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Motivation

Appropriate modeling of volatility (historical and implicit) is essential for
pricing, hedging, and risk management.
The goal have been pursued by different communities from different
perspectives: Financial Fngineering, Statistical Mechanics, Mathematical
Finance, and Econometrics.
A Physics-inspired attitude: first identify the empirical
regularities and then try to model them.
Recent years have seen the introduction of more and more realistic
models whose analytical treatment is not always viable and when it is, is
numerically challenging:

rough Heston and Volterra processes (solution of fractional
equation)
quadratic rough Heston (Markovian approximations)
rough Bergomi and path-dependent volatility models (pure
Monte Carlo)

The rise of machine learning techniques
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Outline of the talk

I Part: revisiting and rehabilitating the pointwise Neural Network
approach to pricing
Interlude: training with SINC
II Part: are old-style stochastic volatility models really over?
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I Part

The pointwise Neural Network approach revisited
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The Volatility Surface
S: underlying (SPX)
K: strike
T : maturity
(European) Call Option Price:
C(T, k) = E[(sT − k)+], sT = log

(
ST

S0

)
k = log

(
K
S0

)

σBS(T, k): Black-Scholes implied volatility Cmkt(T, k) = CBS(T, k, σBS(T, k))

Figure: Market volatility surface as of 2013/08/14
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Calibration

Let M ≡ {M(θ)}θ∈Θ⊂Rd denote a parametric model of the price evolution.
Then, calibration is the numerical procedure identifying the optimal
parameters solving

θ̂ = argmin
θ∈Θ⊂Rd

∑

i

∑

j

wij [σBS(Ti, kj)− σM
BS(Ti, kj , θ)]

2

where
wij : set of weights
σM
BS(·, ·, θ): model implied volatilities for parameter θ (over the market

grid in (T, k))
σBS(·, ·): market implied volatilies from the volatility surface
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The Heston stochastic volatility model

dSt

St
=

√
vt(ρdWt +

√
1− ρ2dW⊥

t )

dvt = κ(v̄ − vt)dt+ η
√
vtdWt
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The Rough Heston model
El Euch and Rosenbaum (2018,2019), El Euch, Gatheral, and Rosenbaum Risk (2019)

dSt =
√
vtSt(ρdWt +

√
1− ρ2dW⊥

t )

vt = ξ0(t) +
η

Γ(H + 1
2 )

∫ t

0

√
vs

(t− s)
1
2−H

dWs
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(a) rHeston fit over the shortest
expiration as of 2013/08/14
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(b) rHeston vs term structure of
ATM skew vs power-law fit
[H = 0.0192] as of 2013/08/14

The forward variance curve, ξ0(t), is a state-variable, possibly exogenous to
calibration.
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Two possible routes to calibration
If the characteristic function (CF) is available in (semi-)closed form:

PROS very efficient machinery to perform computations in Fourier space
[FFT-Lewis, SINC from Baschetti et al. Quant. Finance (2022)]

CONS the computation of the CF may be slow e.g., rHeston from El Euch and
Rosenbaum Math. Finance (2019) requires solving a fractional equation.
Of course, the rational approximation by Gatheral and Radoičić IJTAF
(2019) speeds up the procedure.

SOL one may train a Neural Network to learn the pricing function to
achieve super-fast computation of the implied volatilities and sensitivities

The model is purely simulative (e.g., rBergomi by Bayer, Priz, Gatheral,
Quant. Finance (2016) or quadratic rHeston by Gatheral, Jusselin, and
Rosenbaum Risk (2020), PDV models)

PROS very flexible
CONS Monte Carlo (MC) pricing is computationally too heavy
CONS convergence of the optimization severely affected by MC errors

SOL calibration by feed-forward Neural Networks (Hernandez Risk (2017),
Horvath, Muguruza, and Tomas Quant. Finance (2021))
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Calibration by feed-forward Neural Networks

Grid-based methods in the literature (Hernandez (2017), Horvath et al.
(2021), Rømer Quant. Finance (2022))
Train the Neural Network to learn a collection of pixels from the volatility
surface over a fixed bi-dimensional grid in (T, k)

k/T T1 T2 . . . Ti . . . Tn

k1 · · . . . · . . . ·
...

