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Research project on PF ALM

Following early results based on multistage stochastic programming (MSP) in Consigli et al
(2017), I will consider other approaches we have studied recently for similar PF-ALM problems:

▶ A distributionally robust optimization (DRO) approach developed in cooperation with A.
Kleywegt (ISyE, Georgia Tech), A. Hitaj (UniMiB, Milan) and R.Gao (Univ of Texas).

▶ Dynamic stochastic control (DSC) based on a research project involving D.Lauria (former
PhD and PostDoc at UniBG), Francesca Maggioni and myself published on OR Spectrum
(2022)

▶ A combination of MSP and DSC a project in collaboration with B.Ji, Z.Chen and Z.Yan,
published on Quantitative Finance (2022).

giorgio.consigli@ku.ac.ae



4/39PFM methods’ benchmarking 14/04/2023 ku.ac.ae

Fundamentals of PF economics

▶ We consider an asset-liability management (ALM) model for a defined-benefit pension
fund (PF)

▶ The PF liability is generated by current and future benefits to pay to passive members net
of the contributions from the sponsor and the active members.

▶ In a DB scheme benefits are determined according to a mathematical formula and the PF
thus carries portfolio risk. While they depend on the fund performance in a defined
contribution (DC) scheme (in which contribution rates are given).

▶ Modern PF ALM is rooted on the evaluation of market-based solvency conditions through
the funding (FR) and the solvency ratios (SR).

▶ At any point in time the PF should hold an asset portfolio and liquidity sufficient to cover
its liabilities. According to International Accounting standards (IAS) these need to be
evaluated consistently with market practice.

giorgio.consigli@ku.ac.ae
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Agents

Figure: Relevant information flows in PF management
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Modern approach to PF ALM

Let t ∈ T := {t0, t1, ...,Tλ} possibly spanning several decades, and consider the following core
variables in the problem specification. We may later on want to distinguish an investment
horizon T ̸= Tλ.

X (t):=
∑

k x
k
t plan portfolio

Λ(t) := EP̃

[∑Tλ

j=t Lj · δj | Ft

]
(1) liability (DBO) of the PF

ϕ(t) := X (t)
Λ(t) (2) funding ratio

L(t):=
∑

g ,b,s,x N
p
t (g , x) · L(b, s) (3) pension benefits

C(t):=γ
[∑

g ,b,s,x N
a
t (g , s, x) · wb

]
(4) contributions

The ALM problem may be formulated in real or in nominal terms. In the former case all
relevant quantities are in constant monetary values (cmv): this is a key assumption in this
project.

giorgio.consigli@ku.ac.ae
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Actuarial principles and liability-driven-investment

Actuarial standard principles (ASP) have and still play a fundamental role in DB pension fund
management. In recent years they have been exposed to a rapidly evolving regulatory
framework:

▶ The discount factors δt in (1) play a relevant role in policy debate between large insurers,
pension funds and authorities.

▶ Members’ projected survival rates recently updated to account for longevity risk

▶ The adoption in internal models of a DBO pricing principle under measure P̃ in place of
the forecasting method based on E(Lt)

▶ The adoption of the projected liability valuation method to determine benefits Lt and
contributions Ct .

▶ Liability-driven-investment (LDI) provides an ALM approach in which the portfolio Xt is
expected to replicate the PF liability profile and generate a surplus. In this work we
assume that no surplus is expected at PF termination. LDI almost by definition also
provides a risk control approach.

giorgio.consigli@ku.ac.ae
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Risk models

▶ Lee-Carter (1992) model for ln (mx,t), where mx,t := Dx,t/Ex,t is the mortality rate of
individuals of age x at time t:

ln (mx,t) = ax + bxkt + εmx,t . (5)

Here ax denotes the time average of ln (mx,t), kt a common time-dependent mortality
factor with coefficient bx , and εmx,t are residuals.

▶ Consider a real yield curve at time t over the term τ : rt,τ = it,τ − πt,τ . The Nelson-Siegel
model is

rt,τ = β1,t + β2,t

(
1− e−λτ

λτ

)
+ β3,t

(
1− e−λτ

λτ
− e−λτ

)
(6)

Both models, once calibrated, can be used for forecasting: m̂x,T+h = exp
(
âx + b̂x k̂T+h

)
and for given constant λ, βi,t+h will determine for increasing h an average evolution of the PF
variables.

giorgio.consigli@ku.ac.ae
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Part II

DR LDI

Joint with Anton Kleywegt, Asmerilda Hitaj and Rui Gao.

giorgio.consigli@ku.ac.ae
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Motivation and assumptions

We consider a closed US PF problem spanning the entire life of its members up to 110 years.

