

Benchmarking stochastic optimization approaches for pension fund managemen University of Cambridge In honor of M.A.H. Dempster

Giorgio Consigli

April, 2023

Outline

Part I: Pension fund asset-liability management Pension fund management problems Risk exposure

Part II: Distributionally robust pension fund management DRO approach Problem formulation DR Liability driven investment Computational results

Part III: Method benchmarking (sort of) Overview and rationale Computations and summary

Research project on PF ALM

Following early results based on multistage stochastic programming (MSP) in Consigli et al (2017), I will consider other approaches we have studied recently for similar PF-ALM problems:

- A distributionally robust optimization (DRO) approach developed in cooperation with A. Kleywegt (ISyE, Georgia Tech), A. Hitaj (UniMiB, Milan) and R.Gao (Univ of Texas).
- Dynamic stochastic control (DSC) based on a research project involving D.Lauria (former PhD and PostDoc at UniBG), Francesca Maggioni and myself published on OR Spectrum (2022)
- A combination of MSP and DSC a project in collaboration with B.Ji, Z.Chen and Z.Yan, published on *Quantitative Finance* (2022).

Fundamentals of PF economics

- We consider an asset-liability management (ALM) model for a defined-benefit pension fund (PF)
- The PF liability is generated by current and future benefits to pay to passive members net of the contributions from the sponsor and the active members.
- In a DB scheme benefits are determined according to a mathematical formula and the PF thus carries portfolio risk. While they depend on the fund performance in a defined contribution (DC) scheme (in which contribution rates are given).
- Modern PF ALM is rooted on the evaluation of market-based solvency conditions through the funding (FR) and the solvency ratios (SR).
- At any point in time the PF should hold an asset portfolio and liquidity sufficient to cover its liabilities. According to International Accounting standards (IAS) these need to be evaluated consistently with market practice.

Agents

Figure: Relevant information flows in PF management

Modern approach to PF ALM

Let $t \in \mathcal{T} := \{t_0, t_1, ..., T_{\lambda}\}$ possibly spanning several decades, and consider the following core variables in the problem specification. We may later on want to distinguish an investment horizon $\mathcal{T} \neq T_{\lambda}$.

$$\begin{split} X(t) &:= \sum_{k} x_{t}^{k} & \text{plan portfolio} \\ \Lambda(t) &:= \mathbb{E}_{\tilde{\mathbb{P}}} \left[\sum_{j=t}^{T_{\lambda}} \mathbf{L}_{j} \cdot \delta^{j} \mid \mathcal{F}_{t} \right] & (1) & \text{liability (DBO) of the PF} \\ \phi(t) &:= \frac{X(t)}{\Lambda(t)} & (2) & \text{funding ratio} \\ L(t) &:= \sum_{g,b,s,x} N_{t}^{p}(g,x) \cdot L(b,s) & (3) & \text{pension benefits} \\ C(t) &:= \gamma \left[\sum_{g,b,s,x} N_{t}^{a}(g,s,x) \cdot w_{b} \right] & (4) & \text{contributions} \\ \end{split}$$

The ALM problem may be formulated in real or in nominal terms. In the former case all relevant quantities are in constant monetary values (cmv): this is a key assumption in this project.

Actuarial principles and liability-driven-investment

Actuarial standard principles (ASP) have and still play a fundamental role in DB pension fund management. In recent years they have been exposed to a rapidly evolving regulatory framework:

- The discount factors δ^t in (1) play a relevant role in policy debate between large insurers, pension funds and authorities.
- Members' projected survival rates recently updated to account for longevity risk
- ► The adoption in internal models of a DBO pricing principle under measure P
 in place of the forecasting method based on E(L_t)
- The adoption of the projected liability valuation method to determine benefits L_t and contributions C_t.
- Liability-driven-investment (LDI) provides an ALM approach in which the portfolio X_t is expected to replicate the PF liability profile and generate a surplus. In this work we assume that no surplus is expected at PF termination. LDI almost by definition also provides a risk control approach.

Risk models

Lee-Carter (1992) model for ln (m_{x,t}), where m_{x,t} := D_{x,t}/E_{x,t} is the mortality rate of individuals of age x at time t:

$$\ln(m_{x,t}) = a_x + b_x k_t + \varepsilon_{x,t}^m.$$
(5)

Here a_x denotes the time average of $\ln(m_{x,t})$, k_t a common time-dependent mortality factor with coefficient b_x , and $\varepsilon_{x,t}^m$ are residuals.

