Lecture 16 - Lent 2012

An 'explicit' solution to an optimal investment problem

Consider a financial market with two assets, whose prices (B, S) evolve as

$$
\begin{aligned}
d B_{t} & =B_{t} r_{t} d t \\
d S_{t} & =S_{t}\left(\mu_{t} d t+\sigma_{t} d W_{t}\right)
\end{aligned}
$$

where W is a Brownian motion. Recall that a self-financing investor's wealth X_{t}^{θ} can be written as

$$
X_{t}^{\theta}=X_{0} \exp \left\{\int_{0}^{t}\left[r_{s}+\theta_{s}\left(\mu_{s}-r_{s}\right)-\theta_{s}^{2} \sigma_{s}^{2} / 2\right] d s+\int_{0}^{t} \theta_{s} \sigma_{s} d W_{s}\right\}
$$

where θ_{t} is the fraction of the investor's wealth held in the risky asset. We will assume that $\sigma_{t}>0$ and use the notation $\lambda_{t}=\left(\mu_{t}-r_{t}\right) / \sigma_{t}$.

As usual, all the processes are adapted to a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. We will now make more assumptions on the structure of this filtration, and then exploit this additional structure to solve a utility maximisation problem.

Let \tilde{W} be another Brownian motion which is correlated with W, such that

$$
\langle W, \tilde{W}\rangle_{t}=\rho t
$$

for a fixed correlation $-1 \leq \rho \leq 1, \rho \neq 0$. Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the filtration generated by the processes (W, \tilde{W}).

Let $\left(\tilde{\mathcal{F}}_{t}\right)_{t \geq 0}$ be the filtration generated by \tilde{W}. This filtration is strictly smaller than $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ if $|\rho|<1$.

Assumption. The processes (r, μ, σ) are predictable with respect to the smaller filtration $\left(\tilde{\mathcal{F}}_{t}\right)_{t \geq 0}$.

Check that the model considered by Zariphopoulou in 2001 fits into this framework.
Now consider the problem

$$
\text { maximise } \mathbb{E}\left[U\left(X_{T}^{\theta}\right)\right]
$$

where $U(x)=\frac{x^{1-R}}{1-R}$ where the coefficient of relative risk aversion is $0<R<1$.
Theorem. ${ }^{1}$ Define a positive random variable ζ by

$$
\zeta=\exp \left\{\int_{0}^{T}\left((1-R)\left[1+\left(\frac{1-R}{R}\right) \rho^{2}\right] r_{s}+\left(\frac{1-R}{R}\right) \lambda_{s}^{2} / 2\right) d s+\int_{0}^{T} \lambda_{s} \rho\left(\frac{1-R}{R}\right) d \tilde{W}_{s}\right\}
$$

and assume it is integrable. Then for all θ we have

$$
\mathbb{E}\left[U\left(X_{T}^{\theta}\right)\right] \leq U\left(X_{0}\right)[\mathbb{E}(\zeta)]^{R /\left[R+(1-R) \rho^{2}\right]}
$$

with equality if and only if

$$
\theta_{t}=\frac{\rho \gamma_{t}+\lambda_{t}}{\sigma_{t}\left(R+(1-R) \rho^{2}\right)}
$$

[^0]where γ is the process (guaranteed to exist by Itô's martingale representation theorem) such that
$$
\zeta=\mathbb{E}(\zeta) \exp \left\{-\frac{1}{2} \int_{0}^{T} \gamma_{s}^{2} d s+\int_{0}^{T} \gamma_{s} d \tilde{W}_{s}\right\}
$$

It will be notationally easier to prove this theorem via two lemmas:
Lemma. Let ρ and q be constants such that $-1 \leq \rho \leq 1$ and $q \geq 1$. Let $(\alpha)_{t \geq 0}$ be be predictable with respect to the larger filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ and $(\beta)_{t \geq 0}$ be be predictable with respect to the smaller filtration $\left(\tilde{\mathcal{F}}_{t}\right)_{t \geq 0}$. Let

$$
\begin{aligned}
& \eta_{t}=\exp \left\{-\int_{0}^{t}\left(\frac{1}{2}\left[(q-1) \rho^{2}+1\right] \alpha_{s}^{2}+\rho \alpha_{s} \beta_{s}\right) d s+\int_{0}^{t} \alpha_{s} d W_{s}\right\} \\
& Z_{t}=\exp \left\{-\int_{0}^{t} \frac{1}{2} \beta_{s}^{2} d s+\int_{0}^{t} \beta_{s} d \tilde{W}_{s}\right\}
\end{aligned}
$$

Then

$$
\mathbb{E}\left\{Z_{T}\left[\mathbb{E}\left(\eta_{T} \mid \tilde{\mathcal{F}}_{T}\right)^{q}\right]\right\} \leq 1
$$

with equality if and only if α is predictable with respect to the smaller filtration $\left(\tilde{\mathcal{F}}_{t}\right)_{t \geq 0}$ and the local martingale defined by

$$
\exp \left\{-\int_{0}^{t} \frac{1}{2}\left(\beta_{s}+\rho q \alpha_{s}\right)^{2} d s+\int_{0}^{t}\left(\beta_{s}+\rho q \alpha_{s}\right) d \tilde{W}_{s}\right\}
$$

is a true martingale.
Proof. Itô's formula says

$$
d \eta_{t}=-\left(\frac{1}{2}(q-1) \rho^{2} \eta_{t} \alpha_{t}^{2}+\rho \alpha_{t} \beta_{t} \eta_{t}\right) d t+\eta_{t} \alpha_{t} d W_{t}
$$

Recall that the above differential notation actually denotes an equality for stochastic integrals.

