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Modelling beyond Markov processes

Recent trend for using processes with memory in finance and beyond:

▶ Rough volatility: Model stochastic volatility by fractional Brownian
motion, e.g., the rough Bergomi model:

dS t =
√

vtS tdZt,

vt = ξ(t) exp
(
ηŴt −

1
2
η2t2H

)
, Ŵt B

∫ t

0
K(t − s)dWs, K(r) B

√
2HrH− 1

2 .

▶ Order flow models by self-exciting jump processes, e.g., Hawkes
processes.

▶ Statistical mechanics models based on Generalized Langevin
Equations.

Many numerical methods rely on the Markov property: (pricing) PDEs,
polynomial regression methods, dynamic programming, . . . .
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Signatures of smooth paths

▶ Given a smooth path X : [0,T ]→ Rd, i.e., a continuous path of
bounded variation. W.l.o.g., X(0) = 0.

▶ For a word α = i1 · · · in, ij ∈ { 1, . . . , d }, set the iterated integral

Xi1···ins,t B

∫
s<t1<···<tn<t

dXi1(t1) · · · dXin(tn), X∅s,t B 1.

▶ The signature is the collection of all iterated integrals

X<∞s,t B
∞∑

n=0

∑
i1,...,in∈{ 1,...,d }

Xi1···ins,t ei1 ⊗ · · · ⊗ ein ∈ T ((Rd)) B
∞∏

n=0

(Rd)⊗n.

▶ Also define the truncated signature

X≤N
s,t B

N∑
n=0

∑
i1,...,in∈{ 1,...,d }

Xi1···ins,t ei1 ⊗ · · · ⊗ ein ∈ T N(Rd) B
N∏

n=0

(Rd)⊗n
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Tensor algebra

▶ T ((Rd)) is an algebra: with a = (an)∞n=0,b = (bn)∞n=0 set

a ⊗ b B
( ∑

i+ j=n

ai ⊗ b j

)∞
n=0
.

Chen’s theorem

X<∞s,u ⊗ X
<∞
u,t = X

<∞
s,t , 0 ≤ s ≤ u ≤ t ≤ T.

▶ Different topologies have been suggested, leading to (Banach- or
Hilbert-) subspaces of T ((Rd)). Here, we consider the full space
T ((Rd)). In contrast, T N(Rd) is finite dimensional and endowed with
the usual Euclidean topology.
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A smooth example path: X(t) =
(
α cosh(θ1t) − α, cos(θ2t)

)
, d = 2
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Visualization of the shuffle identity
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Calculation of the area
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A two-dimensional Brownian path
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The signature of level two
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The dual algebra

▶ LetWd denote the linear span of words w in the letters { 1, . . . , d }.
▶ Wd is an algebra with the concatenation product – equivalent to

the tensor product.

▶ Duality with the pairing ⟨·, ·⟩ defined for ℓ = λ1w1 + · · · + λkwk ∈ Wd

and a ∈ T ((Rd)) by

⟨ℓ, a⟩ B λ1aw1 + · · · + λkawk ,

where ai1···im is the coefficient of a w.r.t. ei1 ⊗ · · · ⊗ eim .
▶ Shuffle product onWd: For words w, v and letters i, j defined by

w� ∅ B ∅� w B w, wi� vj B (w� vj)i + (wi� vj)j.

▶ Example: 12� 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412
▶ The shuffle product is a commutative product onWd.
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Shuffle identity

Shuffle identity for signatures

∀ℓ1, ℓ2 ∈ Wd :
〈
ℓ1, X

<∞
s,t

〉 〈
ℓ2, X

<∞
s,t

〉
=

〈
ℓ1 � ℓ2, X

<∞
s,t

〉

▶ Define a group G(Rd) ⊂ T ((Rd)) w.r.t. ⊗ by

G(Rd) B
{

a ∈ T ((Rd))
∣∣∣ ∀ℓ1, ℓ2 ∈ Wd : ⟨ℓ1, a⟩ ⟨ℓ2, a⟩ = ⟨ℓ1 � ℓ2, a⟩

}
.

