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Modelling beyond Markov processes @

Recent trend for using processes with memory in finance and beyond:

» Rough volatility: Model stochastic volatility by fractional Brownian
motion, e.g., the rough Bergomi model:

s, = \/V,S,dZ,,
— 1 — t
v, = &(f) exp (nWt - 5:72:”’), W, = f K(1 — 5)dW,, K(r) = V2Hr2
0

» Order flow models by self-exciting jump processes, e.g., Hawkes
processes.

» Statistical mechanics models based on Generalized Langevin
Equations.
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Modelling beyond Markov processes z@’}

Recent trend for using processes with memory in finance and beyond:
» Rough volatility: Model stochastic volatility by fractional Brownian
motion, e.g., the rough Bergomi model:
ds; = Vv,S.dz,
v = &(t) exp (an/t - %nzﬁf’), W, = fo t K(t — s)dW,, K(r) = V2HH1.

> Order flow models by self-exciting jump processes, e.g., Hawkes
processes.

» Statistical mechanics models based on Generalized Langevin
Equations.

Many numerical methods rely on the Markov property: (pricing) PDEs,
polynomial regression methods, dynamic programming, .. ..
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EH A primer on rough path signatures
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Signatures of smooth paths @

> Given a smooth path X : [0,T] — RY, i.e., a continuous path of
bounded variation. W.l.o.g., X(0) = 0
» Foraworda =1;---1,, 1; €{1,...,d}, set the iterated integral

Xilt...in = f Xll(l‘l) Xln(tn) X?t = 1.
’ S<t] <<ty <t ’
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Signatures of smooth paths %

> Given a smooth path X : [0,T] — RY, i.e., a continuous path of
bounded variation. W.l.o.g., X(0) =

» Foraworda =1;---i,,1; €{1,...,d}, set the iterated integral
X = f dX*i(y)---dX (), X7, = 1.
’ S<t) <<ty <t ’

> The signature is the collection of all iterated integrals

=y Y X e, @ @es, € T(RD) = | @D
n=01iq,...,in€{1,...,d} n=0

> Also define the truncated signature

N
Xiltv — Z Z X;j..,lneil ® Qe € TN(Rd) = I_I(Rd)ébn

n=01iq,...,in€{1,...,d} n=0
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Tensor algebra
> T((RY)is an algebra: with a = (a,)% ;. b = (b,)>, set

a®b:=(z a,-®b,) .
n=0

i+j=n

Chen’s theorem

XnoXer =X7, 0<s<u<t<T.

» Different topologies have been suggested, leading to (Banach- or
Hilbert-) subspaces of T((RY)). Here, we consider the full space
T((RY)). In contrast, TV (RY) is finite dimensional and endowed with
the usual Euclidean topology.
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A smooth example path: X(¢) = (a cosh(6;1) — @, cos(6»1)), d = 2
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Visualization of the shuffle identity
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Calculation of the area
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A two-dimensional Brownian path
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The signature of level two
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Note that W(S’;’ti) = 2(Wi )%
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The dual algebra %

> Let W, denote the linear span of words w in the letters { 1,...,d }.

> W, is an algebra with the concatenation product — equivalent to
the tensor product.
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The dual algebra %

> Let W, denote the linear span of words w in the letters { 1,...,d }.

> W, is an algebra with the concatenation product — equivalent to
the tensor product.

> Duality with the pairing (-, -) defined for £ = Ajw; +--- + Lw, € Wy
and a € T((R%)) by

{, a) = 1a" + -+ a"™,

where @'t is the coefficient of aw.rt. e;, ® --- ®e; .
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The dual algebra

> Let W, denote the linear span of words w in the letters { 1,...,d }.

> W, is an algebra with the concatenation product — equivalent to

>

|

the tensor product.
Duality with the pairing (-, -) defined for £ = Ajw; + - - - + e € Wy
and a € T((R%)) by

{, a) = 1a" + -+ a"™,

where @'t is the coefficient of aw.rt. e;, ® --- ®e; .
Shuffle product on “W,;: For words w, v and letters i, j defined by

W2 =gWw:=w, wWildvj:=WwwWvi)i+ WwWivj)j.

Example: 12 11134 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412
The shuffle product is a commutative product on Wj,.
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Shuffle identity @

Shuffle identity for signatures

Vet € Wa: {0, XY X57) = (0w 62, X57)

Optimal stopping with signatures - April 13, 2023 - Page 13 (33)



Shuffle identity @

Shuffle identity for signatures

Va6 e Was (037 (0, X57) = (0w e, X57)

» Define a group G(RY) ¢ T((R%)) w.rt. ® by
G ={aeT(RN) | V1.t € Wq: (61, a) (6, a) = (61 W &, a) ).