Now, with a little work we can show

$$
\mathbb{E}\left(\int_{0}^{t} k_{s} d W_{s} \mid \tilde{\mathcal{F}}_{T}\right)=\rho \int_{0}^{t} \mathbb{E}\left(k_{s} \mid \tilde{\mathcal{F}}_{T}\right) d \tilde{W}_{s}
$$

so that

$$
d \tilde{\mathbb{E}}\left(\eta_{t}\right)=-\left(\frac{1}{2}(q-1) \rho^{2} \tilde{\mathbb{E}}\left(\eta_{t} \alpha_{t}^{2}\right)+\rho \beta_{t} \tilde{\mathbb{E}}\left(\alpha_{t} \eta_{t}\right)\right) d t+\rho \tilde{\mathbb{E}}\left(\eta_{t} \alpha_{t}\right) d \tilde{W}_{t} .
$$

where we're now using the notation $\tilde{\mathbb{E}}(\cdot)=\mathbb{E}\left(\cdot \mid \tilde{\mathcal{F}}_{T}\right)$.
Again, Itô's formula says (after some calculation...)

$$
\begin{aligned}
d\left\{Z_{t}\left[\tilde{\mathbb{E}}\left(\eta_{t}\right)\right]^{q}\right\}= & Z_{t}\left[\tilde{\mathbb{E}}\left(\eta_{t}\right)\right]^{q-2} \frac{q(q-1)}{2} \rho^{2}\left(\left[\tilde{\mathbb{E}}\left(\eta_{t} \alpha_{t}\right)\right]^{2}-\tilde{\mathbb{E}}\left(\eta_{t}\right) \tilde{\mathbb{E}}\left(\eta_{t} \alpha_{t}^{2}\right)\right) d t \\
& +Z_{t}\left[\tilde{\mathbb{E}}\left(\eta_{t}\right)\right]^{q-1}\left[\mathbb{E}\left(\eta_{t}\right) \beta_{t}+q \rho \tilde{\mathbb{E}}\left(\eta_{t} \alpha_{t}\right)\right] d \tilde{W}_{t} .
\end{aligned}
$$

Note that the drift term is non-positive by the Cauchy-Schwarz inquality, and hence the expression above defines a positive supermartingale. This proves

$$
\mathbb{E}\left\{Z_{t}\left[\tilde{\mathbb{E}}\left(\eta_{t}\right)\right]^{q}\right\} \leq 1
$$

Note that the supermartingale is a local martingale if and only if α_{t} is $\tilde{\mathcal{F}}_{T}$-measurable.

The following lemma uses the same notation as above:
Lemma. Let ξ be an positive $\tilde{\mathcal{F}}_{T}$-measurable random variable. Then

$$
\mathbb{E}\left[\xi \eta_{T}\right] \leq\left[\mathbb{E}\left(Z_{T}^{-1 /(q-1)} \xi^{q /(q-1)}\right)^{(q-1) / q}\right.
$$

with equality if and only if

$$
Z_{T}^{-1 /(q-1)} \xi^{q /(q-1)}=C \exp \left\{-\int_{0}^{T} \frac{1}{2}\left(\beta_{s}+\rho q \alpha_{s}\right)^{2} d s+\int_{0}^{T}\left(\beta_{s}+\rho q \alpha_{s}\right) d \tilde{W}_{s}\right\}
$$

where $C=\mathbb{E}\left(Z_{T}^{-1 /(q-1)} \xi^{q /(q-1)}\right)$.
Proof. This is just Hölder's inequality:

$$
\begin{aligned}
\mathbb{E}\left[\xi \eta_{T}\right] & =\mathbb{E}\left[\xi \tilde{\mathbb{E}}\left(\eta_{T}\right)\right] \\
& \leq\left[\mathbb{E}\left(Z_{T}^{-1 /(q-1)} \xi^{q /(q-1)}\right)^{(q-1) / q}\left[\mathbb{E}\left(Z_{T} \tilde{\mathbb{E}}\left(\eta_{T}\right)^{q}\right)\right]^{1 / q}\right.
\end{aligned}
$$

and the result follows from the previous lemma and the condition for equality in Hölder's inequality.

Proof of the theorem. Note that
$U\left(X_{T}^{\theta}\right)=U\left(X_{0}\right) \exp \left\{\int_{0}^{T}\left[(1-R) r_{s}+(1-R) \theta_{s} \sigma_{s} \lambda_{s}-(1-R) \theta_{s}^{2} \sigma_{s}^{2} / 2\right] d s+\int_{0}^{T}(1-R) \theta_{s} \sigma_{s} d W_{s}\right\}$
Now we can apply the second lemma to our problem with $\beta_{t}=\lambda_{t} / \rho, \alpha_{t}=(1-R) \sigma_{t} \theta_{t}$ and

$$
q=\frac{R+(1-R) \rho^{2}}{(1-R) \rho^{2}}
$$

and

$$
\xi=e^{\int_{0}^{T}(1-R) r_{s} d s}
$$

[^0]: ${ }^{1}$ This is one of the main results of my paper, (2004) Explicit solutions to utility maximization problems in incomplete markets. Stochastic Processes and Their Applications 114(1): 109-125.