...
...

...
...

...
...

kj · · . . . · . . . ·
...

...
...

...
...

...
...

km · · . . . · . . . ·

The 2-step approach

a Neural Network approximates the map from model parameters to (reduced)
volatility surfaces (offline training)

input output
θ (σM

BS(Ti, kj , θ))i=1,...,n j=1,...,m

solve the optimization problem online
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Calibration by feed-forward Neural Networks cnt’d

Figure: Neural network architecture in Horvath et al. (2021).

PROS calibration is extremely fast! One millisecond to compute one 11× 8 grid of
implied volatilities, nearly 100 steps to convergence

PROS Rømer’s adaptive grid enhances the performances

CONS need for an interpolation/extrapolation method to compute the
implied volatility for arbitrary (k, T )

CONS extrapolation, expecially at very low time to maturity, may be subtle
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The pointwise approach
A feed-forward neural network is trained to learn the pricing function
from model parameters and option’s parameters to (a single point in)
implied volatility

input output
(T, k, θ) σM

BS(T, k, θ)

The approach was pioneered by Bayer and Stemper (2018). By design,
it is interpolation-free. Unfortunately, the architecture in the original
specification was quite demanding: from few hundreds up to four thousands
nodes per layer. The number of samples must be large for proper training.

Horvath et al. (2018) support the grid-based approach since “by
evaluating the objective function on a larger set of (grid) points,
injectivity of the mapping can be more easily guaranteed than in the
pointwise training”
Remark: The mapping from model parameters, strike, and time to
maturity is not injective. Proper training is much more crucial. A
suitable choice of the target will fix injectivity (parameter identification).

G. Bormetti Deep calibration 12 - 15 April, 2023 12 / 37



Our contribution

We identify three important ingredients:
1. An adaptive grid:

0 0.5 1 1.5 2 2.5

T

0

0.5

1

1.5

S
T

2. The following parametric form for the forward variance curve (vs the
piecewise constant specification) performs very well:

ξ0(t) = β0 + β1 exp

(
− t

τ1

)
+ β2

(
t

τ2

)
exp

(
− t

τ2

)
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Our contribution

3. Pointwise training can be performed more effectively: One
produces random grid surfaces in the generation phase but feed
them to the network in a pointwise manner
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Figure: Out-of-sample errors as a function of the training sample dimension (left)
and of the computational burden (right). Blue bars: pointwise training. Orange
bars: random smiles training.

4. Network’s architecture is as simple as Horvath et al (2018)
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March 16, 2021 example
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Figure: Rough Heston calibration to the market volatility surface as of March 16,
2021. Green is pointwise (random grid), cyan is fixed grid (interpolation via FFT of
the true CF), and yellow is fixed grid plus splines.
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July 17, 2014 example
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Figure: Left panel: Calibrated piecewise constant (black) and parametric (yellow)
forward variance curve as of 2014/07/17. Right panel: fit to the T = 0.0822 maturity
smile.
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Interlude

Random smiles with SINC
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The SINC approach
F.Baschetti, G.Bormetti, S.Romagnoli, and P.Rossi, Quant. Finance 22(3), 427 – 446, (2022)

Decompose a European put into Cash or Nothing (CoN) and Asset or Nothing
(AoN) options:

E[(K − ST )
+] = KE[1sT<k]− S0EsT [1sT<k]

where sT = log ST

S0
and k = log K

S0
.

E[1sT<k] =

∫
f(sT )θ(k − sT )dsT =

∫
e−i2πkω f̂(ω)

i

2π

1

ω + iϵ
dω

EsT [1sT<k] =

∫
e−i2πkωĥ(ω)

i

2π

1

ω + iϵ
dω

where

ĥ(ω) =

∫
ei2πωsT esT f(sT )dsT = f̂

(
ω − i

2π

)
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Shannon Sampling Theorem (SST)
Sufficient condition for a sample rate to guarantee that a discrete sequence of samples
resolves all the frequency content and perfectly reproduces the original function.

Assumption The input signal has finite bandwidth in the frequency domain

Inverse problem What if the original function is limited in the direct space?