> Note that X;° € G(R?) for any s <  and any smooth path X.
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Shuffle identity @

Shuffle identity for signatures

Va6 e Was (037 (0, X57) = (0w e, X57)

» Define a group G(RY) c T((R%)) w.rt. ® by

GRY ={ae T(R) |V, € Wy: (61, a) (L, a) = (61 W &, a) ).
> Note that X53° € G(R?) for any s < ¢ and any smooth path X.
> For p € R[x],i.e., p(x) = p+ A1 x+---+ A,x", and £ € ‘W,, we have

p((63557)) = (M0, %57), P = @+ Ai b+ -+ A, € Wy,
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Rough paths %

> ForX:Ar = TPIRY, Ar ={(5,0)|0<s<t<T},p>1,let

k

» |7
Z |7Tk(Xti,t,'+1) k
tieD

[1IXI = max sup
p—var
k=1,...lp] p partition of [0,7°]

Rough paths

Given p > 1, the set Q’; of (geometric) p-rough paths is the closure of
{ x| X smooth | under [F],-yar-
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Rough paths %

> ForX:Ar = TPIRY, Ar ={(5,0)|0<s<t<T},p>1,let

k
2 |?
IXI1,—var == max sup Z |7Tk(Xti,ti+1) K
k=1....LP1 D partition of [0.T1| =7

Rough paths

Given p > 1, the set Q’; of (geometric) p-rough paths is the closure of
{ x| X smooth | under [F],-yar-

» Given a rough path X, we can construct X<* in a unique, pathwise,
continuous way — as well as solving differential equations.
» Example: Let W be a Brownian motion, set W(w) : A7 — T?(R%) by

.. 4 . . .
Wi, =W -W, W= f(w;—wg)odwg, 1<ij<d
A

This a.s. defines a rough path for2 < p < 3,i.e., W ¢ Q’T’ a.s.
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Key observations %

Continuous functionals f : Q‘; — R can be approximated by linear
functionals X <€, Xg‘;’), e W,.

> This is a consequence of Stone—Weierstrass and the shuffle
identity (and holds on compact subsets of Q?).
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Key observations

Continuous functionals f : Q‘; — R can be approximated by linear
functionals X <£, X;°T°>, e W,. J

> This is a consequence of Stone—Weierstrass and the shuffle
identity (and holds on compact subsets of Qg).

For every rough stochastic process X, the process ¢t — Xg‘;" is a
Markov process.

> Every rough path X with one strictly monotone component is
uniquely determined by its signature.

> Consider the process Y, = (t,X;), and its rough path lift to
X : Ay — TWPIR1). Then X|,, is uniquely determined by Xg‘;" for
any0<r<T.

» Assuming that Xj is trivial, the above result follows.
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Signatures as features for Machine Learning methods

> Input data: a path or, more realistically, a time series in d
dimensions.

» Feature transformation: extract a finite dimensional projection of
the path-signature.

> ML framework: plug the features into a standard ML framework,
e.g., random forest or deep neural network.
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Signatures as features for Machine Learning methods

> Input data: a path or, more realistically, a time series in d
dimensions.

» Feature transformation: extract a finite dimensional projection of
the path-signature.

> ML framework: plug the features into a standard ML framework,
e.g., random forest or deep neural network.

Examples [Terry Lyons and co-authors]

» Action recognition
> Medical diagnosis
» Chinese handwriting
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Theory of signature stopping methods
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Motivation: Optimal stopping of fractional Brownian motion

[Becker, Cheredito, Jentzen *19] consider the problem sup B|W/|,

0<r<1
where W# is fractional Brownian motion with Hurst index H —

connection to rough stochastic volatility models.
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Motivation: Optimal stopping of fractional Brownian motion

[Becker, Cheredito, Jentzen *19] consider the problem sup B|W/|,

0<r<1
where W# is fractional Brownian motion with Hurst index H —

connection to rough stochastic volatility models.
> Fix atime-grid0 =1t <# <--- <t; =1, and define a Markov
process X; € R’ by

Xo = (0,0,...,0)

X, =w/,0,...,0)
X =W/, wlo,...,0

> Use deep neural networks to parameterize stopping decisions
fi(X;) ~ DNN;(X;; 0) — “stop at time j unless stopped earlier”.
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Motivation: Optimal stopping of fractional Brownian motion
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H

Figure: Plot from [Becker, Cheridito, Jentzen ’19], licensed under CC BY 4.0.
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Setting %

On a probability space (Q, F,P) we are given:

» A stochastic process (X;)[o,71 such that }?, = (1, X;) extends to a
p-rough path X.

