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Appropriate modeling of volatility (historical and implicit) is essential for
pricing, hedging, and risk management.

The goal have been pursued by different communities from different
perspectives: Financial Fngineering, Statistical Mechanics, Mathematical
Finance, and Econometrics.

A Physics-inspired attitude: first identify the empirical
regularities and then try to model them.

Recent years have seen the introduction of more and more realistic
models whose analytical treatment is not always viable and when it is, is
numerically challenging:
o rough Heston and Volterra processes (solution of fractional
equation)
e quadratic rough Heston (Markovian approximations)
e rough Bergomi and path-dependent volatility models (pure
Monte Carlo)

The rise of machine learning techniques
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Outline of the talk

o I Part: revisiting and rehabilitating the pointwise Neural Network
approach to pricing

e Interlude: training with SINC
o IT Part: are old-style stochastic volatility models really over?
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[ Part

The pointwise Neural Network approach revisited
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The Volatility Surface

S: underlying (SPX)

K strike

T: maturity

(European) Call Option Price:

C(T, k) =E[(sy — k)*], sp=log (3E) k= log ( 0)

ops(T, k): Black-Scholes implied volatility Cpi(T, k) = Cps(T, k,055(T, k))

Figure: Market volatility surface as of 2013/08/14
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Let M = {M(0)}ycocre denote a parametric model of the price evolution.
Then, calibration is the numerical procedure identifying the optimal
parameters solving

é = argmin Z Z Wy j [UBS(Tia ]{7]) — U%(Ti, kj, 0)]2
0cOCR? ™, J
where
o w;;: set of weights
° a%(-, -,0): model implied volatilities for parameter 6 (over the market
grid in (T, k))

@ ops(-,-): market implied volatilies from the volatility surface
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The Hes
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(a) Heston fit over the shortest expiration (b) Heston vs term structure of ATM
as of 2013/08/14 skew as of 2013/08/14
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The Rough Heston model

El Euch and Rosenbaum (2018,2019), El Euch, Gatheral, and Rosenbaum Risk (2019)

dS; = /o Se(pdWi + /1 — p2dW*)

_ 77 b /s
Ut_gO(t)—’—F(H-Fé)/O (t—s)%_HdWS

T:0.024641

model vol

* market
model
power law

0 05 1 15 2 25

(b) rHeston vs term structure of
ATM skew vs power-law fit

[H = 0.0192] as of 2013/08/14
The forward variance curve, &(t), is a state-variable, possibly exogenous to
calibration.
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(a) rHeston fit over the shortest
expiration as of 2013/08/14
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Two possible routes to calibration

o If the characteristic function (CF) is available in (semi-)closed form:

PROS very efficient machinery to perform computations in Fourier space
[FFT-Lewis, SINC from Baschetti et al. Quant. Finance (2022)]

CONS the computation of the CF may be slow e.g., rHeston from El Euch and
Rosenbaum Math. Finance (2019) requires solving a fractional equation.
Of course, the rational approximation by Gatheral and Radoi¢i¢ I[JTAF
(2019) speeds up the procedure.

SOL one may train a Neural Network to learn the pricing function to

achieve super-fast computation of the implied volatilities and sensitivities

@ The model is purely simulative (e.g., rBergomi by Bayer, Priz, Gatheral,
Quant. Finance (2016) or quadratic rHeston by Gatheral, Jusselin, and
Rosenbaum Risk (2020), PDV models)

PROS very flexible

CONS Monte Carlo (MC) pricing is computationally too heavy

CONS convergence of the optimization severely affected by MC errors

SOL calibration by feed-forward Neural Networks (Hernandez Risk (2017),
Horvath, Muguruza, and Tomas Quant. Finance (2021))
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ed-forward Neural Networks

Grid-based methods in the literature (Hernandez (2017), Horvath et al.
(2021), Romer Quant. Finance (2022))

Train the Neural Network to learn a collection of pixels from the volatility
surface over a fized bi-dimensional grid in (T, k)

KT |TW T ... T, ... T,

k;

km
The 2-step approach

@ a Neural Network approximates the map from model parameters to (reduced)
volatility surfaces (offline training)

input output
0 (O—g/ls(j—’iakjye))izl,...,n j=1,....,m

@ solve the optimization problem online
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Figure: Neural network architecture in Horvath et al. (2021).