For any η > 0, we can find Xc such that∣∣∣∣1− ∫ Xc

−Xc

f(sT )dsT

∣∣∣∣ < η

and the SST guarantees that the Fourier transform of the truncated PDF
f(sT )1−Xc<sT<Xc can be recovered given a countable set of points ωn = n

2Xc
:

e−i2πkωf1−Xc<sT<Xc

∧

(ω) =

+∞∑
n=−∞

e−i2πkωnf1−Xc<sT<Xc

∧

(ωn)sinc[2πXc(ω − ωn)]

E[1sT<k] ≈ E[1sT<k1−Xc<sT<Xc
]

=
i

2π

+∞∑

n=−∞
e−i2πkωnf1−Xc<sT<Xc

∧

(ωn)

∫ +∞

−∞

sinc[2πXc(ω − ωn)]

ω + iϵ
dω
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Solving the inner integral in the sinc and truncating the infinite sum

E[1sT<k] ≈
i

2π

+N/2∑

n=−N/2

e−i2πkωnf1−Xc<sT<Xc

∧

(ωn)

[
− iπ1n=0 +

1− (−1)n

n
1n ̸=0

]

Weights follow a very simple pattern!

The final formula follows replacing f1−Xc<sT<Xc

∧

(ωn) with f̂(ωn) and
recognizing that even Fourier moments are not relevant:

E[1sT<k] ≈
1

2
+

2

π

N/4∑

n=1

1

2n− 1

[
sin(2πkω2n−1)ℜ[f̂(ω2n−1)] +

− cos(2πkω2n−1)ℑ[f̂(ω2n−1)]

]

Out of the N + 1 terms included in the expansion, only N/4 survive!
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Proposition (Error analysis)
The error associated to the SINC approach can be written as a sum of three
components:

1 the PDF truncation error
2 the approximation to a finite sum
3 true Fourier coefficients for the original PDF in place of the truncated one

ϵ =

∫
f(sT )θ(k − sT ) dsT −

∫ Xc

−Xc

f(sT )θ(k − sT ) dsT

(
−→

Xc→∞
0

)

+
i

2πXc

∑

|n|>N/4

e−i2πkω2n−1
f1−Xc≤sT≤Xc

∧

(ω2n−1)

ω2n−1

(
−→
N→∞

0

)

+
i

2πXc

+N/4∑

n=−N/4

e−i2πkω2n−1
f1−Xc≤sT≤Xc

∧

(ω2n−1)− f̂(ω2n−1)

ω2n−1

(
≤ C

Xc

π
(f(Xc) + f(−Xc)) −→

Xc→∞
0

)
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SINC via Fast Fourier Transform

Focusing on a discrete grid of evenly spaced strikes

km = m
2Xc

N
−N/2 ≤ m < N/2

one can write the AoN and CoN prices as

E[easT 1sT<km
] ≈

i

2π

N−1∑

n=0

e−i 2π
N mnqn, qn =





π
i n = 0

f̂(ωn − a i
2π )

1−(−1)n

n n ∈ [1, N/2)

0 n = N/2

f̂(ωn−N − a i
2π )

1−(−1)n−N

n−N n ∈ (N/2, N − 1]

where a = 0 for the CoN or a = 1 for the AoN.
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II Part

Are old-style stochastic volatility models really over?
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Motivation
An ambitious modeling of volatility requires first identifying the empirical
phenomena that fundamentally characterize the volatility formation process.
Slides by L.Parent (2023) available from SSRN 4396307

dS(t)

S(t)
= f(t, Y (t))dW1(t)

Y (t) = Y0 +

∫ t

0

µ(t, u, Y (u))du

+

∫ t

0

ν(t, u, Y (u))

(
ρ

1

f(u, Y (u))

dS(u)

S(u)
+
√
1− ρ2dW⊥

u

)

ρ ̸= {−1, 0, 1}: partial path-dependency
if f(t, Y (t)) =

√
Y (t) and µ(t, u, Y (u)), ν(t, u, Y (u)) properly specified:

rough Heston model (El Euch and Rosenbaum (2018)) -> roughness
and volatility persistence
if f(t, Y (t)) =

√
a+ b(Y (t)− c)2) and µ(t, u, Y (u)), ν(t, u, Y (u)) properly

specified: quadratic rough Heston model (Gatheral et al. (2020)) ->
Zumbach effect
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Volatility is (mostly) path-dependent
Guyon and Lekeufack (2022). Available at SSRN4174589.

dS(t)

S(t)
= µtdt+ σtdW1(t)

σt = β0 + β1m1(t) + β2

√
m2(t) + β1,2(m

′
1(t))

21m′
1(t)>0

m1(t) =

∫ t

−∞
K1(t− u)

dS(u)

S(u)

m2(t) =

∫ t

−∞
K2(t− u)σ2

udu

where m′
1(t) is similar to m1(t) but with a possible different time scale.