▶ The PF liability evaluation is required to span several decades, up to Tλ: a hedging
strategy against an uncertain worst case distribution is strongly suggested.

▶ Over such a long horizon, hardly ever one has enough data to estimate a probability
distribution with sufficient accuracy.

▶ This is true for both liability projection and discount rates estimation: this latter
propagates into asset pricing models.

▶ Asset returns are also exposed to significant distributional uncertainty in the long term.

▶ Of specific relevance here to motivate a DRO approach, the natural adoption of the
actuarial model to derive the PF projected liabilities and the associated nominal
distribution.

giorgio.consigli@ku.ac.ae
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DRO formulation

We allow for distributional ambiguity over the probability law governing the future PF
members’ dynamics and pricing kernel.

min
z∈Z

sup
Q∈M

EQ[Ψ(z , ξ)]. (7)

The set M can be determined by specifying:

▶ Shape properties as in Calafiore and El Gahoui (2006), Chen et al (2017), or

▶ Moment characteristics of the distribution as in Delage and Ye (2010), Goh and Sim
(2010), Wieseman, Kuhn and Sim (2014) or

▶ by choosing a nominal distribution and by specifying M to be the set of all distributions
within a chosen statistical distance. See Ben-Tal et al (2013), Wang, Glynn and Ye
(2016), Esfahani and Kuhn (2015), Gao and Kleywegt (2016).

Problem (7) looks for a solution such that, if the distribution in the future does not deviate
from the past distribution (empirical distribution) too much in terms of Wasserstein distance,
then the solution should perform well in terms of the objective of (7).

giorgio.consigli@ku.ac.ae
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Wasserstein distance

In this setting, we choose a metric d such that (Ξ, d) is a complete separable metric (Polish)
space. For p ∈ [1,∞), let Pp(Ξ) denote the set of Borel measures on Ξ with finite p-th
moment.

M := {µ ∈ Pp(Ξ) : Wp(µ, ν) ≤ θ} . (8)

Given the nominal distribution ν, the Wasserstein ball of radius θ > 0 contains distributions
of time series µ ∈ P(Ξ) close to ν in the Wasserstein distance

Wp(µ, ν) := min
γ∈(Ξ×Ξ)

{∫
Ξ×Ξ

dp(ξ, ζ)γ(dξ, dζ) : γ has marginals µ and ν

}
,

where d measures how close two time series ξ = (ξt) and ζ = (ζt) are over a selected
calibration period as clarified below.

giorgio.consigli@ku.ac.ae



13/39PFM methods’ benchmarking 14/04/2023 ku.ac.ae

Solution approach

Following Kleywegt and Gao (2016), we apply to (7) the strong duality result:

sup
µ∈P(Ξ)

{
∫
Ξ

Ψ(z , ξ)µ(dξ)|Wp(µ, ν) ≤ θ} = inf
λ≥0

{λθp +
∫
Ξ

supξ[Ψ(z , ξ)− λdp(µ, ν)]dν} (9)

Assume a decision strategy z parametrized through a generic rule β ∈ D: {z(β)}β . With

Wasserstein DRO, the worst-case cost Eµ [Ψ(β, ξ)] for a given β, p = 2 and realized process ξ̂
can then be evaluated by solving

min
λ≥0

{
λθ2 + Eξ̂∼ν

[
sup
ξ

{
Ψ(β, ξ)− λd(ξ, ξ̂)2

}]}
,

which suggests to find the worst-case cost supξ

{
Ψ(β, ξ)− λd(ξ, ξ̂)2

}
for each sample path ξ̂

from ν.

giorgio.consigli@ku.ac.ae
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Solution approach: more details

Solving supξ

{
Ψ(β, ξ)− λd(ξ, ξ̂)2

}
requires the gradient ∇ξΨ(β, ξ̂), which is often hard to

obtain in closed-from expression. Thus we approximate it via gaussian smoothing

∇ξΨ(β, ξ̂) ≃ 1

δ
Ee∼N (0,I )[(Ψ(β, ξ̂ + δe)−Ψ(β, ξ̂))e].