Consider a real yield curve at time t over the term τ : $r_{t,\tau} = i_{t,\tau} - \pi_{t,\tau}$. The Nelson-Siegel model is

$$r_{t,\tau} = \beta_{1,t} + \beta_{2,t} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} \right) + \beta_{3,t} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} - e^{-\lambda\tau} \right)$$
(6)

Both models, once calibrated, can be used for forecasting: $\hat{m}_{x,T+h} = \exp\left(\hat{a}_x + \hat{b}_x \hat{k}_{T+h}\right)$ and for given constant λ , $\beta_{i,t+h}$ will determine for increasing h an average evolution of the PF variables.

Part II

DR LDI

Joint with Anton Kleywegt, Asmerilda Hitaj and Rui Gao.

Motivation and assumptions

We consider a closed US PF problem spanning the entire life of its members up to 110 years.

- The PF liability evaluation is required to span several decades, up to T_λ: a hedging strategy against an uncertain worst case distribution is strongly suggested.
- Over such a long horizon, hardly ever one has enough data to estimate a probability distribution with sufficient accuracy.
- This is true for both liability projection and discount rates estimation: this latter propagates into asset pricing models.
- Asset returns are also exposed to significant distributional uncertainty in the long term.
- Of specific relevance here to motivate a DRO approach, the natural adoption of the actuarial model to derive the PF projected liabilities and the associated nominal distribution.

DRO formulation

We allow for distributional ambiguity over the probability law governing the future PF members' dynamics and pricing kernel.

$$\min_{z \in \mathcal{Z}} \sup_{\mathbb{Q} \in \mathfrak{M}} \mathbb{E}_{\mathbb{Q}}[\Psi(z,\xi)].$$
(7)

The set \mathfrak{M} can be determined by specifying:

- ▶ Shape properties as in Calafiore and El Gahoui (2006), Chen et al (2017), or
- Moment characteristics of the distribution as in Delage and Ye (2010), Goh and Sim (2010), Wieseman, Kuhn and Sim (2014) or
- ▶ by choosing a nominal distribution and by specifying 𝔐 to be the set of all distributions within a chosen statistical distance. See Ben-Tal et al (2013), Wang, Glynn and Ye (2016), Esfahani and Kuhn (2015), Gao and Kleywegt (2016).

Problem (7) looks for a solution such that, if the distribution in the future does not deviate from the past distribution (empirical distribution) too much in terms of Wasserstein distance, then the solution should perform well in terms of the objective of (7).

Wasserstein distance

In this setting, we choose a metric d such that (Ξ, d) is a complete separable metric (Polish) space. For $p \in [1, \infty)$, let $\mathcal{P}_p(\Xi)$ denote the set of Borel measures on Ξ with finite p-th moment.

$$\mathfrak{M} := \{ \mu \in \mathcal{P}_{\rho}(\Xi) : W_{\rho}(\mu, \nu) \le \theta \}.$$
(8)

Given the nominal distribution ν , the Wasserstein ball of radius $\theta > 0$ contains **distributions** of time series $\mu \in \mathcal{P}(\Xi)$ close to ν in the Wasserstein distance

$$W_p(\mu,
u) := \min_{\gamma \in (\Xi imes \Xi)} \left\{ \int_{\Xi imes \Xi} d^p(\xi, \zeta) \gamma(d\xi, d\zeta) \ : \ \gamma \text{ has marginals } \mu \text{ and }
u
ight\},$$

where d measures how close two time series $\xi = (\xi_t)$ and $\zeta = (\zeta_t)$ are over a selected calibration period as clarified below.

Solution approach

Following Kleywegt and Gao (2016), we apply to (7) the strong duality result:

$$\sup_{\mu\in\mathcal{P}(\Xi)} \{ \int_{\Xi} \Psi(z,\xi)\mu(d\xi) | W_p(\mu,\nu) \le \theta \} = \inf_{\lambda\ge 0} \{ \lambda\theta^p + \int_{\Xi} \sup_{\xi} [\Psi(z,\xi) - \lambda d^p(\mu,\nu)] d\nu \}$$
(9)

Assume a decision strategy z parametrized through a generic rule $\beta \in \mathcal{D}$: $\{z(\beta)\}_{\beta}$. With Wasserstein DRO, the worst-case cost $\mathbb{E}_{\mu} [\Psi(\beta, \xi)]$ for a given β , p = 2 and realized process $\hat{\xi}$ can then be evaluated by solving

$$\min_{\lambda\geq 0}\left\{\lambda\theta^2+\mathbb{E}_{\hat{\xi}\sim\nu}\left[\sup_{\xi}\left\{\Psi(\beta,\xi)-\lambda d(\xi,\hat{\xi})^2\right\}\right]\right\},\$$

which suggests to find the worst-case cost $\sup_{\xi} \left\{ \Psi(\beta,\xi) - \lambda d(\xi,\hat{\xi})^2 \right\}$ for each sample path $\hat{\xi}$ from ν .

