ (0, 1), compute cα(n) := 4
√

−n−1 logα
(threshold). Generated paths are realistic with a confidence α if T2

n < cα(n).
Note how threshold depends on the number n of samples considered.

This base-case has been considered in “Signature-based validation of real-world
economic scenarios” [Andres, Boumezoued, Jourdain ’23] for n ̸= m.
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The Signature MMD as a Two-Sample Test
The aforementioned MMD has been one of the most-employed tools in this context.
However, only very few results are available on understanding how the signature kernel
MMD functions as a statistical tool.

Claim:

In this setting, robustification comes (in some parts) naturally through small sample
sizes of data:
▶ To demonstrate this, we will first revisit the signature-kernel two sample test in

[Chevyrev and Oberhauser ’18] as it illustrates well some of our claims.
▶ Though there were several further developments of related tests since then

(e.g. the kernel trick proposed in [Cass, Foster, Lyons, Salvi, Yang ’21]
and it’s higher rank version proposed in [H. Lemercier, Liu, Lyons, Salvi
’22] ) which we will later discuss from this aspect for MMD-tests using the
kernel-trick (1st and 2nd order) as well.
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The Signature MMD as a Two-Sample Test
The aforementioned MMD has been one of the most-employed tools in this context.
However, only few results are available on understanding the MMD as a statistical tool.
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The Signature MMD as a Two-Sample Test

Claim: In this setting, robustification comes (in some parts) naturally through small
sample sizes of data:
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Statistical power of test
“Signature-based validation of real-world economic scenarios” [A.B.J. ′23]
▶ numerical analysis with synthetic data in order to measure the statistical power
▶ then use it on historical data to study the ability of the test to discriminate

between models and demonstrate the potential of the MMD-based validation for
real-world economic scenarios and applications requiring to exhibit the consistency
of a stochastic model with historical paths

▶ consider an asymmetric setting n ̸= m in which a large (m) sample of simulated
real-world scenarios is compared to a small (n) sample of real/target data

▶ by performing specific transformations of the signature, we can reach statistical
powers close to 1 in this framework. However such transformations can have a
flip-side and are to be handled with care...(see later)

We also see challenges arising related to the numerical implementation, and limitations
in its domain of validity in terms of the distance between models and the volume of
data at hand.
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Path scalings and type II errors

1. In practice one works with empirical estimators Λk(P,Q) of the Sig-MMD d(P,Q)
with P = (X1, . . . ,XN),Xi ∼ P and Q = (Y1, . . . ,YM),Yj ∼ Q

2. The variance of these estimators Var(Λk(P,Q)) → 0 as N,M → ∞1.
3. However for fixed sample size N, especially in a low data environment, type II

error may occur. Lower order terms contribute more, meaning higher-order
dynamics are discounted (or truncated)

4. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing
the numerical size of higher-order signature terms.

5. Working with the signature kernel (??) via the kernel trick means that the original
(expected) signature EP[S(X)] is no longer recoverable (cannot scale signature
directly)

6. Solution: path scaling function σλ(X) = λX for some λ ∈ Rd

1We assume the population MMD is the sum of the (expected) level contributions.
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Path scalings and type II errors
1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing

the numerical size of higher-order signature terms.
2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of

the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.
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Path scalings and type II errors
1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing

the numerical size of higher-order signature terms.
2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of

the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.
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Path scalings and type II errors
1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing

the numerical size of higher-order signature terms.
2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of

the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.
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Path scalings and type II errors
1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing

the numerical size of higher-order signature terms.
2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of

the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.
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Path scalings and type II errors

1. Path scalings can help reduce the incidence of type II error for small batch sizes
⇒ Rejection of the paradigm “higher order terms can be ignored due to factorial
decay”: numerical size ̸= information value.

2. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.
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Path scalings and type II errors
1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing

the numerical size of higher-order signature terms.
2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of

the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different zoom settings on a camera.
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Path scalings and type II errors

1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing
the numerical size of higher-order signature terms.