If p = 2 and Ψ(β, ξ) is twice continuously differentiable, we can then solve the following
gradient-norm regularization problem

min
β∈D

Eν [Ψ(β, ξ̂)] + θ · (Eν [||∇ξΨ(β, ξ̂)||2])1/2.

The solution depends on θ, whose calibration is key to convergence to an optimum.

giorgio.consigli@ku.ac.ae
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Sample average approximation

Problem (7) can be tackled through Sample Average Approximation (SAA) (Kleywegt, Shapiro
and Homem-de-Mello, 2002) in the form

min
z

Ψ̂N(z) =
1

N

∑
n=1,..,N

Ψ(z , ξ̂n)

 (10)

where we assume that the sample corresponds to the realized sequence ξ̂n for n = 1, 2, ..,N.
The expectation is taken with respect to the empirical measure ν: Ψ̂N(z) = Eν [Ψ(z , ξ)].

Then the nominal distribution in the DRO problem corresponds to ν ∈ Pp(Ξ) = N−1
∑N

n=1 δξ̂n
where δξ denotes the unit point mass on ξ and ξ̂n is a sample from the data history.

giorgio.consigli@ku.ac.ae



16/39PFM methods’ benchmarking 14/04/2023 ku.ac.ae

PF problem formulation

Consider the following time partition: T > T2 > T1 > t0 with T − T2 planning horizon,
T2 − T1 for error forecasts calibration and T1 − t0 for statistical model estimation. The
following objective function is considered in the DR LDI problem specification:

Ψ(z , ξ) :=
T−1∑
t=T2

(
Ct + e1|Γt |

)
+ e1|Y (zT , ξT )|1Y (z,ξ)<0 + e2Y (zT , ξT )1Y (z,ξ)>0 (11)

To be minimized, for given input funding tolerance ϕ̃ and t = 0, 1, ...,T − T2, under the
constraints (2), (3), (4) and:

Y 0
t = Ct − Lt +

∑
τ

yt−τ,t,τe
rt,ττ + Γt1ϕt−1<ϕ̃ (12)

Γt = (Λt − Yt − Y 0
t ) (13)

yt′,t+1,τ = (yt′,t,τ − ut′,t,τ )1Y 0
t <0 + (yt′,t,τ +min{Y 0

t ,−∆Y t′

t })1Y 0
t >0 ∀t ′ < t,∀τ (14)

giorgio.consigli@ku.ac.ae
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Model update and decision process

The set of constraints (14) reflects the LDI approach adopted in this project: when selling the
discount bonds with earliest maturity are selected first and when buying the cash surplus is
compared with ∆Y t′

t which depends on the conditional expectation under the nominal measure
of future cash inflows.
Then as t = 0, 1, , ...T − T2:

▶ Contributions Ct and benefits Lt evaluated according to the actuarial principles will
determine:
▶ the net benefits lt and the associated cash balance Y 0

t

▶ The PF DBO Λt and
▶ the discounted asset value Yt

▶ Yt , Y
0
t and Λt will determine the FR ϕt , which determines

▶ the extraordinary contributions Γt , that together with Y 0
t will determine

▶ the cash surplus or deficit leading to buying or selling discount bonds of different maturity
according to a pre-specified policy.

giorgio.consigli@ku.ac.ae
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Nominal distribution

From models (5) and (6) we construct the nominal distributions as the distribution of the time

series of forecasting errors. Let m̂t
x,t+h = exp

(
âtx + b̂tx k̂

t
t+h

)
denote the resulting mortality rate

forecasts, and let
εtx,t+h = mx,t+h − m̂t

x,t+h

denote the empirical mortality rate forecasting errors.

ϵtt+h,τ = rt+h,τ − r̂ tt+h,τ

denote the empirical interest rate forecasting errors. Then, for each t ∈ {T1, . . . ,T2 − 1}, the
observed value of the random variable is
ξ̂t =

(
(εtx,t+h, x ∈ {xmin, . . . , xmax}, h ∈ {1, . . . ,T −T2}), (ϵtt+h,τ , τ ∈ T , h ∈ {1, . . . ,T −T2})

)
.

The distributionally robust approach does not require ξ̂t , t ∈ {T1, . . . ,T2 − 1}, to be i.i.d. The
resulting nominal distribution ν consists of T2 − T1 equally weighted times series:

ν =
1

T2 − T1

T2−1∑
t=T1

δξ̂t .

giorgio.consigli@ku.ac.ae
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Computational results

We apply the above framework to a US pension fund problem under the following assumptions:
▶ The yield curves, inflation curves and mortality statistics span the 1933-2020 period.
▶ Residuals’ time series and the nominal distribution are specified according to given

problem specific time partition, in particular for: h = 1, 2, .., 25, T2 = 1996,T = 2020,
T2 − T1 > T − T2.

