Volatility Is (Mostly) Path-Dependent

Julien Guyon

Ecole des Ponts ParisTech

Joint work with Jordan Lekeufack University of California, Berkeley, Department of Statistics

Quantitative Finance conference in honor of Michael Dempster's 85th birthday Cambridge, April 12, 2023

julien.guyon@enpc.fr

Outline

- Why Path-Dependent Volatility (PDV)?
- 2 Is Volatility Path-Dependent? How much? How?
- 3 Continuous-time Markovian extension: the 4-Factor PDV model

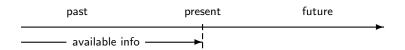
Path-Dependent Volatility

$$\frac{dS_t}{S_t} = \sigma(S_u, u \le t) \, dW_t$$

- Zero rates, repos, dividends for simplicity
- Volatility drives the dynamics of the asset price S
- Feedback loop from prices to volatility
- Pure feedback model: volatility is an **endogenous** factor
- Main references:
 - Econometrics:
 The whole GARCH literature
 - Derivatives research (macro, pricing models, calibration): Hobson-Rogers '98, JG '14
 - Econophysics (micro, statistical models):
 Zumbach '09-10, Chicheportiche-Bouchaud '14, Blanc-Donier-Bouchaud '16
 - Recent models with a PDV component: Gatheral-Jusselin-Rosenbaum '20. Parent '22

Why Path-Dependent Volatility?

A philosophical argument



- The arrow of time
- Markovian assumption: the future depends on the past only through the present
- Often made just for simplicity and ease of computation, not a fundamental property
- Example: assume that the price of an option depends only on current time t and current asset price S_t : $P(t, S_t)$
- In fact, often, the present does not capture all information from the past $\longrightarrow P(t, (S_u, u \le t))$

An intuitive argument: a simple quizz

	April 12, 2023	April 12, 2024
SPX	4,000	5,400
VIX		?

 $\bullet\ 5,400$

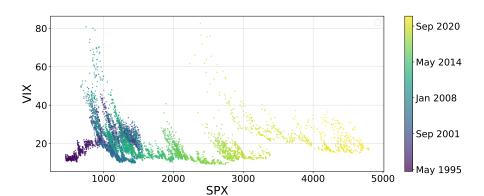
An intuitive argument: a simple quizz

	April 12, 2023	March 12, 2024	April 12, 2024
SPX	4,000	6,000	5,400
VIX			?

 $6,000 \circ$

 $\bullet 5,400 \\$

An intuitive argument: a simple quizz



A financial and scaling argument

- The two basic quantities that possess a natural scale are the volatility levels and the asset returns
- A good model should relate these two quantities: Path-dependent volatility

	volatility	depends on	asset
LV	level		level
SV	returns		returns
PDV	level		returns

Path-dependent volatility vs Stochastic volatility

$$\begin{split} \frac{dS_t}{S_t} &= \sigma_t \, dW_t, \qquad \sigma_t = f(t, Y_t) \\ dY_t &= \mu(t, Y_t) \, dt + \nu(t, Y_t) \left(\rho \, dW_t + \sqrt{1 - \rho^2} \, dW_t^{\perp} \right) \\ Y_t &= Y_0 + \int_0^t \mu(u, Y_u) \, du + \int_0^t \nu(u, Y_u) \left(\rho \, \frac{1}{f(u, Y_u)} \, \frac{dS_u}{S_u} + \sqrt{1 - \rho^2} \, dW_u^{\perp} \right) \end{split}$$

- ho = 0: SV is strictly path-independent
 - The asset price is a slave process with absolutely no feedback on volatility:

$$\sigma_t = \varphi(t, (dW_u^{\perp})_{0 \le u \le t}) = \psi(t, (W_u^{\perp})_{0 \le u \le t})$$

- $ho \notin \{-1,0,1\}$: SV is partially path-dependent
 - Partial feedback from asset price to volatility through spot-vol correl(s):

$$\sigma_t = \varphi\left(t, \left(\frac{dS_u}{S_u}\right)_{0 \le u \le t}, \left(dW_u^{\perp}\right)_{0 \le u \le t}\right) = \psi\left(t, (S_u)_{0 \le u \le t}, \left(W_u^{\perp}\right)_{0 \le u \le t}\right)$$

- $\rho = \pm 1$: SV is fully path-dependent
 - Pure feedback but path-dependence φ, ψ is complicated, implicit:

$$\sigma_t = \varphi\left(t, \left(\frac{dS_u}{S_u}\right)_{0 \le u \le t}\right) = \psi(t, (S_u)_{0 \le u \le t})$$

The joint calibration of classical parametric SV models to SPX and VIX smiles leads to

- Very large vol of vol
- Very large mean-reversions (several time scales)
- Correlations = ± 1 \Longrightarrow Path-dependent volatility

See:

- Inversion of Convex Ordering in the VIX Market (JG, Quantitative Finance, '20)
- The VIX Future in Bergomi Models: Fast Approximation Formulas and Joint Calibration with S&P 500 Skew (JG, SIAM Journal on Financial Mathematics, '22)