▶ Note that X<∞s,t ∈ G(Rd) for any s ≤ t and any smooth path X.

▶ For p ∈ R[x], i.e., p(x) = λ0 + λ1x+ · · ·+ λnxn, and ℓ ∈ Wd, we have

p
(〈
ℓ, X<∞s,t

〉)
=

〈
p�(ℓ), X<∞s,t

〉
, p�(ℓ) B λ0∅+λ1ℓ+· · ·+λnℓ

�n ∈ Wd.

Optimal stopping with signatures · April 13, 2023 · Page 13 (33)



Shuffle identity

Shuffle identity for signatures

∀ℓ1, ℓ2 ∈ Wd :
〈
ℓ1, X

<∞
s,t

〉 〈
ℓ2, X

<∞
s,t

〉
=

〈
ℓ1 � ℓ2, X

<∞
s,t

〉
▶ Define a group G(Rd) ⊂ T ((Rd)) w.r.t. ⊗ by

G(Rd) B
{

a ∈ T ((Rd))
∣∣∣ ∀ℓ1, ℓ2 ∈ Wd : ⟨ℓ1, a⟩ ⟨ℓ2, a⟩ = ⟨ℓ1 � ℓ2, a⟩

}
.

▶ Note that X<∞s,t ∈ G(Rd) for any s ≤ t and any smooth path X.

▶ For p ∈ R[x], i.e., p(x) = λ0 + λ1x+ · · ·+ λnxn, and ℓ ∈ Wd, we have

p
(〈
ℓ, X<∞s,t

〉)
=

〈
p�(ℓ), X<∞s,t

〉
, p�(ℓ) B λ0∅+λ1ℓ+· · ·+λnℓ

�n ∈ Wd.

Optimal stopping with signatures · April 13, 2023 · Page 13 (33)



Shuffle identity

Shuffle identity for signatures

∀ℓ1, ℓ2 ∈ Wd :
〈
ℓ1, X

<∞
s,t

〉 〈
ℓ2, X

<∞
s,t

〉
=

〈
ℓ1 � ℓ2, X

<∞
s,t

〉
▶ Define a group G(Rd) ⊂ T ((Rd)) w.r.t. ⊗ by

G(Rd) B
{

a ∈ T ((Rd))
∣∣∣ ∀ℓ1, ℓ2 ∈ Wd : ⟨ℓ1, a⟩ ⟨ℓ2, a⟩ = ⟨ℓ1 � ℓ2, a⟩

}
.

▶ Note that X<∞s,t ∈ G(Rd) for any s ≤ t and any smooth path X.

▶ For p ∈ R[x], i.e., p(x) = λ0 + λ1x+ · · ·+ λnxn, and ℓ ∈ Wd, we have

p
(〈
ℓ, X<∞s,t

〉)
=

〈
p�(ℓ), X<∞s,t

〉
, p�(ℓ) B λ0∅+λ1ℓ+· · ·+λnℓ

�n ∈ Wd.

Optimal stopping with signatures · April 13, 2023 · Page 13 (33)



Rough paths

▶ For X : ∆T → T ⌊p⌋(Rd), ∆T B { (s, t) | 0 ≤ s ≤ t ≤ T }, p ≥ 1, let

∥X∥p−var B max
k=1,...,⌊p⌋

sup
D partition of [0,T ]

∑
ti∈D

∣∣∣πk(Xti,ti+1)
∣∣∣ p

k


k
p

Rough paths

Given p > 1, the set Ωp
T of (geometric) p-rough paths is the closure of{

X≤⌊p⌋·,·

∣∣∣ X smooth
}

under ∥·∥p−var.

▶ Given a rough path X, we can construct X<∞ in a unique, pathwise,
continuous way – as well as solving differential equations.

▶ Example: Let W be a Brownian motion, setW(ω) : ∆T → T 2(Rd) by

W i
s,t B W i

t −W i
s, W i, j

s,t B

∫ t

s
(W i

u −W i
s) ◦ dW j

u, 1 ≤ i, j ≤ d.