▶ The PF ALM problem is formulated with annual portfolio revision, investment horizon of
25 years and a liability projection spanning the lifetime of every member.

▶ At the end of the planning horizon a PF termination value is computed amd the fund’s
operation ends.

▶ The investment universe is based on discount bonds with maturity
τ = {0.25, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30} years.

▶ An extraordinary contribution occurs upon violation of a regulatory FR threshold

ϕ ∈
[
ϕ̃, 1

]
.

▶ The problem solution will generate the minimal sponsor’s contribution rate γ and, for
given parametric portfolio policy, extraordinary contributions needed to preserve the PF
liquidity and funding conditions over several decades.giorgio.consigli@ku.ac.ae
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US inflation and real interest rates’ history

Figure: US CPI and Real yield curve 1933-2021

giorgio.consigli@ku.ac.ae
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Data process, DRO calibration

For every t ∈ [T1,T2], τ ∈ {0.25, ..., 30} and h ≤ (T −T2) the forecasting errors are estimated
in-sample and characterize the nominal distribution and the resulting distributional uncertainty
based on Wasserstein radius calibration.

Figure: Real interest rates forecasting errors, τ = {1, 10}

Figure: 42y and 64y mortality rates forecasting errorsgiorgio.consigli@ku.ac.ae
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PF initial conditions

Figure: Pension fund age composition in t=0 and Net benefits evolution

giorgio.consigli@ku.ac.ae
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25 year liability projection

Figure: Liability projections and portfolio replication over 25 years

giorgio.consigli@ku.ac.ae
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2019 OECD contributions rates

Figure: Official estimates of 2019 contribution rates in selected OECD countriesgiorgio.consigli@ku.ac.ae
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DRO value function – 1995-2020 θ = {0.005, 0.003}
We present a set of DRO results for alternative radius estimates, benchmarked against the SAA
solution.

Figure: DRO solutions, 25 year problem, θ = 0.005− 0.003, 1995-2020

giorgio.consigli@ku.ac.ae
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DRO value function – 1995-2020 θ = {0.001, 0.0005}

Figure: DRO solutions, 25 year problem, θ = 0.001− 0.0005, 1995-2020

giorgio.consigli@ku.ac.ae
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SAA – 1995-2020

Figure: Sample average approximation, 25 year problem, 1996-2020

giorgio.consigli@ku.ac.ae
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Summary evidence

▶ As we reduce the radius from θ = 0.005 to θ = 0.0005, the optimal contribution rate γ
decreases to 0.19: this is the minimal ordinary contribution rate in the face of
distributional uncertainty.

▶ At the optimum:
▶ The extraordinary contributions are null,
▶ The terminal ZCB portfolio plus the residual cash at T = 25 are equal to the terminal value

of the fund.

▶ The DRO solution required 52.408 secs of CPU time for error forecast estimation and
6505.4003 secs (108 minutes) for the value fn estimation with θ = 0.001 on a Lenovo PC
with 16.0G RAM and 3.4 GHz Dual Core CPU.

▶ These preliminary results are in line with the in-sample tests and take fully into account
regulatory requirement and the complex PF liability structure.

giorgio.consigli@ku.ac.ae
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Part III

PFM METHODS BENCHMARKING

giorgio.consigli@ku.ac.ae
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Models and methods

Following the 2015-2016 R&D project above, in parallel with the DRO project, thanks to two
research grants in Italy and in China we have been working on the following PFM problems:

▶ A dynamic stochastic control (DSC) method for an open occupational PF problem
formulated as a chance-constrained semidefinite program (Lauria, GC and FM) with:
▶ a 30-year liability evaluation horizon, and a shorter 3− 4 investment horizon with quarterly

rebalancing,
▶ a quadratic target-based objective function with a chance constraint on the funding ratio,
▶ a continuous probability space with LC model of mortality and stochastic inflation, asset

returns and yield curve. A rich investment universe.