σt purely endogenous and driven by m1(t)

lack of probability on the right tail (misspricing of ATM calls):

dS(t)/S(t) = µtdt+ eXtσtdW1(t)

with Xt Ornstein-Uhlenbeck (OU): mostly path-dependent

β1,2 very significant when pricing
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The rough path-dependent volatility model
L. Parent (2023). Available at SSRN4270481.

dS(t)

S(t)
= µtdt+ σtdW1(t)

(σt)
p = β0 + β+

1 ((m1(t)− m̄1)
+)a1 + β−

1 ((m̄1 −m1(t))
+)a2 + β2(m2(t))

p
a2

m1(t) = c

∫ t

−∞
K1(t− u)

dS(u)

S(u)
+ κ1

∫ t

−∞
K1(t− u)(θ1(u)−m1(u))du

m2(t) =

∫ t

−∞
K2(t− u)(σu)

a2du+ κ2

∫ t

−∞
K2(t− u)(θ2(u)−m2(u))du

where a1, a2 ∈ {1, 2}, and θj are Ft-adapted processes.
m2(t) is a market activity, possible MA of past volatility

if θ1 and θ2 are deterministic, purely endogenous dynamics
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Volatility is (mostly) path-dependent: A remark
Guyon and Lekeufack (2022). Available at SSRN4174589.

From the empirical analysis, regressing RV on R1(t)
.
=

∑
ti≤t K1(t− ti)rti and

R2(t)
.
=

∑
ti≤t K2(t− ti)r

2
ti :

RV (t) = β0 + β1R1(t) + β2

√
R2(t)

Leverage and/or trend effect: β1 < 0

Volatility clustering: β2 ∈ (0, 1)

“Both factors R1 and R2 are needed to satisfactorily explain the volatility”
Guyon and Lekeufack (2022)

However, the continuous time (Markov) specification reads:

dS(t)

S(t)
= µtdt+ σ(R1, R2)dW1(t) , σ(R1, R2)

.
= β0 + β1R1 + β2

√
R2

dR1(t) = λ1(σ(R1, R2)dW1(t)−R1(t)dt)

dR2(t) = λ2(σ(R1, R2)
2dt−R2(t)dt) <- Key: Brownian QV

What if β1 = 0? Deterministic evolution of R2

Not the case for observation-driven models in discrete-time, e.g. GARCH
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Empirical analysis of rough and classical stochastic
volatility models to the SPX and VIX markets
S.E. Rømer, Quantitative Finance 22(10), 1805 – 1838, (2022)

Shifted mixture two-factor rough Bergomi type model

dS(t)

S(t)
= µtdt+

√
V (t)dW1(t)

V (t) = ζ0(t)(µX1(t) + (1− µ)X2(t)) + c

Xi(t) = E(ηi(θiY1(t) + (1− θi)Y2(t)))

Yi(t) =

∫ t

0

Ki(t− u)dWi+1(u)

A Neural Network learns - via Monte Carlo - the relation from model
parameters to a 175-dimensional adapted grid of implied volatility

Excellent fit to SPX and VIX options, but one looses a bit the nice
connection with the empirical phenomena that characterize the
volatility formation process
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The EWMA Heston model
L. Parent, Quantitative Finance 23(1), 71 – 93, (2023)

dS(t)

S(t)
= µtdt+

√
VtdW1(t)

dm(t) = − 1

τm

(
dS(t)