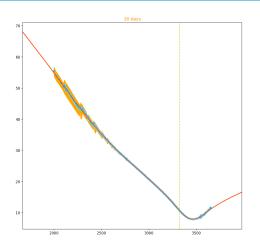


Figure: SPX smile as of January 22, 2020, $T=30~{\rm days}$

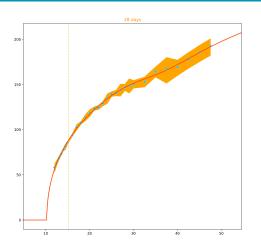


Figure: VIX smile as of January 22, 2020, T=28 days

ATM skew:

Definition:
$$\mathcal{S}_T = \frac{d\sigma_{\mathrm{BS}}(K,T)}{\frac{dK}{K}}\Big|_{K=F_T}$$
 SPX, small T : $\mathcal{S}_T \approx -1.5$

SPX, small
$$T$$
: \mathcal{S}_T $pprox$ -1.5

Classical one-factor SV model:
$$\mathcal{S}_T \xrightarrow[T \to 0]{} \frac{1}{2} \times \text{spot-vol correl} \times \text{vol of vol}$$

■ Calibration to short-term ATM SPX skew ⇒

vol of vol
$$\geq 3 = 300\% \gg$$
 short-term ATM VIX implied vol

- ⇒ Use
 - very large vol of vol
 - very large mean-reversion(s) (so that VIX implied vol ≪ vol of vol)
 - -1 spot-vol correlation(s)

 $S_0 \approx -1.5$: see Does the Term-Structure of Equity At-the-Money Skew Really Follow a Power Law? (El Amrani and JG, '22)

An information-theoretical/financial economics argument

- Contrary to SV models, PDV models do not require adding extra sources
 of randomness to generate rich spot-vol dynamics: they explain volatility
 in a purely endogenous way.
- Unlike SV models, PDV models are complete models: derivatives have a unique, unambiguous price, independent of any preferences or utility functions.
- All the information exchanged by market participants is recorded in the underlying asset prices, not just in current prices, but in the history of all past prices.
- Reality is a bit more complex, but we will show that it is actually quite close to this, so it makes sense to start building a model by extracting all the information that past asset prices contain about volatility.

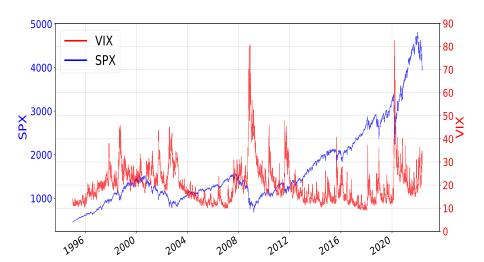
Path-dependent volatility is generic for option pricing

- All SV models have an equivalent PDV model in the sense that all path-dependent options (not only vanilla options) written on the underlying asset have the same prices in both models.
- Brunick and Shreve '13: Given a general Itô process $dS_t = \sigma_t S_t \, dW_t$, there exists a PDV model $d\hat{S}_t = \sigma(t, (\hat{S}_u)_{u \le t}) \hat{S}_t \, d\hat{W}_t$ s.t. the distributions of the **processes** $(S_t)_{t > 0}$ and $(\hat{S}_t)_{t > 0}$ are equal:

$$\sigma(t, (S_u)_{u \le t})^2 = \mathbb{E}[\sigma_t^2 | (S_u)_{u \le t}]$$

■ ⇒ The law of a price process $(S_t)_{t\geq 0}$ produced by any SV or stochastic local volatility (SLV) model can be exactly reproduced by a PDV model.

Empirical evidence



Empirical evidence

- Much of the GARCH literature
- Time reversal asymmetry in finance: Zumbach-Lynch '01, Zumbach '09, Chicheportiche-Bouchaud '14...: "Financial time series are not statistically symmetrical when past and future are interchanged" (BDB '16)
- Leverage effect:
 - "Past returns affect (negatively) future realized volatilities, but not the other way round" (BDB '16)
 - lacksquare t o -t and r o -r asymmetry
- ZL '01: time reversal asymmetry even in absence of leverage effect:
 - Weak Zumbach effect: "Past large-scale realized volatilities are more correlated with future small-scale realized volatilities than vice versa" (BDB '16). Most easily captured by PDV models.
 - lacktriangledown t o -t asymmetry, but r o -r symmetry
- Strong Zumbach effect: "Conditional dynamics of volatility with respect to the past depend not only on past volatility trajectory but also on the historical price path" (GJR '20) ← There is some price-path-dependency in the volatility dynamics

Empirical evidence

Our Machine Learning approach confirms those findings and moreover answer two crucial questions:

- How exactly does volatility depend on past price returns (price trends and past squared returns)?
- How much of volatility is path-dependent, i.e., purely endogenous?

That is, explain volatility as an endogenous factor as best as we can, empirically.

Objectives

(1) Learn path-dependent volatility empirically

- Learn how much of volatility is path-dependent, and how it depends on past asset returns.
- Empirical study: learn implied volatility (VIX) and future Realized Volatility (RV) from SPX path [+ other equity indexes].
- Historical PDV or Empirical PDV or P-PDV.

(2) Build continuous-time Markovian version of empirical PDV model

- Extremely realistic sample paths + SPX and VIX smiles.
- (3) Jointly calibrate Model (2) to SPX and VIX smiles
 - Modify parameters of historical PDV model to fit market smiles: $\mathbb{P} \neq \mathbb{Q}$.
 - Implied PDV or Risk-neutral PDV or □-PDV.
- (4) Add SV to account for the (small) exogenous part: PDSV
 - SV component built from the analysis of residuals $\frac{\text{true vol}}{\text{predicted PDV vol}} \approx 1$.