This a.s. defines a rough path for 2 < p < 3, i.e.,W ∈ Ωp
T a.s.
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Key observations

Continuous functionals f : Ωp
T → R can be approximated by linear

functionals X 7→
〈
ℓ, X<∞0,T

〉
, ℓ ∈ Wd.

▶ This is a consequence of Stone–Weierstrass and the shuffle
identity (and holds on compact subsets of Ωp

T ).

For every rough stochastic process X̂, the process t 7→ X̂<∞0,t is a
Markov process.

▶ Every rough path X with one strictly monotone component is
uniquely determined by its signature.

▶ Consider the process X̂t B (t, Xt), and its rough path lift to
X̂ : ∆T → T ⌊p⌋(Rd+1). Then X̂|∆t is uniquely determined by X̂<∞0,t , for
any 0 ≤ t ≤ T .

▶ Assuming that X0 is trivial, the above result follows.
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Signatures as features for Machine Learning methods

▶ Input data: a path or, more realistically, a time series in d
dimensions.

▶ Feature transformation: extract a finite dimensional projection of
the path-signature.

▶ ML framework: plug the features into a standard ML framework,
e.g., random forest or deep neural network.

Examples [Terry Lyons and co-authors]
▶ Action recognition

▶ Medical diagnosis

▶ Chinese handwriting
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Motivation: Optimal stopping of fractional Brownian motion

[Becker, Cheredito, Jentzen ’19] consider the problem sup
0≤τ≤1

E
[
WH
τ

]
,

where WH is fractional Brownian motion with Hurst index H –
connection to rough stochastic volatility models.

▶ Fix a time-grid 0 = t0 < t1 < · · · < tJ = 1, and define a Markov
process X j ∈ R

J by

X0 = (0, 0, . . . , 0)

X1 = (WH
t1 , 0, . . . , 0)

X2 = (WH
t1 ,W

H
t2 , 0, . . . , 0)

...

▶ Use deep neural networks to parameterize stopping decisions
f j(X j) ≈ DNN j(X j; θ) – “stop at time j unless stopped earlier”.
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Motivation: Optimal stopping of fractional Brownian motion

Figure: Plot from [Becker, Cheridito, Jentzen ’19], licensed under CC BY 4.0.
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Setting

On a probability space (Ω,F ,P) we are given:

▶ A stochastic process (Xt)t∈[0,T ] such that X̂t B (t, Xt) extends to a
p-rough path X̂.

▶ A continuous reward-process (Yt)t∈[0,T ] adapted to the filtration
(Ft)t∈[0,T ] generated by X̂ such that E ∥Y∥∞ < ∞.

Optimal stopping problem

Let S be the set of (Ft)t∈[0,T ]-stopping times taking values in [0,T ].
Solve

sup
τ∈S

EYτ.
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Signature method for stochastic control

Following [Kalsi, Lyons, Perez Arribas ’20], a method of solving
stochastic optimal control problems using signatures can be
described as follows:

1. Controls ut are continuous functions of the path ϕ(X̂|[0,t]) and,
hence, of the signature θ(X̂<∞0,t ) – and similarly for the loss function.

2. We may approximate θ(X̂<∞0,T ) by linear functionals
〈
ℓ, X̂<∞0,T

〉
.

3. Interchange expectation and truncate the signature at level N.

4. Optimize ℓ 7→
〈
ℓ, E

[
X̂≤N

0,T

]〉
.

No convergence result known so far, but pathwise density for steps 1.
+ 2. with high probability is proved in [Kalsi, Lyons, Perez Arribas ’20].
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Signature stopping rules

Given ℓ ∈ Wd+1, set the signature stopping time

τℓ B inf
{

t ∈ [0,T ]
∣∣∣∣ 〈ℓ, X̂<∞0,t

〉
≥ 1

}
,

i.e., a hitting time of a hyperplane in T ((Rd)).

Theorem (B., Hager, Riedel, Schoenmakers ’23)

Assuming E
[
∥Y∥∞

]
< ∞, we have

sup
ℓ∈Wd+1

E
[
Yτℓ∧T

]
= sup
τ∈S

E [Yτ∧T ].