PROS calibration is extremely fast! One millisecond to compute one 11 x 8 grid of
implied volatilities, nearly 100 steps to convergence

PROS Rgmer’s adaptive grid enhances the performances

CONS need for an interpolation/extrapolation method to compute the
implied volatility for arbitrary (k,T)

CONS extrapolation, expecially at very low time to maturity, may be subtle
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bointwise approach

o A feed-forward neural network is trained to learn the pricing function
from model parameters and option’s parameters to (a single point in)
implied volatility

input output
(T.k,0) | oL (T, k, )

@ The approach was pioneered by Bayer and Stemper (2018). By design,
it is interpolation-free. Unfortunately, the architecture in the original
specification was quite demanding: from few hundreds up to four thousands
nodes per layer. The number of samples must be large for proper training.

e Horvath et al. (2018) support the grid-based approach since “by
evaluating the objective function on a larger set of (grid) points,
injectivity of the mapping can be more easily guaranteed than in the
pointwise training”

o Remark: The mapping from model parameters, strike, and time to
maturity is not injective. Proper training is much more crucial. A
suitable choice of the target will fix injectivity (parameter identification).
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tribution

We identify three important ingredients:
1. An adaptive grid:

o 05 1 15 2 25
T

2. The following parametric form for the forward variance curve (vs the
piecewise constant specification) performs very well:
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Our contribution

3. Pointwise training can be performed more effectively: One
produces random grid surfaces in the generation phase but feed
them to the network in a pointwise manner

@ pure pointwise 0.0074 @ pure pointwise
@ random smiles @ random smiles

= 0.006 = 0.0064

vl

0.005 4
0.004 4
0.0034
0.002 0.002 4
0.001 0.0014
0.000 0.000 4

170 175 180 185 190 195 200 205 13 14 15 16 17 18 19 20
10g2Nzrain logaNer

out of sample error |v —

21
Figure: Out-of-sample errors as a function of the training sample dimension (left)

and of the computational burden (right). Blue bars: pointwise training. Orange
bars: random smiles training.

4. Network’s architecture is as simple as Horvath et al (2018)
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Figure: Rough Heston calibration to the market volatility surface as of March 16,
2021. Green is pointwise (random grid), cyan is fixed grid (interpolation via FFT of
the true CF), and yellow is fixed grid plus splines.
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July 17, 2014 example
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Figure: Left panel: Calibrated piecewise constant (black) and parametric (yellow)
forward variance curve as of 2014/07/17. Right panel: fit to the T' = 0.0822 maturity
smile.
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Interlude

Random smiles with SINC
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The SINC approach

F.Baschetti, G.Bormetti, S.Romagnoli, and P.Rossi, Quant. Finance 22(3), 427 — 446, (2022)

Decompose a European put into Cash or Nothing (CoN) and Asset or Nothing
(AoN) options:

E[(K — S7)"] = KE[Ls; <] — SoE" [Lsy<i]

where sp = log % and k£ = log SEO

Bl = [ for)oh - s)dsr = [ 2 ) —

21 w + i€
A |
EST[15T<k]:/6 72 kwh(w)%ijie 0

where

h(w) = /ei27rwST88Tf(8T)dsT _ f‘(w _ 2’;)

G. Bormetti
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Shannon Sampling Theorem (SST)

Sufficient condition for a sample rate to guarantee that a discrete sequence of samples
resolves all the frequency content and perfectly reproduces the original function.

Assumption The input signal has finite bandwidth in the frequency domain

Inverse problem What if the original function is limited in the direct space?

For any n > 0, we can find X, such that
Xe

‘1 — f(ST)dST

— X

<n

and the SST guarantees that the Fourier transform of the truncated PDF
f(s7)1_x.<sp<x, can be recovered given a countable set of points w, = 5%

+oo
T e @) = 3 e P o s il Ko — won)]
n=—o0o

E[]lsT<k] ~ ]E[]lsT<k-]l—Xc<sT<Xc]
+oo 400

i ik,
= on Z e T flec<ST<Xc(Wn)/

n=-—o00 &0,

sine[2r X (w — wy)] o

w + 1€
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Solving the inner integral in the sinc and truncating the infinite sum

+N/2 N
E[1 ~ L S —irl 1-(=1) 1
sT<k} ~ o Z € f —Xc<sT<XC(Wn) mly—o + n n#0
n=—N/2

Weights follow a very simple pattern!