Is Volatility Path-Dependent?

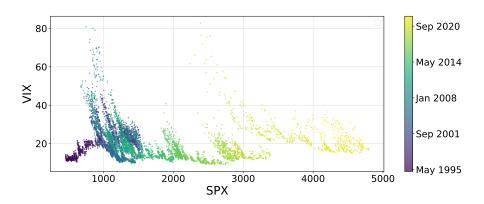
Is volatility path-dependent? A Machine Learning approach

- Objective: learn from data how much the volatility level depends on past asset returns.
- Learn Volatility (VIX or RV) from SPX path:

$$Volatility_t = f(S_u, u \le t) + \varepsilon$$

- → Historical PDV / Empirical PDV / P-PDV
- Feature engineering: find relevant SPX path features.
- lacktriangle Try various models: various sets of features and parametric forms for $f_{ heta}$.
- Select the one(s) with the best validation score.
- Check how the models perform on the test set.
- Training set: 2000–18; test set: 2019–22.
- A very challenging test set! Due to the Covid-19 pandemic, the test set includes very different volatility regimes
- As a result of this analysis, we propose a new, simple PDV model that performs better than existing models.

Feature engineering



Price path features should be scale-invariant

Feature engineering

[1] Trend features

- to learn the leverage effect
- most important example: a weighted sum of past daily returns

$$R_{1,t}:=\sum_{t_i\leq t}K_1(t-t_i)\,r_{t_i}, \qquad r_{t_i}:=rac{S_{t_i}-S_{t_{i-1}}}{S_{t_{i-1}}}\quad ext{(scale invariance)}$$

• K_1 : convolution kernel that typically decreases towards zero; the impact of a given daily return fades away over time

[2] Activity (volatility) features (regardless of trend)

- to learn volatility clustering
- most important example: a weighted sum of past squared daily returns

$$R_{2,t} := \sum_{t_i \le t} K_2(t - t_i) \, r_{t_i}^2$$

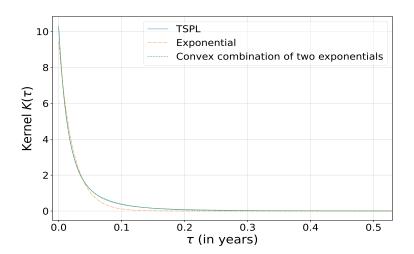
• K_2 -weighted historical volatility: $\Sigma_t := \sqrt{R_{2,t}}$

Our model

$$Volatility_t = \beta_0 + \beta_1 R_{1,t} + \beta_2 \Sigma_t$$

- Volatility_t denotes either some implied volatility (e.g., the VIX) observed at t, or the future realized volatility RV_t (realized over day "t + 1").
- Leverage effect: $\beta_1 < 0$.
- Volatility clustering, like in GARCH models: $\beta_2 \in (0,1)$.
- Importantly, both factors $R_{1,t}$ and Σ_t are needed to satisfactorily explain the volatility.
- We find that a simple linear model does the job, explaining a very large part of the variability observed in the volatility.

Kernels



Kernels

- The two kernels K_1 and K_2 are distinct
- Multivariate lasso \Longrightarrow both K_1 and K_2 mix short and long memory
- Choice 1: time-shifted power laws (TSPL, 2 params):

$$K(\tau) = K_{\alpha,\delta}(\tau) := Z_{\alpha,\delta}^{-1}(\tau+\delta)^{-\alpha}, \qquad \alpha > 1, \ \delta > 0$$

- The time shift δ means that $K_{\alpha,\delta}(\tau)$ may not blow up when the lag τ vanishes.
- If we force $\delta=0$, we recover the power-law kernel of rough volatility models. However, fitting to data yields **positive** δ (one to a few weeks).
- The power law aggregates the various time horizons of investors.
- Choice 2: convex combinations of 2 exponentials (2-EXP, 3 params):

$$K(\tau) = K_{\lambda_0, \lambda_1, \theta}(\tau) := (1 - \theta)\lambda_0 e^{-\lambda_0 \tau} + \theta \lambda_1 e^{-\lambda_1 \tau}, \qquad \lambda_0 > \lambda_1 > 0, \ \theta \in [0, 1]$$

Similar models

QARCH (Sentana '95):

$$\mathsf{Volatility}_{t}^{2} = \beta_{0} + \beta_{1} R_{1,t} + \beta_{2} R_{2,t}^{\mathsf{Q}}, \qquad R_{2,t}^{\mathsf{Q}} := \sum_{t_{i},t_{j} \leq t} K_{2}^{\mathsf{Q}}(t-t_{i},t-t_{j}) \, r_{t_{i}} r_{t_{j}}$$

■ Diagonal QARCH model (CB '14, $K_2(\tau) := K_2^{\mathsf{Q}}(\tau, \tau)$):

$$Volatility_t^2 = \beta_0 + \beta_1 R_{1,t} + \beta_2 R_{2,t}$$
(M1)

ZHawkes process (BDB '16):

Volatility_t² =
$$\beta_0 + \beta_1 R_{1,t}^2 + \beta_2 R_{2,t}$$
 (M2)

■ Discrete-time version of the quadratic rough Heston model (GJR '20, $\theta_0 = 0$):

Volatility_t² =
$$\beta_0 + \beta_1 (R_{1,t} - \beta_2)^2$$
 (M3)

with Mittag-Leffler kernel K_1 .