Solution approach: more details

Solving $\sup_{\xi} \left\{ \Psi(\beta,\xi) - \lambda d(\xi,\hat{\xi})^2 \right\}$ requires the gradient $\nabla_{\xi} \Psi(\beta,\hat{\xi})$, which is often hard to obtain in closed-from expression. Thus we approximate it via gaussian smoothing

$$abla_{\xi} \Psi(eta, \hat{\xi}) \simeq rac{1}{\delta} \mathbb{E}_{e \sim \mathcal{N}(0, l)}[(\Psi(eta, \hat{\xi} + \delta e) - \Psi(eta, \hat{\xi}))e].$$

If p = 2 and $\Psi(\beta, \xi)$ is twice continuously differentiable, we can then solve the following gradient-norm regularization problem

$$\min_{\beta \in \mathcal{D}} \quad \mathbb{E}_{\nu}[\Psi(\beta, \hat{\xi})] + \theta \cdot (\mathbb{E}_{\nu}[||\nabla_{\xi}\Psi(\beta, \hat{\xi})||^2])^{1/2}.$$

The solution depends on θ , whose calibration is key to convergence to an optimum.

Sample average approximation

Problem (7) can be tackled through Sample Average Approximation (SAA) (Kleywegt, Shapiro and Homem-de-Mello, 2002) in the form

$$\min_{z} \left[\hat{\Psi}_{N}(z) = \frac{1}{N} \sum_{n=1,\dots,N} \Psi(z, \hat{\xi}_{n}) \right]$$
(10)

where we assume that the sample corresponds to the realized sequence $\hat{\xi}_n$ for n = 1, 2, ..., N. The expectation is taken with respect to the empirical measure ν : $\hat{\Psi}_N(z) = \mathbb{E}_{\nu} [\Psi(z, \xi)]$.

Then the nominal distribution in the DRO problem corresponds to $\nu \in \mathcal{P}_p(\Xi) = N^{-1} \sum_{n=1}^N \delta_{\hat{\xi}_n}$ where δ_{ξ} denotes the unit point mass on ξ and $\hat{\xi}_n$ is a sample from the data history.

PF problem formulation

Consider the following time partition: $T > T_2 > T_1 > t_0$ with $T - T_2$ planning horizon, $T_2 - T_1$ for error forecasts calibration and $T_1 - t_0$ for statistical model estimation. The following objective function is considered in the DR LDI problem specification:

$$\Psi(z,\xi) := \sum_{t=T_2}^{T-1} \left(C_t + e_1 |\Gamma_t| \right) + e_1 |Y(z_T,\xi_T)| \mathbf{1}_{Y(z,\xi) < 0} + e_2 Y(z_T,\xi_T) \mathbf{1}_{Y(z,\xi) > 0}$$
(11)

To be minimized, for given input funding tolerance $\tilde{\phi}$ and $t = 0, 1, ..., T - T_2$, under the constraints (2), (3), (4) and:

$$Y_t^0 = C_t - L_t + \sum_{\tau} y_{t-\tau,t,\tau} e^{r_{t,\tau}\tau} + \Gamma_t \mathbf{1}_{\phi_{t-1} < \tilde{\phi}}$$
(12)

$$\Gamma_t = (\Lambda_t - Y_t - Y_t^0) \qquad (13)$$

$$y_{t',t+1,\tau} = (y_{t',t,\tau} - u_{t',t,\tau}) \mathbf{1}_{Y_t^0 < 0} + (y_{t',t,\tau} + \min\{Y_t^0, -\Delta Y_t^{t'}\}) \mathbf{1}_{Y_t^0 > 0} \quad \forall t' < t, \forall \tau$$
(14)

Model update and decision process

The set of constraints (14) reflects the LDI approach adopted in this project: when selling the discount bonds with earliest maturity are selected first and when buying the cash surplus is compared with $\Delta Y_t^{t'}$ which depends on the conditional expectation under the nominal measure of future cash inflows.