▶ While an optimizer τ∗ ∈ S of the R.H.S. generally exists, we do not
know if there also is an optimizer ℓ∗ ∈ Wd+1 of the L.H.S.
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Elements of the proof: Continuous stopping rules

Step 1: Controls as continuous functionals of paths

▶ Let Ω̂p
t the set of p-RPs on [0, t] with values in R1+d, the first

component being s 7→ s

▶ Let ΛT B
⋃

t∈[0,T ] Ω̂
p
t be the space of stopped rough paths.

▶ ΛT is Polish with Dupire’s functional metric based on the
p-variation distance.

▶ Given θ ∈ C(ΛT ,R), we define a continuous stopping rule by

τθ B inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
θ
(
X̂|[0,s]

)2
ds ≥ 1

}
.

Lemma

sup
θ∈C(ΛT ,R)

E
[
Yτθ∧T

]
= sup
τ∈S

E [Yτ∧T ] .
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)2
ds ≥ 1

}
.

Lemma

sup
θ∈C(ΛT ,R)

E
[
Yτθ∧T

]
= sup
τ∈S

E [Yτ∧T ] .
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Elements of the proof: Randomization – 1

Step 2: Approximation by linear functionals of the signature
▶ Problem: Candidate stopping times τ or τθ are typically

discontinuous functions of the path.

Let Z ≥ 0 be a r.v. independent of X̂ with (smooth) c.d.f. FZ .

τrθ B inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0
θ
(
X̂|[0,s]

)2
ds ≥ Z

}
,

τrℓ B inf
{

t ∈ [0,T ]

∣∣∣∣∣∣
∫ t

0

〈
ℓ, X̂<∞0,t

〉2
ds ≥ Z

}
.

Lemma

sup
θ∈C(ΛT ,R)

E
[
Yτrθ∧T

]
= sup
θ∈C(ΛT ,R)

E
[
Yτθ∧T

]
,

and similarly for signature stopping rules.
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Elements of the proof: Randomization – 2

Randomization regularizes the optimal stopping problem

E
[
Yτrθ∧T | X̂

]
= Y0 +

∫ T

0

[
1 − FZ

(∫ t

0
θ
(
X̂|[0,s]

)2
ds

)]
dYt
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Figure: Example loss function based on 100 samples from [B, Tempone,
Wolfers ’20]. L No randomization. R With randomization.
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Elements of the proof: Randomization – 2

Randomization regularizes the optimal stopping problem

E
[
Yτrθ∧T | X̂

]
= Y0 +

∫ T

0

[
1 − FZ

(∫ t

0
θ
(
X̂|[0,s]

)2
ds

)]
dYt

▶ The approximation by linear functionals now follows by
Stone-Weierstrass together with dominated convergence, noting
that for any stopping time τ (randomized or not, signature based or
not):

E [Yτ] ≤ E
[
∥Y∥∞;[0,T ]

]
< ∞.

▶ Randomization can be used to substantially improve the accuracy
of numerical approximations of optimal stopping problems.
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Linearization on the signature

Let, for simplicity, Z ∼ Exp(1). Then we end up with

sup
τ∈S

E [Yτ∧T ] = Y0 + sup
ℓ∈Wd+1

E

[∫ T

0
exp

(
−

∫ t

0

〈
ℓ, X̂<∞0,t

〉2
dt

)
dYt

]
▶ Recalling that X̂t = (t, Xt), we have∫ t

0

〈
ℓ, X̂<∞0,t

〉2
dt =

〈
(ℓ� ℓ)1, X̂<∞0,t

〉
▶ exp can be approximated by polynomials, leading to the

exponential shuffle.

▶ Often, Y can also be approximated by a linear functional on X̂<∞.
Otherwise, consider a RP extending t 7→ (t, Xt,Yt)

▶ Need to truncate the signature.
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Exponential shuffle

▶ For ℓ ∈ Wd+1, define

exp�(ℓ) B
∞∑

n=0

1
n!
ℓ�n.

▶ As a formal series, exp�(l) does not define a linear map on
T ((R1+d)), but it does define
▶ a linear map on T N(R1+d);
▶ a map on the group-like elements G(R1+d), i.e., on signatures.