■ Discrete-time version of the threshold EWMA Heston model (Parent '21):

$$Volatility_t = \beta_0 + \beta_1(\beta_2 - R_{1,t})_+ \tag{M4}$$

with K_1 an exponential kernel, $K_1(\tau) = \lambda e^{-\lambda \tau}$.

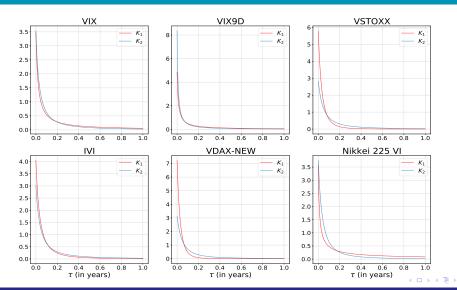
Our model differs in several ways

- Models (M1)-(M3), like almost all ARCH models, model the square of the volatility, the variance. Instead, we directly model the volatility itself.
- **2** We use the square root Σ_t of $R_{2,t}$ rather than $R_{2,t}$ itself as one of the linear factors.
- As a consequence, all the terms in our linear model are homogeneous to a volatility (or asset return), whereas (M1) and (M3) mix heterogeneous linear factors in volatility and variance (or return and squared return), and all the terms in the linear model (M2) are homogeneous to a variance.
- We use new, explicit parametric forms for the kernels K_1 and K_2 , capturing non-blowing-up power-law-like decays.
- **■** Compared with (M3) and (M4), we empirically prove the importance of including the historical volatility factor Σ_t .
- © Compared with (M2), we argue that it is **not necessary to include a quadratic factor** $R_{1,t}^2$, as the quadratic-like dependence of the volatility (resp. variance) on $R_{1,t}$ is already captured by the factor Σ_t (resp. $R_{2,t}$).

$$\begin{split} \text{Volatility}_t &= \beta_0 + \beta_1 R_{1,t} + \beta_2 \sqrt{R_{2,t}} \\ K_1(\tau) &\sim (\tau + \delta_1)^{-\alpha_1} \\ K_2(\tau) &\sim (\tau + \delta_2)^{-\alpha_2} \end{split}$$

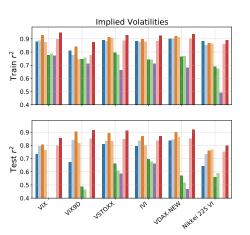
	β_0	α_1	δ_1	β_1	α_2	δ_2	β_2
VIX	0.057	1.06	0.020	-0.095	1.60	0.052	0.82
VIX9D	0.045	1.00	0.011	-0.12	1.25	0.011	0.88
VSTOXX	0.032	3.96	0.13	-0.036	1.90	0.089	0.97
IVI	0.022	2.26	0.081	-0.058	1.6	0.063	0.99
VDAX-NEW	0.036	5.54	0.16	-0.024	2.21	0.103	0.92
Nikkei 225 VI	0.055	0.78	0.008	-0.069	2.09	0.077	0.86

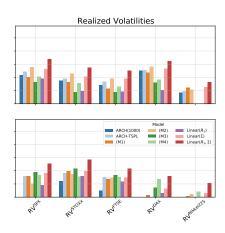
Table: Optimal parameters of our model for various implied volatility indexes

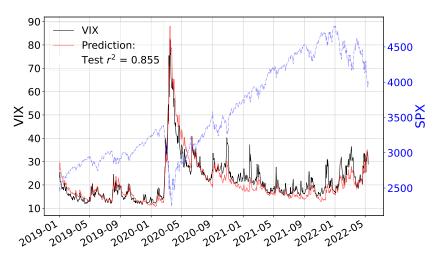


	Tra	in	Test		
	RMSE	r^2	RMSE	r^2	
VIX	0.020	0.946	0.035	0.855	
VIX9D	0.023	0.876	0.034	0.914	
VSTOXX	0.026	0.929	0.029	0.913	
IVI	0.023	0.925	0.030	0.870	
VDAX-NEW	0.025	0.934	0.027	0.918	
Nikkei 225 VI	0.030	0.890	0.031	0.800	

Table: RMSE and r^2 scores for our model for various implied volatility indexes







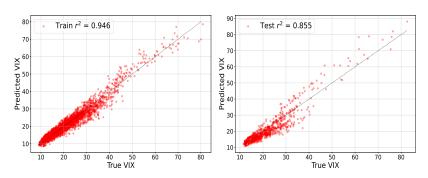
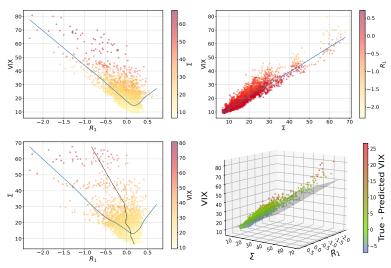


Figure: Predicted VIX vs true VIX on train/test set.