Then as t = 0, 1, ..., T - T2:

- Contributions C_t and benefits L_t evaluated according to the actuarial principles will determine:
 - the net benefits I_t and the associated cash balance Y_t^0
 - The PF DBO Λ_t and
 - the discounted asset value Y_t
- Y_t , Y_t^0 and Λ_t will determine the FR ϕ_t , which determines
- the extraordinary contributions Γ_t , that together with Y_t^0 will determine
- the cash surplus or deficit leading to buying or selling discount bonds of different maturity according to a pre-specified policy.

Nominal distribution

From models (5) and (6) we construct the nominal distributions as the distribution of the time series of forecasting errors. Let $\hat{m}_{x,t+h}^t = \exp\left(\hat{a}_x^t + \hat{b}_x^t \hat{k}_{t+h}^t\right)$ denote the resulting mortality rate forecasts, and let

$$\varepsilon_{x,t+h}^t = m_{x,t+h} - \hat{m}_{x,t+h}^t$$

denote the empirical mortality rate forecasting errors.

$$\epsilon_{t+h,\tau}^t = r_{t+h,\tau} - \hat{r}_{t+h,\tau}^t$$

denote the empirical interest rate forecasting errors. Then, for each $t \in \{T_1, \ldots, T_2 - 1\}$, the observed value of the random variable is

 $\hat{\xi}^t = \left(\{ \varepsilon_{x,t+h}^t, x \in \{x_{\min}, \dots, x_{\max}\}, h \in \{1, \dots, T - T_2\} \right), \{ \varepsilon_{t+h,\tau}^t, \tau \in \mathcal{T}, h \in \{1, \dots, T - T_2\} \right) \right).$ The distributionally robust approach does not require $\hat{\xi}^t, t \in \{T_1, \dots, T_2 - 1\}$, to be i.i.d. The resulting nominal distribution ν consists of $T_2 - T_1$ equally weighted times series:

$$\nu = \frac{1}{T_2 - T_1} \sum_{t=T_1}^{T_2 - 1} \delta_{\hat{\xi}^t}.$$

Computational results

We apply the above framework to a US pension fund problem under the following assumptions:

- ▶ The yield curves, inflation curves and mortality statistics span the 1933-2020 period.
- ► Residuals' time series and the nominal distribution are specified according to given problem specific time partition, in particular for: h = 1, 2, ..., 25, T₂ = 1996, T = 2020, T₂ T₁ > T T₂.
- The PF ALM problem is formulated with annual portfolio revision, investment horizon of 25 years and a liability projection spanning the lifetime of every member.
- At the end of the planning horizon a PF termination value is computed amd the fund's operation ends.
- The investment universe is based on discount bonds with maturity $\tau = \{0.25, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30\}$ vears.
- An extraordinary contribution occurs upon violation of a regulatory FR threshold $\phi \in [\tilde{\phi}, 1]$.
- The problem solution will generate the minimal sponsor's contribution rate γ and, for given parametric portfolio policy, extraordinary contributions needed to preserve the PF giorgio.conliguidity and funding conditions over several decades.

US inflation and real interest rates' history

Figure: US CPI and Real yield curve 1933-2021

Data process, DRO calibration

For every $t \in [T_1, T_2]$, $\tau \in \{0.25, ..., 30\}$ and $h \leq (T - T_2)$ the forecasting errors are estimated in-sample and characterize the nominal distribution and the resulting distributional uncertainty based on Wasserstein radius calibration.