S(t)
−m(t)dt

)

dV (t) = − 1

τV
(V (t)− ν2t )dt+ ξνt

√
V (t)dW2(t)

with νt = ν + (α− βm(t))+.
m(t) EWMA of past returns: trend effect

τm << 1 mimics roughness

νt consistent with empirical relation between trend and Realized Volatility (RV)
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The EWMA Heston model cnt’d
L. Parent, Quantitative Finance 23(1), 71 – 93, (2023)76 L. Parent

Figure 2. The empirical relationship between the realized volatility of the S&P500 and the EWMAs of its past returns for different values
of τ expressed in years. The red lines are regressions of the form

√
Vt = ν + (α − βmt)+ such as the associated regression lines have all a

slope coefficient equal to
√

2τ
π . These regressions are, respectively, associated with the following R-squared: 0.558,0.547, 0.523, 0.498. (a)

τ equal to 0.15 (in years) (b) τ equal to 0.3 (in years) (c) τ equal to 0.45 (in years) (d) τ equal to 0.6 (in years).

samples provided by the Oxford-Man Institute of Quantita-
tive Finance† . We compare these market data with a set of
synthetic data comprised of 1000 simulations for each of 20
years, generated from the Euler scheme of the thresholded
version of the EWMA HM, using a time step equal to 1

25200
expressed in years. To fit the model, we use the ad-hoc esti-
mation procedure presented in appendix 2. This results in the
following parameters:

These parameter values need some explanation. First, let
us consider the value taken by λ which is setting the long-
term drift. To obtain an order of magnitude for the expected
value of the drift (i.e. E[µt]), we can use the product of the
mean of the realized volatility of the S&P500 by this parame-
ter λ as a proxy. The mean of the realized volatility is 13.1%,
so the value obtained is 7.3% (0.5575 × 0.131 ≈ 7.3%). This
rough estimation of E[µt] is consistent with the annualized
empirical daily mean of the returns which is equal to 7.3%

† The data are available at: https://realized.oxford-man.
ox.ac.uk/data.

(the S&P500 empirical mean of daily returns is equal to
0.028%: thus (1 + 0.028%)252 ≈ 7.3%). Also interesting is
that the value of τ1 is extremely low compared to the range
of values it takes in the standard HM fitted on market data
(Mrázek 2017). Since the unit of τ1 is in years, τ1 equal
to 0.0013 means that the average duration of the deviation
of the variance from this attraction value is of the order of
0.5 days (0.0013 × 365 ≈ 0.5). In other words, the reversion
of the variance process toward the attraction variance is a
short-term phenomenon. This should understood in the con-
text of the very high value taken by ξ , implying that over
very short time scales the variance process is dominated by
randomness. The combination of these two effects – high ran-
domness of Vt at the time scale dt and short time reversion
toward νt

2 – results in erratic volatility behavior over the short
term and allows the roughness of empirical volatility paths
to be mimicked. Consequently, while in the standard HM the
volatility serial correlation is highly dependent on τ1, here, it
depends almost exclusively on the attraction variance νt

2. As
a result and given the value of τ2, the autocorrelation of the

Figure: Taken from Parent, QF (2023). The empirical relationship between the
realized volatility of the S&P500 and the EWMA of past returns.
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Old-fashioned multi-factor stochastic volatility

Multiple time scales in volatility and leverage correlations
J.Perelló, J.Masoliver, & J-Ph.Bouchaud (2004) App. Math. Finance, 11(1), 27 – 50.

dS(t)/S(t) = σ(t)dW1(t)

dσ(t) = −α(σ(t)−m(t))dt+ kdW2(t)

dm(t) = −α0(m(t)−m0)dt+ k0dW3(t)

Leverage: exponential scaling

Volatility autocorrelation with multiple time scales

Stochastic volatility with heterogeneous time scales
D. Delpini and G. Bormetti (2015) Quant. Finance, 15(10), 1597 – 1608.

dS(t)/S(t) = (Y (t) + Z(t))dW1(t)

dY (t) = −κY (Y (t)− Y∞)dt+ νY Y (t)dW2(t)

dZ(t) = −κZ(Z(t)− Z∞)dt+ νZZ(t)dW3(t)