2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of
the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.

Answer: May need multiple scalings for use-cases.
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Path scalings and type II errors

1. Since φ(x) = xk/k! is increasing in x, (larger) scaling has the effect of increasing
the numerical size of higher-order signature terms.

2. Can help reduce the incidence of type II error for small batch sizes ⇒ Rejection of
the paradigm “higher order terms can be ignored due to factorial decay”:
numerical size ̸= information value.

3. Issue: what is the (most) appropriate scaling to tell apart two different stochastic
proceses? Analogy: different resolutions / zoom settings on a camera.

Answer: May need multiple scalings for use-cases.
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Pricing (path dependent) payoffs with the help of the MMD

Typically (due to conditioning) 2nd-order MMD needed.

Issue:
Empirical estimate of 2nd-order MMD has a long run-time.
Computational limitations (batch size) due to memory considerations (e.g. 8GN
memory, paths of length=64, dim=2, size=128)
⇒ smaller samples in estimates ⇒ bigger variance.
Solution:
estimate simultaneously from multiple angles to sharpen perspective (estimate MMD
to several reference points/models):
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to several reference points/models):
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Empirical estimate of 2nd-order MMD has a long run-time.
Computational limitations (batch size) due to memory considerations (e.g. 8GN
memory, paths of length=64, dim=2, size=128)
⇒ smaller samples in estimates ⇒ bigger variance.
Solution:
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Pricing path dependent payoffs with the help of the MMD

Image: Andrew Alden
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Pricing path dependent payoffs with the help of the MMD

Image: Andrew Alden
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Pricing path dependent payoffs with the help of the MMD
The method has been (successfully) applied to price path dependent options2:
▶ Down-and-In Barrier Options
▶ Best-Call Rainbow Options
▶ Autocallable Options

Table: Andrew Alden

2in multidimensional classical (Heston, BS) and mixture model settings
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Pricing path dependent payoffs with the help of the MMD
The method has been (successfully) applied to price path dependent options2:
▶ Down-and-In Barrier Options
▶ Best-Call Rainbow Options
▶ Autocallable Options

Table: Andrew Alden
2in multidimensional classical (Heston, BS) and mixture model settings
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Introducing robustness into Deep Hedging/ Deep Trading with the help of the MMD
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Introducing robustness into DH/DT with the MMD

In the context hedging and trading strategies, the MMD can be helpful to introduce a
smooth ambiguity-aversion effect into the hedging / trading objective.
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Introducing robustness into DH/DT with the MMD
The original objective of a trading can be (most generally) given as

max(ξt)t∈[0,T]
E
[
U(VT)

]
, where VT =

d∑
m=1

∫ T

0
ξm

t dXm
t ,

where VT is the terminal profit and loss of our trading strategy.

To introduce
robustness in a feasible way, we need to extend the set of possible models (from P),
but restrict this to a permissible ambiguity set: Popular approaches to robustification
include allowing alternative models within a δ-ball Bδ(P) around P.

max(ξt)t∈[0,T]
minQ∈Bδ(P) E

Q
[
U(VT)

]
,

where–often–the viewpoint is taken that all alternative models Q ∈ Bδ(P) are equally
likely to materialize.
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max(ξt)t∈[0,T]
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]
, where VT =

d∑
m=1
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t dXm
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where VT is the terminal profit and loss of our trading strategy. To introduce
robustness in a feasible way, we need to extend the set of possible models (from P),
but restrict this to a permissible ambiguity set: Popular approaches to robustification
include allowing alternative models within a δ-ball Bδ(P) around P.

max(ξt)t∈[0,T]
minQ∈Bδ(P) E

Q
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U(VT)
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,

where–often–the viewpoint is taken that all alternative models Q ∈ Bδ(P) are equally
likely to materialize.
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Introducing robustness into DH/DT with the MMD
The original objective of a trading can be (most generally) given as

max(ξt)t∈[0,T]
E
[
U(VT)