Figure: Real interest rates forecasting errors, $\tau=\{1,10\}$

giorgio.consigli@ku.ac.ae

Figure: 42y and 64y mortality rates forecasting errors

PF initial conditions

Figure: Pension fund age composition in t=0 and Net benefits evolution

25 year liability projection

Figure: Liability projections and portfolio replication over 25 years

2019 OECD contributions rates

Pensions at a G	lance 2019 -	© OECD 2	<u>2019</u>		
Table 8.1. Mano	latory pensio	on contribut	tion rates fo	or an averag	ge worker in 2018
Version 1 - Last	updated: 18	-Nov-2019			
Disclaimer: http:	//oe.cd/discla	aimer			
Table 8.1. Mand	atory pensio	n contribut	ion rates in	n 2018 (% of	gross earnings)
	For old-age	and surviv	or pension	schemes	
	Employee, public	Employer, public	Employee, private	Employer, private	Effective rate on average earnings
Australia			0.0	9.5	9.5
Austria*	10.3	12.6			22.8
Belgium	7.5	8.9			16.4
Chile			11.2	1.2	12.4
Czech Republic*	6.5	21.5			28.0
Denmark*			4.0	8.0	12.8
Estonia	0.0	16.0	2.0	4.0	22.0
Finland*	6.7 [a]	17.7			24.4 [a]
France	11.2 [w]	16.3 [w]			27.5
Germany*	9.3	9.3			18.6
Italy*	9.2	23.8			33.0
Japan	9.15	9.15			18.3
Netherlands	18.0	0.0	7.7 [w]	14.8 [w]	25.6
New Zealand					0.0
Norway	7.6	10.5	0.0	2.0	20.1
Sweden	7.0	10.2	0.0	4.5 [w]	21.7
United States*	6.2	6.2			12.4
OECD33					18.4

giorgio.consigli@kuEigure: Official estimates of 2019 contribution rates in selected OECD countries

DRO value function – 1995-2020 $\theta = \{0.005, 0.003\}$

We present a set of DRO results for alternative radius estimates, benchmarked against the SAA solution.

Figure: DRO solutions, 25 year problem, $\theta = 0.005 - 0.003$, 1995-2020

DRO value function – 1995-2020 $\theta = \{0.001, 0.0005\}$

Figure: DRO solutions, 25 year problem, $\theta = 0.001 - 0.0005$, 1995-2020

SAA - 1995-2020

Figure: Sample average approximation, 25 year problem, 1996-2020

Summary evidence

- As we reduce the radius from θ = 0.005 to θ = 0.0005, the optimal contribution rate γ decreases to 0.19: this is the minimal ordinary contribution rate in the face of distributional uncertainty.
- At the optimum:
 - The extraordinary contributions are null,
 - The terminal ZCB portfolio plus the residual cash at T = 25 are equal to the terminal value of the fund.
- ► The DRO solution required 52.408 secs of CPU time for error forecast estimation and 6505.4003 secs (108 minutes) for the value fn estimation with $\theta = 0.001$ on a Lenovo PC with 16.0G RAM and 3.4 GHz Dual Core CPU.
- These preliminary results are in line with the in-sample tests and take fully into account regulatory requirement and the complex PF liability structure.

Part III

PFM METHODS BENCHMARKING

Models and methods

Following the 2015-2016 R&D project above, in parallel with the DRO project, thanks to two research grants in Italy and in China we have been working on the following PFM problems:

- A dynamic stochastic control (DSC) method for an open occupational PF problem formulated as a chance-constrained semidefinite program (Lauria, GC and FM) with:
 - ► a 30-year liability evaluation horizon, and a shorter 3 4 investment horizon with quarterly rebalancing,
 - ▶ a quadratic target-based objective function with a chance constraint on the funding ratio,
 - a continuous probability space with LC model of mortality and stochastic inflation, asset returns and yield curve. A rich investment universe.
- ► A combined MSP-DSC method for a Tier 1+3 open pension fund problem (Ji, Chen, GC, Yan) for the Chinese urban areas:
 - A 20-year investment horizon partitioned in two sub-periods with linking dynamic programming value function,
 - a hierarchical stochastic model for assets and liabilities with arbitrage-free scenario generation,
 - ▶ a target-based quadratic objective with respect to funding and welfare targets.

Models and methods

MSP approach DSC approach (Ω, Σ, P) discrete, tree processes (Ω, Σ, P) , continuous T=20 years, $T_1 = 30$ years, annual rebalancing T=3-4 years, $T_2 = 30$ years, guarterly Liability pricing based on replicating portfolio rebalancing Stochastic model of the yield curve, inflation, Stochastic model of the yield curve, inflation, mortality mortality Investment portfolio (13 asset classes) Investment portfolio (7 assets plus cash) LP with target path and duration risk control **Exogenous liability model** Feasibility: a.s. feasibility Semidefinite QP with target path Decision support with stress testing and Chance constraint on the FR sensitivity analysis Back-testing and market validation

MSP-DSC approach

- (Ω, Σ, P) tree processes + continuous beyond T
- *T=5 years*, $\tau = 20$, $T_{\lambda} = 6$ years, annual rebalancing plus policy
- Liability pricing based on statistical model
- Stochastic model of the yield curve, inflation, mortality, asset returns, liability costs
- Arbitrage free scenarios
- Investment portfolio 4 assets plus cash
- SQP target-based quadratic objective
- Open fund: Tier 1+3

MSP (GC et al 2017)

Pension liabilities and asset returns tree processes, decision and non-decision nodes.