▶ A combined MSP-DSC method for a Tier 1+3 open pension fund problem (Ji, Chen, GC,
Yan) for the Chinese urban areas:
▶ A 20-year investment horizon partitioned in two sub-periods with linking dynamic

programming value function,
▶ a hierarchical stochastic model for assets and liabilities with arbitrage-free scenario

generation,
▶ a target-based quadratic objective with respect to funding and welfare targets.

giorgio.consigli@ku.ac.ae
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Models and methods

giorgio.consigli@ku.ac.ae
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MSP (GC et al 2017)

Pension liabilities and asset returns tree processes, decision and non-decision nodes.

giorgio.consigli@ku.ac.ae
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A generic problem formulation

minx∈X EP
[∑

t∈T ρ(xt , ξt(ω))
]

s.t. for t ∈ T
xt = xt−1(1 + rt) + x+t − x−t
x+t − x−t = Kt(xt , x̄)
x0t = lt − x+t + x−t + x0t−1(1 + r0t−1) + Γt1ϕt≤ϕ̃

xt ≥ ϕ̃Λt w .p. α ∈ [α̃, 1]
x0t + Γt ≥ lt

(15)

where the characterization of ξ(ω) leads to different problem formulations. Λt and lt = Lt − Ct

are exogenous, as the return process rt . A given policy in the form of a linear feedback rule can
be considered (Lauria et al, 2022) through the updating Kt .

giorgio.consigli@ku.ac.ae
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Open fund liability projection

Figure: Two open pension funds liability projection

giorgio.consigli@ku.ac.ae
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Funding

Figure: Evolution of funding conditions: almost sure versus chance-constrained feasibility

giorgio.consigli@ku.ac.ae
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A mixed approach (Ji, Chen, GC, Yan, 2022)

This is the type of underlying stochastic dynamics we are considering.

Figure: Combining MSP and DSC

See also Barro, D. and Canestrelli, E., (2016). Combining stochastic programming and optimal control
to decompose multistage stochastic optimization problems and in OR Spectrum, 38(3) and same issue
of OR Spectrum, Konicz, A., Pisinger D and Rasmussen K.M.: A combined SP and optimal control
approach to personal finance and pensions.

giorgio.consigli@ku.ac.ae
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Funding – mixed approach

Figure: Further evidence on funding condition as the MSP horizon increases. Computational tests

giorgio.consigli@ku.ac.ae
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Computational evidence

Table: SP problem computational details

1.25

Method
Branching
structure

Number of
scenarios

Scenario tree
generation time

Size of technology
matrix

Nonzeros elements
before presolution

Total CPU
solution time

MSP [10, 8, 4, 27] 40960 50.53(s) 2109053× 1622746 6083999 113.20
DSC 10000 22227 1296548 2555

MSP-DSC [15, 10, 53] 18750 295.75(s) 149473× 121476 471914 5.28
[66] 46656 355.65(s) 317245× 261258 1017047 11.38
[57] 78125 898.37(s) 624983× 507796 1972599 25.23
[48] 65536 2044.15 (s) 655341× 524270 2031553 20.67

The DSC results are also collected on a 3.4 GHz Intel Core i7 processor, with 16.0G RAM running and
adopting MOSEK Semidefnite program solver or MOSEK P/D IPQP solver.

giorgio.consigli@ku.ac.ae
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Modelling and methodological challenges in ALM

I would like to conclude by pointing out few recent contributions related to modelling and
methodological challenges likely to attract new research in SO and DRO.

▶ defined contribution with guarantee: the transition towards DC pension schemes comes together
with a protection which limits the risk transfer onto the pension members: then liability then
depends on the fund performance (see Li, C. and Grossmann, I.E. (2021) review, Kopa, M. and
T. Rusy (2021) on Annals of O.R.)

▶ sponsor credit risk: separation between PF managers and sponsors and these latter obligations to
the fund require the evaluation of the credit risk faced by the PF. (Broeders D (2010) J of Risk
and Insurance, Sun et al. (2017) EJOR).

▶ derivatives: Institutional investors such as PFs do use derivatives for performance protection and
hedging under incomplete market assumptions (e.g.longevity bonds and swaps). See Moriggia,
Vitali and Kopa (2021) work.

▶ machine learning: in the last years we have witnessed an increasing stream of contributions
employing machine learning approaches in finance and specifically in ALM and PFM problems
(Mulvey J.M. (2017, 2021), Fontoura et al (2021), Dixon, M. F. & Halperin, I. (2019), Kolm and
Ritter (2020))

giorgio.consigli@ku.ac.ae
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