The final formula follows replacing m(wn) with f(w,) and
recognizing that even Fourier moments are not relevant:

o N/4
E[lg, <k] = =

{Sm (2mkwon_1)R [f(wzn—l)] +

— cos(27rk;wzn_1)3[f(w2n—1 )]

Out of the N 4+ 1 terms included in the expansion, only N/4 survive!
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Proposition (Error analysis)

The error associated to the SINC approach can be written as a sum of three
components:

@ the PDF truncation error
@ the approximation to a finite sum

@ true Fourier coefficients for the original PDF in place of the truncated one

e = [ Hor)o = sz)dsr - /):Cf@T)e(k—sT)dsT ( s o)

X.—00
Lo T ik fl_x <sp<x.(won-1) ( N 0)
27TXC In|>N/4 Won—1 N—o0
. +N/4 = = A
+ 7 Z e,igﬂka”71 f]lfo»SSTSXC (w2nfl) — f(Wanl)
27TXC Wan—1
n=—N/4
Xe
(s 020 + 1-x) = 0)
[y X.—o0
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SINC via Fast Fourier Transform

Focusing on a discrete grid of evenly spaced strikes

2X.

ke =
"N

—N/2<m < N/2
one can write the AoN and CoN prices as

E[BGST ]]'ST<km] ~

T n=0
LNZileﬂzlm”q = f(wn ai)1 (;1)n n € [1,N/2)
2m —~ " " 0 n=N/2
fA(wan_aﬁ)% nE(N/27N—1]

where a = 0 for the CoN or ¢ = 1 for the AoN.

G. Bormetti
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IT Part

Are old-style stochastic volatility models really over?
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Motivation

An ambitious modeling of volatility requires first identifying the empirical
phenomena that fundamentally characterize the volatility formation process.
Slides by L.Parent (2023) available from SSRN 4396307

= = F(, Y (£)dW (1)

Y(t) =Y, +/0 w(t,u, Y (u))du

¢ 1 dS(u) 5
+ vy ('“f(u,m)) S TV )

e p#{-1,0,1}: partial path-dependency

o if f(t,Y () = /Y (t) and u(t,uw,Y (u)), v(t,u,Y (u)) properly specified:
rough Heston model (El Euch and Rosenbaum (2018)) -> roughness
and volatility persistence

o if f(t,Y(¢)) = a+b(Y(t) —c)?) and u(t,u,Y (u)), v(t,u,Y (u)) properly
specified: quadratic rough Heston model (Gatheral et al. (2020)) ->
Zumbach effect
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Volatility is (mostly) path-dependent

Guyon and Lekeufack (2022). Available at SSRN4174589.

— = ,U/tdt + O'tdW1 (t)

= Bo + Bimy(t) + Bar/ma(t) + Br2(m) (£)* Lo )0
dS( )
/ Bl =05
:/ Kot — u)oidu

where m/ (t) is similar to m;(t) but with a possible different time scale.

@ o, purely endogenous and driven by m(t)

@ lack of probability on the right tail (misspricing of ATM calls):
dS(t)/S(t) = pedt + Xt o dWi (t)
with X; Ornstein-Uhlenbeck (OU): mostly path-dependent

@ (31,2 very significant when pricing
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The rough path-dependent volatility model

L. Parent (2023). Available at SSRN4270481.

(%95;(;;) = Mtdt + O'tdW1 (t)
()7 = o + By (ma (t) = i) )™ + By (M1 = ma (£))7)°2 + Ba(ma (1)) 72

my(t) = c/_ Ky (t—u) d‘;g) + K1 /_ Ky (t —u)(01(u) —mq(u))du

ma(t) = /_ Kot — u)(oy)**du + ko /_ Kyt — u)(02(u) — mo(u))du

where a1, a2 € {1,2}, and 0; are F;-adapted processes.
@ ma(t) is a market activity, possible MA of past volatility

@ if 0; and 02 are deterministic, purely endogenous dynamics
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Volatility is (mostly) path-dependent: A remark

Guyon and Lekeufack (2022). Available at SSRN4174589.

From the empirical analysis, regressing RV on Ry (f) =), < Kai(t— t;)re, and
RQ(t) = Ztigt Kg(t - ti)Tal

RV (t) = Bo + B1Ra(t) + B2/ Ra(t)
@ Leverage and/or trend effect: 81 < 0
@ Volatility clustering: 82 € (0,1)

@ “Both factors R1 and Ra are needed to satisfactorily explain the volatility”
Guyon and Lekeufack (2022)

However, the continuous time (Markov) specification reads:

d;;gt)) = mdt + o(Ry, Ry)dWi(t), o(R1,Re) = Bo+ SRy + Bav/Ra

de (t) = /\1(0’(R1, Rz)dWl (t) — R1 (t)dt)
dRy(t) = Aa(0(Ry, Ry)?dt — Ry(t)dt) <- Key: Brownian QV

What if 5; = 0?7 Deterministic evolution of R»
Not the case for observation-driven models in discrete-time, e.g. GARCH

G. Bormetti
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Empirical analysis of rough and classical stochastic

volatility models to the SPX and VIX markets

S.E. Rgmer, Quantitative Finance 22(10), 1805 — 1838, (2022)