A generic problem formulation

$$\min_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_{\mathbb{P}} \left[\sum_{t \in \mathcal{T}} \rho(\boldsymbol{x}_{t}, \xi_{t}(\omega)) \right]$$
s.t. for $\mathbf{t} \in \mathcal{T}$

$$\mathbf{x}_{t} = \mathbf{x}_{t-1}(1+r_{t}) + \mathbf{x}_{t}^{+} - \mathbf{x}_{t}^{-}$$

$$\mathbf{x}_{t}^{+} - \mathbf{x}_{t}^{-} = K_{t}(\mathbf{x}_{t}, \bar{\mathbf{x}})$$

$$\mathbf{x}_{t}^{0} = l_{t} - \mathbf{x}_{t}^{+} + \mathbf{x}_{t}^{-} + \mathbf{x}_{t-1}^{0}(1+r_{t-1}^{0}) + \Gamma_{t} \mathbf{1}_{\phi_{t} \leq \tilde{\phi}}$$

$$\mathbf{x}_{t} \geq \tilde{\phi} \Lambda_{t} \quad w.p. \ \alpha \in [\tilde{\alpha}, 1]$$

$$\mathbf{x}_{t}^{0} + \Gamma_{t} \geq l_{t}$$

$$(15)$$

where the characterization of $\xi(\omega)$ leads to different problem formulations. Λ_t and $I_t = L_t - C_t$ are exogenous, as the return process r_t . A given policy in the form of a linear feedback rule can be considered (Lauria et al, 2022) through the updating K_t .

Open fund liability projection

Figure: Two open pension funds liability projection

Funding

Figure: Evolution of funding conditions: almost sure versus chance-constrained feasibility

A mixed approach (Ji, Chen, GC, Yan, 2022)

This is the type of underlying stochastic dynamics we are considering.

Figure: Combining MSP and DSC

See also Barro, D. and Canestrelli, E., (2016). Combining stochastic programming and optimal control to decompose multistage stochastic optimization problems and in *OR Spectrum*, 38(3) and same issue of OR Spectrum, Konicz, A., Pisinger D and Rasmussen K.M.: A combined SP and optimal control approach to personal finance and pensions.

Funding – mixed approach

Figure: Further evidence on funding condition as the MSP horizon increases. Computational tests

Computational evidence

Table: SP problem computational details

1.25										
Method	Branching	Number of	Scenario tree	Size of technology	Nonzeros elements	Total CPU				
	structure	scenarios	generation time	matri×	before presolution	solution time				
MSP	$[10, 8, 4, 2^7]$	40960	50.53(s)	2109053 imes 1622746	6083999	113.20				
DSC		10000		22227	1296548	2555				
MSP-DSC	$[15, 10, 5^3]$	18750	295.75(s)	149473 imes121476	471914	5.28				
	[6 ⁶]	46656	355.65(s)	317245×261258	1017047	11.38				
	[5 ⁷]	78125	898.37(s)	624983×507796	1972599	25.23				
	[4 ⁸]	65536	2044.15 (s)	655341×524270	2031553	20.67				

The DSC results are also collected on a 3.4 GHz Intel Core i7 processor, with 16.0G RAM running and adopting MOSEK Semidefnite program solver or MOSEK P/D IPQP solver.

Modelling and methodological challenges in ALM

I would like to conclude by pointing out few recent contributions related to modelling and methodological challenges likely to attract new research in SO and DRO.

- defined contribution with guarantee: the transition towards DC pension schemes comes together with a protection which limits the risk transfer onto the pension members: then liability then depends on the fund performance (see Li, C. and Grossmann, I.E. (2021) review, Kopa, M. and T. Rusy (2021) on Annals of O.R.)
- sponsor credit risk: separation between PF managers and sponsors and these latter obligations to the fund require the evaluation of the credit risk faced by the PF. (Broeders D (2010) J of Risk and Insurance, Sun et al. (2017) EJOR).
- derivatives: Institutional investors such as PFs do use derivatives for performance protection and hedging under incomplete market assumptions (e.g.longevity bonds and swaps). See Moriggia, Vitali and Kopa (2021) work.
- machine learning: in the last years we have witnessed an increasing stream of contributions employing machine learning approaches in finance and specifically in ALM and PFM problems (Mulvey J.M. (2017, 2021), Fontoura et al (2021), Dixon, M. F. & Halperin, I. (2019), Kolm and Ritter (2020)) giorgio.considi@ku.ac.ae