]
, where VT =

d∑
m=1

∫ T

0
ξm

t dXm
t ,

where VT is the terminal profit and loss of our trading strategy. To introduce
robustness in a feasible way, we need to extend the set of possible models (from P),
but restrict this to a permissible ambiguity set.
Our approach to robustification: In the context of deriving (robust) optimal trading
strategies, the MMD is helpful to introduce a smoother version of model ambiguity

max(ξt)t∈[0,T]
minQ∈Q EQ

{
U(VT) +

1
ηd(P,Q)

}
,

where d(P,Q) denotes the distance of the alternative model Q ∈ Q to our reference
model P and 1

η is a scaling parameter representing the investor’s aversion to model
ambiguity.

Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.
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Introducing robustness into DH/DT with the MMD
The original objective of a trading can be (most generally) given as

max(ξt)t∈[0,T]
E
[
U(VT)

]
, where VT =

d∑
m=1

∫ T

0
ξm

t dXm
t ,

where VT is the terminal profit and loss of our trading strategy. To introduce
robustness in a feasible way, we need to extend the set of possible models (from P),
but restrict this to a permissible ambiguity set.
Our approach to robustification: In the context of deriving (robust) optimal trading
strategies, the MMD is helpful to introduce a smoother version of model ambiguity

max(ξt)t∈[0,T]
minQ∈Q EQ

{
U(VT) +

1
ηd(P,Q)

}
,

where d(P,Q) denotes the distance of the alternative model Q ∈ Q to our reference
model P and 1

η is a scaling parameter representing the investor’s aversion to model
ambiguity. Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.
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Introducing robustness into DH/DT with the MMD
The methodology works similarly in the (automated) derivation of robust hedging
strategies. The original (discretized) setup is to find a strategy ϕ that maximizes

UQ
( N∑

n=1
ϕ⊺

tn−1∆SP
tn − CT

)
,

where UP ≡ EP[U(·)] for some utility function U : R → R (or in fact R[U(·)], for some
convex risk measure R) qnd CT denotes the payoff of the contingent claim.

We again
consider its robustification as an optimization problem with smooth ambiguity
aversion, where α : P → R represents the belief that the agent has in any P ∈ P .

infQ∈QUQ
( N∑

n=1
ϕ⊺

tn−1∆SQ
tn − CT

)
+ α(Q). (1)

The penalty can be represented as α(P) := γ d(P,Q), where d : P2 → R+ with P
being the reference model and γ ∈ R+ the sensitivity (aversion) to model ambiguity. It
can be chosen the Sig-MMD as a model agnostic distance on pathspace.
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The methodology works similarly in the (automated) derivation of robust hedging
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)
,

where UP ≡ EP[U(·)] for some utility function U : R → R (or in fact R[U(·)], for some
convex risk measure R) qnd CT denotes the payoff of the contingent claim. We again
consider its robustification as an optimization problem with smooth ambiguity
aversion, where α : P → R represents the belief that the agent has in any P ∈ P .

infQ∈QUQ
( N∑

n=1
ϕ⊺

tn−1∆SQ
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)
+ α(Q). (1)

The penalty can be represented as α(P) := γ d(P,Q), where d : P2 → R+ with P
being the reference model and γ ∈ R+ the sensitivity (aversion) to model ambiguity. It
can be chosen the Sig-MMD as a model agnostic distance on pathspace.
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Robust Hedging GANs

▶ In classical optimisation, the standard optimal strategy is obtained when the agent
maximises its (expected) utility based on the assumption that its model
description is correct.

▶ However, if the agent is uncertain about which of the possible models is realised
one approach (worst-case approach) is to assume that mother nature picks the
worst-case model among a set of plausible models, whereafter the agent
maximises the (expected) utility given this worst-case model.