Lemma

Let g ∈ G(R1+d), ℓ ∈ Wd+1. Then∣∣∣exp (⟨ℓ, g⟩) −
〈
exp�(ℓ), π≤N(g)

〉∣∣∣ ≤ 4 exp(⟨ℓ, 1⟩)

(
|ℓ|

∣∣∣π≤deg(ℓ)(g)
∣∣∣)⌊ N

deg(ℓ)

⌋
+1

(
⌊
N/ deg(ℓ)

⌋
+ 1)!

.
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Polynomial approximation

Theorem (B., Hager, Riedel, Schoenmakers ’21)

Let E
[
∥Y∥∞

]
< ∞. Given κ > 0, define the stopping time σ = σκ by

σ B inf
{

t ≥ 0
∣∣∣∣∣ ∥∥∥∥X̂∥∥∥∥p−var;[0,t]

≥ κ
}
∧ T . Then,

sup
τ∈S

E [Yτ∧T ] = E [Y0]+

+ lim
κ→∞

lim
K→∞

lim
N→∞

sup
|ℓ|+deg(ℓ)≤K

E

[∫ σκ

0

〈
exp�(−(ℓ� ℓ)1), X̂≤N

0,t

〉
dYt

]
.

If Y is a linear functional of X̂<∞, this formula can be further simplified.
E.g., if d = 1 and Y = X, then

sup
τ∈S

E [Yτ∧T ] = E [Y0]+

+ lim
κ→∞

lim
K→∞

lim
N→∞

sup
|ℓ|+deg(ℓ)≤K

〈
exp�(−(ℓ� ℓ)1)2, E

[
X̂≤N

0,σκ

]〉
.
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Remarks

1. Optimal stopping of Brownian motion X:

E
[
X̂<∞0,T

]
= exp⊗

(
T

(
e1 +

1
2

e2 ⊗ e2

))
.

We immediately see that
〈
exp�(−(ℓ� ℓ)1)2, E

[
X̂≤N

0,T

]〉
= 0.

2. Obtain approximately optimal strategy, not just approximation to
value function. Let ℓ∗ = ℓ∗κ,K,N an optimizer in the theorem.
Construct

τrℓ∗ B inf
{

t ∈ [0,T ]
∣∣∣∣ 〈(ℓ∗ � ℓ∗)1, X̂≤N

0,t

〉
≥ Z

}
.

▶ E
[
Yτr
ℓ∗

]
≈ E[Y0] +

〈
exp�(−(ℓ� ℓ)1)2, E

[
X̂≤N

0,σκ

]〉
≈ sup
τ∈S

E [Yτ∧T ]

▶ Obviously, E
[
Yτr
ℓ∗

]
≤ sup
τ∈S

E [Yτ∧T ]

3. Dual method based on minimization of martingales.
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Deep signature stopping

▶ The linear signature stopping rules have nice theoretical
properties, but do not seem to work in practice, due to the
exponential.

Log-signatures

▶ L<∞0,t B log⊗(X<∞0,t ) ∈ g(R1+d) B log⊗(G(R1+d)), a free Lie algebra.

▶ Reduces redundancies in the signature, dimension reduction.

▶ Deep signature stopping rule: θ
(
X̂≤N

0,t

)
B ϑ

(
log⊗

(
X̂≤N

0,t

))
, ϑ being a

standard (deep) neural network.

▶ Obtain similar theoretical convergence result, but also works well
in numerical examples.
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Example: optimal stopping of fractional Brownian motion

0.0 0.2 0.4 0.6 0.8 1.0
H

0.0

0.5

1.0

1.5

2.0

2.5 J = 100
J = 1000
J = 10000
J = 100 (BCJ)

Figure: Approximation based on J time steps, log-signature truncated at
N = 3 (dim g≤N = 5), NN with 2 hidden layers.
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Optimal stopping rule for fractional Brownian motion with H = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
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t

BH
t dt tdBH

t 0

50
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2dt

Figure: Approximate randomized stopping rule and select log-signature
entries for one trajectory of a fractional Brownian motion with H = 0.1
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