Emergence of power law tails

Multiple volatility components σ(t) = Y (t) + Z(t) mimic long-memory
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The EWMA multi-factor exponential OU

dS(t)/S(t) = (f(Y (t)) + f(Z(t)))dW1(t)

dm1(t) = − 1

τ1
(dS(t)/S(t)−m1(t)dt)

dY (t) = −κY (Y (t)− log(ν1 + (α1 − β1m1(t))
+))dt+ νY dW2(t)

dm2(t) = − 1

τ2
(dS(t)/S(t)−m2(t)dt)

dZ(t) = −κZ(Z(t)− log(m2(t)
2))dt+ νZdW3(t)

1. f(Y (t)) + f(Z(t)): f(X) = eX or f(X) = X +
√
1 +X2 (same 2nd-order

Taylor expansion)
2. τ1, τ2: m1(t) and m2(t) are EWMAs with different time scales. Strong

Zumbach effect, signed and not-signed. If τ1 = τ2 = +∞
exponential OU.

3. Leverage from correlation between Brownians and volatility persistence
from factor structure.
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Preliminar Monte Carlo evidence
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Figure: Returns vs volatility dynamics.
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Preliminar Monte Carlo evidence cnt’d
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Figure: Left panel: Volatility PDF. Right panel: Volatility serial correlation.
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Preliminar Monte Carlo evidence cnt’d
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Figure: Spot volatility vs EWMA of past returns.
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Preliminar Monte Carlo evidence cnt’d
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VOLATILITY IS (MOSTLY) PATH-DEPENDENT 27

(a) SPX smiles (b) VIX smiles

(c) Term-structure of SPX ATM skew

Figure 4.7. SPX smiles, VIX smiles and VIX futures, and term-structure of SPX ATM
skew in the 4-factor PDV model using Parameter set 1 in Table 8 and initial values R1,0,0 =
0.168, R1,1,0 = 0.244, R2,0,0 = 0.005, R2,1,0 = 0.03. We use 100,000 paths to compute SPX
option prices; 20,000 paths and 5,000 nested paths to compute VIX option prices via nested
Monte Carlo; and 10 time steps per day. VIX futures are represented with vertical lines on
the top-right graph

smiles, VIX smiles, and the term-structure of SPX ATM skew produced by the 4-factor PDV model using
Parameter set 1 in Table 8, i.e., the parameters that produced the very realistic sample paths in Figure 4.6.

In fact, we can even jointly calibrate the 4-factor PDV model to market SPX and VIX smiles with a very
good accuracy. We thus show, for the first time, that a continuous-time Markovian parametric stochastic
(actually, path-dependent) volatility model can practically solve the joint SPX/VIX smile calibration problem.

To be precise, we perform the joint calibration on a slightly modified version of the 4-factor PDV model,
where the deterministic function (R1, R2) 7! �(R1, R2) in (4.11) is replaced by

(4.19) �(R1, R2) = �0 + �1R1 + �2

p
R2 + �1,2R

2
11R1�0.

By adding a quadratic term in R+
1 we allow for a better calibration of the increasing SPX smile for out-the-

money call options. In Figure 4.8, we have (for now, manually) calibrated the above version of the 4-factor
PDV model to the first two monthly maturities of the SPX smile, the first monthly VIX future, and the first
monthly maturity of the VIX smile as of June 2, 2021. It is remarkable that we can so accurately fit SPX
and VIX smiles jointly (especially for such short maturities) with a parametric Markovian continuous-time
model having only 10 parameters. The calibrating (or implied or risk-neutral) parameters are reported in
Table 8. We call risk-neutral PDV model or implied PDV model or Q-PDV model the 4-factor PDV model
when it is fed with these implied parameters.

Electronic copy available at: https://ssrn.com/abstract=4174589

Figure: Implied volatility smiles from the model (left panel) and from PDV (right
panel, from Guyon and Lekeufack (2022)).
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Conclusions and perspectives

We revisited the pointwise approach to calibration:
highly accurate pricing
fast computation of the implied volatility and sensitivities
no need for interpolation and extrapolation
key ingredients: adaptive grid and random training with smiles

Tested SINC as a smile generator during training
Proposed a novel (mostly) path-dependent model with Zumbach effect
incorporated and multiple volatility time scales (with fast and slow mean
reversion)
What remains to be done: Monte Carlo training to learn the pricing of
SPX and VIX options
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