Results: Implied volatility

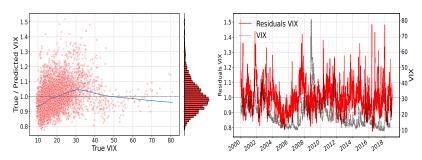
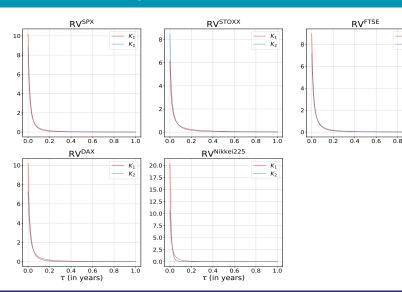


Figure: Residuals plots for VIX predictions

$$\begin{split} \text{Volatility}_t &= \beta_0 + \beta_1 R_{1,t} + \beta_2 \sqrt{R_{2,t}} \\ &K_1(\tau) \sim (\tau + \delta_1)^{-\alpha_1} \\ &K_2(\tau) \sim (\tau + \delta_2)^{-\alpha_2} \end{split}$$

	β_0	α_1	δ_1	β_1	α_2	δ_2	β_2
SPX	0.018	2.82	0.044	-0.042	1.86	0.025	0.71
STOXX	0.023	1.31	0.017	-0.062	1.79	0.024	0.70
FTSE	0.017	2.22	0.034	-0.043	1.84	0.031	0.76
DAX	0.001	2.87	0.045	-0.030	1.80	0.029	0.81
NIKKEI	0.032	6.30	0.063	-0.011	2.30	0.030	0.51

Table: Optimal parameters of our model for the daily realized volatility of various indexes

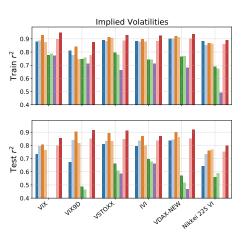


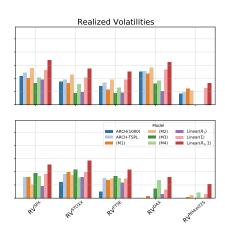
 K_1

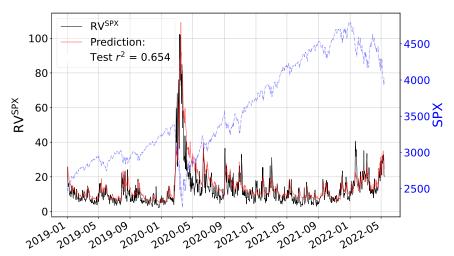
1.0

	Tra	in	Test			
	RMSE	r^2	RMSE	r^2		
SPX	0.049	0.738	0.063	0.654		
STOXX	0.060	0.672	0.064	0.682		
FTSE 100	0.055	0.650	0.066	0.617		
DAX	0.057	0.722	0.059	0.557		
NIKKEI	0.051	0.563	0.051	0.504		

Table: RMSE and $\ensuremath{r^2}$ scores for our model for the daily realized volatility of various indexes







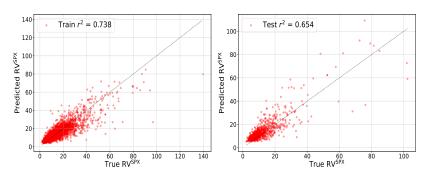
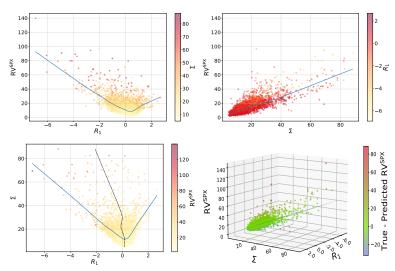


Figure: Predicted VIX vs true VIX on train/test set.



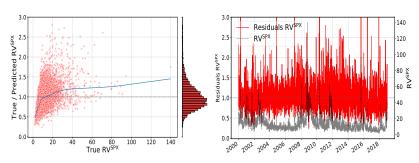
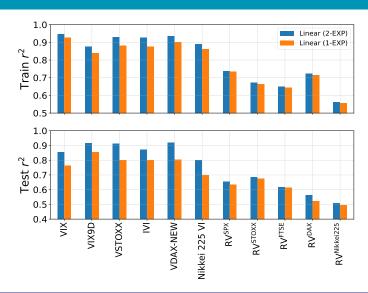
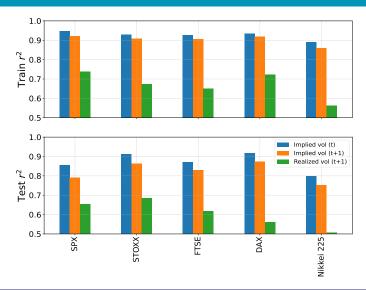


Figure: Residuals plots for RV^{SPX} predictions

Results: 2-EXP vs 1-EXP



Results: Prediction of next-day implied volatility



The 4-Factor Path-Dependent Volatility Model

The Continuous-Time Empirical Path-Dependent Volatility Model

We now consider the **continuous-time limit** of our empirical PDV model, where we identify Volatility_t as the instantaneous volatility σ_t :

$$\frac{dS_t}{S_t} = \sigma_t dW_t,
\sigma_t = \sigma(R_{1,t}, R_{2,t})
\sigma(R_1, R_2) = \beta_0 + \beta_1 R_1 + \beta_2 \sqrt{R_2}
R_{1,t} = \int_{-\infty}^t K_1(t-u) \frac{dS_u}{S_u} = \int_{-\infty}^t K_1(t-u) \sigma_u dW_u,
R_{2,t} = \int_{-\infty}^t K_2(t-u) \left(\frac{dS_u}{S_u}\right)^2 = \int_{-\infty}^t K_2(t-u) \sigma_u^2 du.$$
(1)