> A continuous reward-process (Y;).[o,r] adapted to the filtration
(F)ero.71 9enerated by X such that E[|Y]|, < oo.

Optimal stopping problem

Let S be the set of (¥/).[0,r1-Stopping times taking values in [0, T'].
Solve

sup EY;.
TeS
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Signature method for stochastic control %

Following [Kalsi, Lyons, Perez Arribas ’20], a method of solving
stochastic optimal control problems using signatures can be
described as follows:

1. Controls u, are continuous functions of the path ¢(5(\|[0,,]) and,
hence, of the signature 6(X{%°) — and similarly for the loss function.

2. We may approximate G(Xg;’) by linear functionals <£, X§°T<’>

3. Interchange expectation and truncate the signature at level N.

4. Optimize ¢~ (¢, E[X5Y]).

No convergence result known so far, but pathwise density for steps 1.
+ 2. with high probability is proved in [Kalsi, Lyons, Perez Arribas °20]. J
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Signature stopping rules

Given ¢ € ‘Wy,1, set the signature stopping time
we=inf{re0,71] (6 X5y) =1},

i.e., a hitting time of a hyperplane in T((R%)).

Theorem (B., Hager, Riedel, Schoenmakers ’23)

Assuming E[||Y]|] < oo, we have

sup E[Yr,ar] = supE[Year].
fE(WdH 7eS
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Signature stopping rules
Given ¢ € ‘W,,1, set the signature stopping time
we=inf{re0,71] (6 X5y) =1},

i.e., a hitting time of a hyperplane in T((R?)).

Theorem (B., Hager, Riedel, Schoenmakers ’23)

Assuming E[||Y]|] < oo, we have

sup E[Yr,a7] = supE[Yrarl.
fE(WdH 7€eS

> While an optimizer t* € S of the R.H.S. generally exists, we do not
know if there also is an optimizer ¢* € ‘W, of the L.H.S.
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Elements of the proof: Continuous stopping rules %

Step 1: Controls as continuous functionals of paths

> Let ﬁf the set of p-RPs on [0, 7] with values in R!*¢, the first
component being s + s

> Let Ar = Usepom ﬁf be the space of stopped rough paths.

> Ar is Polish with Dupire’s functional metric based on the
p-variation distance.
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Elements of the proof: Continuous stopping rules %

Step 1: Controls as continuous functionals of paths

> Let ﬁf the set of p-RPs on [0, 7] with values in R!*¢, the first
component being s + s

> Let Ar = Usepom ﬁf be the space of stopped rough paths.

> Ar is Polish with Dupire’s functional metric based on the
p-variation distance.

» Given 6 € C(A1,R), we define a continuous stopping rule by

!
Tg = inf{ te[0,T] ‘ f G(Xl[o,s])2 ds > 1 }
0

sup  E[Yrar] = supE [Year].
0eC(A7.R) 7€8
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Elements of the proof: Randomization — 1 %

Step 2: Approximation by linear functionals of the signature
> Problem: Candidate stopping times 7 or 74 are typically
discontinuous functions of the path.

Let Z > 0 be a r.v. independent of X with (smooth) c.d.f. Fz.

. o= 2
7 :=inf{re[0,T]‘fa(xho,s]) dszz},
0

t
7} = inf{te [0, 7] ‘ f (6. Z5) ds > z}.
0

sup E[YTQ,\T]z sup  E[Yrar],
9eC(AT.,R) 9eC(AT.R)

and similarly for signature stopping rules.

Optimal stopping with signatures - April 13, 2023 - Page 23 (33) %



Elements of the proof: Randomization — 2 @

4| 4
2 2
0—— T l T T 0 ‘ ‘ ‘
50 60 70 80 90 100 -0 =5 0 B .

Figure: Example loss function based on 100 samples from [B, Tempone,
Wolfers '20]. L No randomization. R With randomization.
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Elements of the proof: Randomization — 2 %

Randomization regularizes the optimal stopping problem

— i . 2
E|Yeynr |X]= Yo+ fo [I—Fz( fo 0 (Xlf0.x1) ds)] dy,

» The approximation by linear functionals now follows by
Stone-Weierstrass together with dominated convergence, noting

that for any stopping time t (randomized or not, signature based or
not):

E[Y:] < E [ llyory] < .