Shifted mixture two-factor rough Bergomi type model

dS({;) = ‘Ll,tdt + \/ dW1

S(t
V(t) = C)(uXa1(t) + (1 — p)X.
Xi(t) = Emi(0:Y1(t) + (1 = 0:)Ya(1)))

}/z /K t—u)dWH_l()

3]
LN
~~
=
=
+
o

@ A Neural Network learns - via Monte Carlo - the relation from model
parameters to a 175-dimensional adapted grid of implied volatility

@ Excellent fit to SPX and VIX options, but one looses a bit the nice
connection with the empirical phenomena that characterize the
volatility formation process
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The EWMA Heston model

L. Parent, Quantitative Finance 23(1), 71 — 93, (2023)

d5C) _ e+ /Tiama (1)

S(t)
dm(t) = f% (cgg((tt)) - m(t)dt>
dV(t) = f%(V(t) —v2)dt + v/ V (£)dWa(t)

with vy = v+ (a — Sm(t))*.
o m(t) EWMA of past returns: trend effect

@ T, << 1 mimics roughness
@ v; consistent with empirical relation between trend and Realized Volatility (RV)

12 - 15 April, 2023
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The EWMA Heston model cnt’d

L. Parent, Quantitative Finance 23(1), 71 — 93, (2023)

14 : [ - S&P500 Data

Realized Volatility
°© o o »
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2
N
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—-2.0 -15 -1.0 —-0.5 0.0 0.5
EWMA of Past Returns

Figure: Taken from Parent, QF (2023). The empirical relationship between the
realized volatility of the S&P500 and the EWMA of past returns.
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Old-fashioned multi-factor stochastic volatility

Multiple time scales in volatility and leverage correlations
J.Perelld, J.Masoliver, & J-Ph.Bouchaud (2004) App. Math. Finance, 11(1), 27 — 50.
dS()/5(t) = o(t)dWy(2)
do(t) = —a(o(t) — m(t))dt + kdWa(t)
dm(t) = —ag(m(t) — mo)dt + kodW5(t)

@ Leverage: exponential scaling

@ Volatility autocorrelation with multiple time scales

Stochastic volatility with heterogeneous time scales

D. Delpini and G. Bormetti (2015) Quant. Finance, 15(10), 1597 — 1608.
dS()/S(t) = (Y (t) + Z(1))dWi (1)
dY () = —ry (Y (£) — Yoo )dt + vy Y (£)dWs (2)
dZ(t) = —rz(Z(t) — Zoo)dt + vz Z(£)dWs(2)

@ Emergence of power law tails

@ Multiple volatility components o (t) = Y (¢) + Z(t) mimic long-memory

= g = A
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The EWMA multi-factor exponential OU

1.

2.

aS()/S(t) = (F(Y (1) + F(Z(1))aWs (1)
dm (1) = = —(dS()/S(0) — m1 (1)

dY () = —ry (Y (£) — log(v1 + (a1 — Brma (£))1))dt + vy dWa(t
dma(t) = = —(dS()/S(0) - ma(t)d)

dZ(t) = —kz(Z(t) —log(ma(t)?))dt + vzdWs(t)

FY () + f(Z(1): f(X)=e¥X or f(X)=X ++/1+ X2 (same 2"%-order
Taylor expansion)

71, 720 my(t) and mg(t) are EWMAs with different time scales. Strong
Zumbach effect, signed and not-signed. If 7, = 75 = 400
exponential OU.

Leverage from correlation between Brownians and wvolatility persistence
from factor structure.

G. Bormetti Deep calibration 12 - 15 April, 2023



35

25

index
N

15

i

0.5

5. Bormetti

| MM

e —

14

volatility

0

.
2 4 6 8 10 12 14 16
time (years)

Figure: Returns vs volatility dynamics.

Deep calibration

18

12 -

20

15 April, 2023



Preliminar Monte Carlo nce cnt’d
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Figure: Left panel: Volatility PDF. Right panel: Volatility serial correlation.
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Preliminar Monte Carlo evidence cnt’d
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Figure: Spot volatility vs EWMA of past returns.
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Preliminar Monte Carlo evidence cnt’d
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Figure: Implied volatility smiles from the model (left panel) and from PDV (right
panel, from Guyon and Lekeufack (2022)).
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Conclusions and perspect

o We revisited the pointwise approach to calibration:

highly accurate pricing

fast computation of the implied volatility and sensitivities

no need for interpolation and extrapolation

key ingredients: adaptive grid and random training with smiles

@ Tested SINC as a smile generator during training

e Proposed a novel (mostly) path-dependent model with Zumbach effect
incorporated and multiple volatility time scales (with fast and slow mean
reversion)

e What remains to be done: Monte Carlo training to learn the pricing of
SPX and VIX options
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