The dynamics of $R_{1,t}$ and $R_{2,t}$ are in general non-Markovian

A (too) simple Markovian approximation: the 2-Factor PDV model

- The simplest kernels yielding a Markovian model are the (normalized) exponential kernels $K_1(\tau) := \lambda_1 e^{-\lambda_1 \tau}$ and $K_2(\tau) := \lambda_2 e^{-\lambda_2 \tau}$, $\lambda_1, \lambda_2 > 0$.
- Both $(R_{1,t}, R_{2,t})$ and $(S_t, R_{1,t}, R_{2,t})$ have Markovian dynamics:

$$\begin{split} \frac{dS_t}{S_t} &= \sigma(R_{1,t}, R_{2,t}) \, dW_t, \qquad \sigma(R_1, R_2) &= \beta_0 + \beta_1 R_1 + \beta_2 \sqrt{R_2}, \\ dR_{1,t} &= \lambda_1 \left(\frac{dS_t}{S_t} - R_{1,t} \, dt \right) &= \lambda_1 \left(\sigma(R_{1,t}, R_{2,t}) \, dW_t - R_{1,t} \, dt \right), \\ dR_{2,t} &= \lambda_2 \left(\left(\frac{dS_t}{S_t} \right)^2 - R_{2,t} \, dt \right) &= \lambda_2 \left(\sigma(R_{1,t}, R_{2,t})^2 - R_{2,t} \right) dt. \end{split}$$

■ We call this model the **2-Factor PDV model** (2FPDV model).

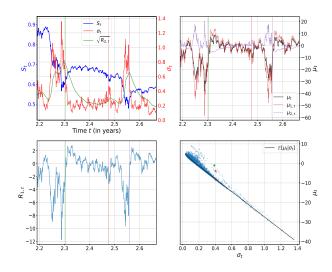
The 2-Factor PDV model

 \blacksquare Dynamics of the volatility $\sigma_t = \beta_0 + \beta_1 R_{1,t} + \beta_2 \sqrt{R_{2,t}}$ reads

$$d\sigma_t = \left(-\beta_1 \lambda_1 R_{1,t} + \frac{\beta_2 \lambda_2}{2} \frac{\sigma_t^2 - R_{2,t}}{\sqrt{R_{2,t}}}\right) dt + \beta_1 \lambda_1 \sigma_t dW_t.$$
 (2)

- Constant instantaneous vol of instantaneous vol but rich drift.
- Volatility clustering via mean-reversion + explanation for mean-reversion.
- Price-path-dependence of volatility dynamics: **strong Zumbach effect**.
- Nonnegativity of volatility guaranteed if $\lambda_2 < 2\lambda_1$.

Drift of the instantaneous volatility in the 2-factor PDV model



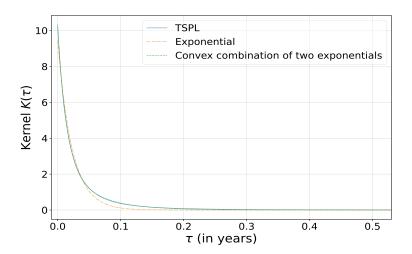
A better Markovian approximation: the 4-Factor PDV model

- Choosing K₁ and K₂ to be single exponential kernels fails to capture the mix of short and long memory in both R₁ and R₂ observed in the data.
- We capture this mix of short and long memory in a Markovian way by choosing K_1 and K_2 to be convex combinations of two exponential kernels

$$\tau \mapsto (1-\theta)\lambda_0 e^{-\lambda_0 \tau} + \theta \lambda_1 e^{-\lambda_1 \tau}, \qquad \lambda_0 > \lambda_1 > 0, \quad \theta \in [0,1].$$

- Short memory: large λ_0 .
- Long memory: small λ_1 .
- \blacksquare θ is a mixing factor.

TSPL vs convex combination of two exponentials



The 4-Factor PDV model

- Introduce parameters $\theta_1, \lambda_{1,0}, \lambda_{1,1}$ and $\theta_2, \lambda_{2,0}, \lambda_{2,1}$ for kernels K_1, K_2
- For $n \in \{1, 2\}$ and $j \in \{0, 1\}$, denote

$$R_{n,j,t} := \int_{-\infty}^{t} \lambda_{n,j} e^{-\lambda_{n,j}(t-u)} \left(\frac{dS_u}{S_u}\right)^n$$

• $(R_{1,0,t}, R_{1,1,t}, R_{2,0,t}, R_{2,1,t})$ has Markovian dynamics:

$$\frac{dS_t}{S_t} = \sigma_t dW_t
\sigma_t = \sigma(R_{1,t}, R_{2,t})
\sigma(R_1, R_2) = \beta_0 + \beta_1 R_1 + \beta_2 \sqrt{R_2}
R_{1,t} = (1 - \theta_1) R_{1,0,t} + \theta_1 R_{1,1,t}
R_{2,t} = (1 - \theta_2) R_{2,0,t} + \theta_2 R_{2,1,t}
dR_{1,j,t} = \lambda_{1,j} \left(\frac{dS_t}{S_t} - R_{1,j,t} dt\right) = \lambda_{1,j} \left(\sigma(R_{1,t}, R_{2,t}) dW_t - R_{1,j,t} dt\right)
dR_{2,j,t} = \lambda_{2,j} \left(\left(\frac{dS_t}{S_t}\right)^2 - R_{2,j,t} dt\right) = \lambda_{2,j} \left(\sigma(R_{1,t}, R_{2,t})^2 - R_{2,j,t}\right) dt$$