▶ This lends itself well to a GAN (Generative Adversarial Network) setting:
Though the roles of Generator, Discriminator are slightly modified, compared to
the standard GAN setting: Generator = Mother nature (adversarial) and
Discriminator = hedger (robustified).
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worst-case model among a set of plausible models, whereafter the agent
maximises the (expected) utility given this worst-case model.

▶ This lends itself well to a GAN (Generative Adversarial Network) setting:
Though the roles of Generator, Discriminator are slightly modified, compared to
the standard GAN setting: Generator = Mother nature (adversarial) and
Discriminator = hedger (robustified).
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Structure

Image: Yannick Limmer
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Experiments

Image: Yannick Limmer
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Our approach to introducing robustness into DH/DT with
the MMD

Our approach to robustification: In the context of deriving (robust) trading/hedging
strategies, the MMD is helpful to introduce a smoother version of model ambiguity

▶ Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.
▶ Permits a fully model agnostic approach.
▶ This problem can quickly become a challenge for reasonable general underlying

dynamics X. In special cases benchmark solutions and asymptotic results for
generalisations exist.

▶ A combination of a pathwise perspective and an adversarial (GAN) approach is
helpful in obtaining (candidte) optimizers, which were out of the reach of our
traditional techniques.
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Our approach to robustification: In the context of deriving (robust) trading/hedging
strategies, the MMD is helpful to introduce a smoother version of model ambiguity
▶ Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.
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dynamics X. In special cases benchmark solutions and asymptotic results for
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▶ A combination of a pathwise perspective and an adversarial (GAN) approach is
helpful in obtaining (candidte) optimizers, which were out of the reach of our
traditional techniques.
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Our approach to introducing robustness into DH/DT with
the MMD

Our approach to robustification: In the context of deriving (robust) trading/hedging
strategies, the MMD is helpful to introduce a smoother version of model ambiguity
▶ Taking d(·, ·) as the Sig-MMD allows to take a fully pathwise perspective.
▶ Permits a fully model agnostic approach.
▶ This problem can quickly become a challenge for reasonable general underlying

dynamics X. In special cases benchmark solutions and asymptotic results for
generalisations exist.

▶ A combination of a pathwise perspective and an adversarial (GAN) approach is
helpful in obtaining (candidte) optimizers, which were out of the reach of our
traditional techniques.
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Thank you for your attention!
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Experiments
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Now really thank you for your attention!
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Mathematical Appendix and Background (Rough)
Paths-wise Approach

Levin, Lyons, & Ni. (2013) proposed the signature of a path as a basis of functions for a
functional on path space.

Definition (Signature of a path)
Let X : [0,T] → Rd be a continuous path of bounded variation. The signature of X is then
defined by the sequence of iterated integrals given by

X<∞
T := (1,X1

t , . . . ,Xn
T, . . .), where

Xn
T :=

∫
0<u1<...<uk<T

dXu1 ⊗ . . .⊗ dXuk ∈ (Rd)⊗n

with ⊗ the tensor product. Similarly, given N ∈ N, the truncated signature of order N is
defined by

X≤N
T := (1,X1

T, . . . ,XN
T).

The path X has b.v. (discrete data) ⇒ the integrals can be defined i.s.o. Riemann-Stieltjes.
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Mathematical Appendix and Background

We work with the log-signatures (Liao, Lyons, Ni, Yang (2019))

Definition (Log-signature)
Let X : [0,T] → Rd be a path such that its signature X<∞

0,T is well-defined. The
log-signature is then defined by

logX<∞
T := −X<∞

T +
1
2(X

<∞
T )⊗2 − 1

3(X
<∞
T )⊗3 + . . .+ (−1)n 1

n(X
<∞
T )⊗n + . . . ,

which can be shown to be well-defined.

▶ There is a one-to-one map between signatures and log-signatures.
▶ Log-signatures have all positive properties listed above.
▶ They allow for lower dimensional representation and are better suited to VAE.