» Randomization can be used to substantially improve the accuracy
of numerical approximations of optimal stopping problems.
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Outline

1 Approximation of the stopping problem
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Linearization on the signature %

Let, for simplicity, Z ~ Exp(1). Then we end up with

T o,
supE [Yoar] = Yo+ sup E[j; exp(—j; <€, X&‘;") dt)dY,}

7eS 4 GW{H]

> Recalling that )?, = (1, X,), we have
t
f (t. ngj’)z dr = ((Cw 01, X57)
0

> exp can be approximated by polynomials, leading to the
exponential shuffle.

> Often, Y can also be approximated by a linear functional on X<,
Otherwise, consider a RP extending 1 — (¢, X;, Y;)

> Need to truncate the signature.
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Exponential shuffle %

> For £ € W1, define
1
exp(0) = ) e

n=0
» As a formal series, exp"'(/) does not define a linear map on
T((R'*)), but it does define

> alinear map on TV(R!'*9);
> a map on the group-like elements G(R!*%), i.e., on signatures.

Letg e GR'"Y), £ € W,,i. Then

(161 | <deg(€)(g)|) o !

lexp (€, 2) = (exp™(0), m<n(@))] < 4exp((¢, 1)) (N aez D] 7 D!
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Polynomial approximation

Theorem (B., Hager, Riedel, Schoenmakers ’21)

Let E[||Y]le] < 0. Given k > 0, define the stopping time o = o, by
G:ziﬂf{tZO’”X“ ZK}/\T.Then,
p—var;[0,]

supE[Yrar] = E[Yol +
7eS

Oy .
+ lim lim lim sup BE [ f (exp“(-(£w O)1), X5V) dY,] .
k=00 K—00 N—oo |t +deg(0)<K 0 ’

IfY is a linear functional of X<*°, this formula can be further simplified.
E.g.,ifd=1andY = X, then

supE[Yrar] = E[Yol +
7eS

+lim lim lim sup  (exp“(=(Cw 0)1)2, B[XT] |).
K—>00K—>ooN—>ool€|+deg(€)SK< [ 0, K]>
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Remarks %

1. Optimal stopping of Brownian motion X:
= 1
E [X&"}’ = exp® (T (el + 56 ® ez)) )

We immediately see that <eXp"U(—(f w12, B [X(ﬁ)l}’ ) =0.
2. Obtain approximately optimal strategy, not just approximation to

value function. Let £* = £ ;. an optimizer in the theorem.
Construct

o =inf{1e (0,71 | {(€ we, X5N) > 7).

> E Yy |~ B[¥o] + (exp™(—(Cw 0)1)2, E[X5N |) sugE [Yenr]
TE.
> Obviously, E| Y | < supE [Yerr]

7€eS
3. Dual method based on minimization of martingales.
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Deep signature stopping

> The linear signature stopping rules have nice theoretical
properties, but do not seem to work in practice, due to the
exponential.
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Deep signature stopping %

> The linear signature stopping rules have nice theoretical
properties, but do not seem to work in practice, due to the
exponential.

Log-signatures

> Lo = log®(K5) € g(R!*) = log®(G(R'*)), a free Lie algebra.
» Reduces redundancies in the signature, dimension reduction.

> Deep signature stopping rule: 6 (35)) := 9 (log® (355)), ¢ being a
standard (deep) neural network.
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Deep signature stopping @

> The linear signature stopping rules have nice theoretical
properties, but do not seem to work in practice, due to the
exponential.

Log-signatures

> L5 = log®(X5) € g(R!) = log®(GR!*?)), a free Lie algebra.
» Reduces redundancies in the signature, dimension reduction.

> Deep signature stopping rule: 6(X5") = 9 (log® (X3V)), # being a
standard (deep) neural network.

> Obtain similar theoretical convergence result, but also works well
in numerical examples.
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Example: optimal stopping of fractional Brownian motion

55 - —— J=100
—+— J=1000
—+— J=10000

2.0 —— J=100 (BCJ)

0.0 0.2 0.4 0.6 0.8 1.0
H

Figure: Approximation based on J time steps, log-signature truncated at
N =3 (dim g=V = 5), NN with 2 hidden layers.
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Optimal stopping rule for fractional Brownian motion with # = 0.1

10] - ————
o5 1
I ~
00 Ai‘i""m
S
— BH
0 — [BHdt— [taBY [ — [e2dt |

0.0 0.2 0.4 0.6 0.8 1.0

Figure: Approximate randomized stopping rule and select log-signature
entries for one trajectory of a fractional Brownian motion with H = 0.1

200

100
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