The 4-Factor PDV model

The dynamics of the instantaneous volatility reads

$$d\sigma_t = \left(-\beta_1 \bar{\lambda}_1 \bar{R}_{1,t} + \frac{\beta_2 \bar{\lambda}_2}{2} \frac{\sigma_t^2 - \bar{R}_{2,t}}{\sqrt{R_{2,t}}}\right) dt + \beta_1 \bar{\lambda}_1 \sigma_t dW_t$$
$$\bar{\lambda}_n := (1 - \theta_n) \lambda_{n,0} + \theta_n \lambda_{n,1},$$
$$\bar{R}_{n,t} := \frac{(1 - \theta_n) \lambda_{n,0} R_{n,0,t} + \theta_n \lambda_{n,1} R_{n,1,t}}{\bar{\lambda}_n}.$$

- The drift of σ_t produces volatility clustering via a clear trend of mean reversion of volatility.
- The lognormal volatility of σ_t is constant.
- The dynamics of (σ_t) are price-path-dependent: the drift of σ_t cannot be written as a function of just the past values $(\sigma_u)_{u \le t}$ of the volatility; it depends on the past asset returns through $R_{1,0,t}$ and $R_{1,1,t}$.

The 4-Factor PDV model: drift of the volatility

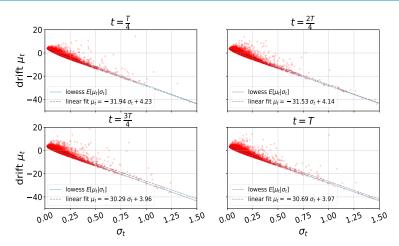


Figure: Drift of σ_t vs σ_t for different maturities and for N=10k paths, T=1 year.

The 4-Factor PDV model: sample paths

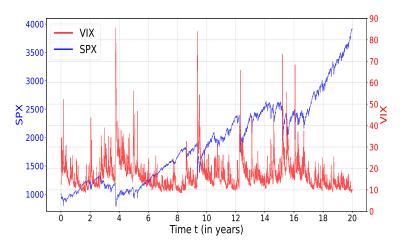
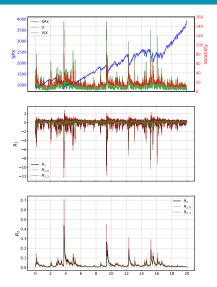
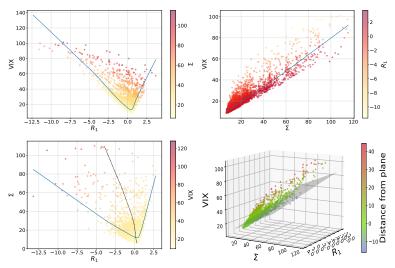


Figure: SPX and VIX time series on a typical path of 20 years.

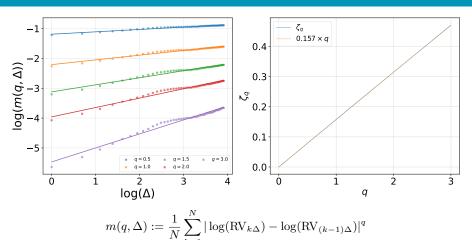
The 4-Factor PDV model: sample paths



The 4-Factor PDV model: scatter plots, implied volatility

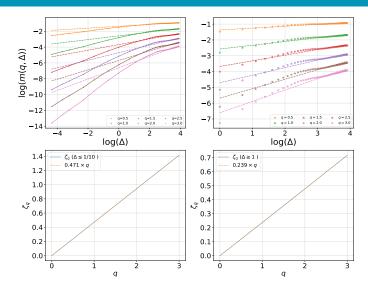


The 4-Factor PDV model: spurious roughness

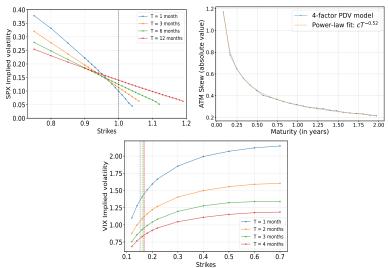


4FPDV model reproduces the "roughness" observed in data ($\hat{H} \simeq 0.15$) 4FPDV model is Markovian (not rough), very easy and fast to simulate

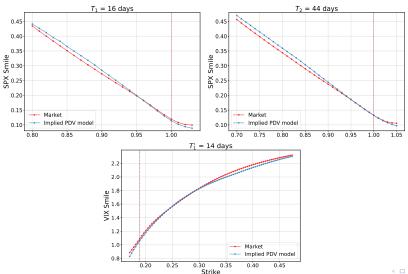
The 4-Factor PDV model: spurious roughness, $RV_{k\Delta} \rightarrow \sigma_{k\Delta}$



The 4-Factor PDV model: very realistic smiles



The 4-Factor PDV model: joint SPX/VIX calibration (June 2, 2021)



The 4-Factor PDV model: various sets of parameters

	β_0	β_1	$\beta_{1,2}$	$\lambda_{1,0}$	$\lambda_{1,1}$	θ_1	β_2	$\lambda_{2,0}$	$\lambda_{2,1}$	θ_2
Empirical study RV SPX	0.020	-0.054	_	64.5	3.83	0.67	0.67	37.6	1.2	0.20
Empirical study RV STOXX	0.027	-0.062	_	57.1	2.3	0.67	0.66	34.8	1.6	0.2
Realistic sample paths	0.04	-0.11	_	55	10	0.25	0.65	20	3	0.5
Implied SPX/VIX	0.006	-0.157	0.078	70	30.5	0.21	0.683	10.6	5.2	0.7

Conclusion

- Volatility is (mostly) path-dependent, endogenous: it is very well explained by recent past asset returns only
- A very simple path-dependent volatility model accurately explains the current VIX or future daily RV by recent SPX returns:

$$\mathsf{Volatility}_t = \beta_0 + \beta_1 R_{1,t} + \beta_2 \sqrt{R_{2,t}}, \qquad \beta_0 > 0, \;\; \beta_1 < 0, \;\; \beta_2 \in (0,1)$$

- It mixes recent past trend (R_1) and recent past volatility (R_2)
- Multi-scale trading memory: different time scales of path-dependence are needed ←→ various time horizons of investors/traders

→ Volatility is rough-like and mostly path-dependent

Conclusion

- The 4-Factor PDV model is the natural Markovian continuous-time version: 2 times scales for recording the past trend + 2 time scales for recording the past volatility.
- It captures the most important stylized facts of volatility: leverage effect, volatility clustering, Zumbach effects, strong positive VIX skews, roughness at the daily time scale...
- ...but the model is not rough! It is Markovian, so extremely easy and fast to simulate.
- Unlike in classical SV models, the 4 factors are observable: averages of past returns and past squared returns, as opposed to averages of past dW.
- The 9 parameters all have a clear financial interpretation.
- The 4-Factor PDV model seems to be the first parametric Markovian model to practically solve the joint calibration problem.
- The model exhibits a jumpy behavior in the absence of actual jumps.

Conclusion

- Volatility is not purely path-dependent: unexpected news happen!
- The (smaller) exogenous part can be incorporated using another source of randomness, e.g.,

$$\frac{dS_t}{S_t} = a_t \, \sigma(S_u, u \le t) \, dW_t$$

where a_t is some stochastic volatility, for instance: PDSV

■ The ratio residuals $\frac{\text{true vol}}{\text{predicted PDV vol}}$ help define relevant stochastic dynamics for (a_t) .

We believe this is the right way of modeling volatility:

- (1) Model the purely endogenous part of volatility as best as we can.
- (2) Then add the exogenous part, if needed.
 - --- A new paradigm for volatility modeling

Some references

Blanc, P., Donier, B., Bouchaud, J.-P.: Quadratic Hawkes processes for financial prices, Quantitative Finance, 17(2):171–188, 2017.

Bollerslev, T.: Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31:307–327, 1986.

Bouchaud, J.-P.: Radical complexity, Entropy 23:1676, 2021.

Brunick, G. and Shreve, S.: Mimicking an Itô process by a solution of a stochastic differential equation, Ann. Appl. Prob., 23(4):1584–1628, 2013.

Chicheportiche, R., Bouchaud, J.-P.: The fine-structure of volatility feedback I: Multi-scale self-reflexivity, Physica A 410:174–195, 2014.

Dupire, B.: Pricing with a smile, Risk, January, 1994.

Engle, R.: Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation, Econometrica 50:987–1008, 1982.

Figà-Talamanca, G. and Guerra, M.L.: Fitting prices with a complete model, J. Bank. Finance 30(1), 247-258, 2006.

Foschi. P. and Pascucci, A.: Path Dependent Volatility, Decisions Econ. Finan., 2007.

Guyon, J.: Path-dependent volatility, Risk, October 2014.

Guyon, J.: Path-dependent volatility: practical examples, presentation at Global Derivatives, May 2017.

Some references

Guyon, J.: Inversion of Convex Ordering in the VIX Market, Quantitative Finance 20(10):1597-1623, 2020.

Guyon, J.: The VIX Future in Bergomi Models: Fast Approximation Formulas and Joint Calibration with S&P 500 Skew, SIAM Journal on Financial Mathematics 13(4):1418–1485, 2022.

Guyon, J., Lekeufack, J.: Volatility is (mostly) path-dependent, SSRN 4174589, 2022.

Hobson, D. G. and Rogers, L. C. G.: Complete models with stochastic volatility, Mathematical Finance 8(1):27-48, 1998.

Hubalek, F., Teichmann, J. and Tompkins, R.: Flexible complete models with stochastic volatility generalising Hobson-Rogers, working paper. 2004.

Jacquier, A., Lacombe, C.: Path-dependent volatility models, preprint, 2020.

Gatheral, J., Jusselin, P., Rosenbaum, M.: The quadratic rough Heston model and the joint calibration problem, Risk, May 2020.

Parent, L.: The EWMA Heston model, Quantitative Finance 23(1):71-93, 2023.

Sentana, E.: Quadratic ARCH models, Rev. Econ. Stud., 62(4):639-661, 1995.

Zumbach, G.: Time reversal invariance in finance, Quantitative Finance 9(5):505-515, 2009.

Zumbach, G.: Volatility conditional on price trends, Quantitative Finance 10(4):431-442, 2010.

