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The dual problem
In the previous lecture we saw that in order to find an optimal portfolio, it is sufficient

to replicate I(λZ∗) where Z∗ was a state price density. We now want to characterise those
state price densities Z∗ such that the claim I(λZ∗) is replicable.

Let U be a utility function satisfying the Inada conditions. Define a new function Û :
R→ R ∪ {+∞} by

Û(y) = sup
x>0

U(x)− xy.

This function is called the convex dual function. You should check that Û is decreasing and
convex and satisfies the dual Inada conditions

lim
y↓0

U ′(y) = −∞ and lim
y↑∞

U ′(y) = 0.

Note that for each y, the x that maximises U(x)− xy satisfies

U ′(x) = y ⇔ y = I(x)

so we could also write

Û(y) = U ◦ I(y)− yI(y).

Differentiating the above yields the useful identity

Û ′(y) = −I(y).

Now, for fixed λ > 0, consider the problem

D : minimise E[Û(λZ)] subject to Z a state price density

The following relates the optimal solution to this problem and investment problem considered
before:

Theorem. Suppose Z∗ is the optimal solution of the problem D, and E|Û(Y Z∗)| < ∞ for
all bounded positive random variables Y . Then

E[ZI(λZ∗) = E[Z∗I(λZ∗)]

for all state price densities Z. In particular, I(λZ∗) is attainable.

Proof. Suppose that the sample space Ω = {ω1, . . . , ωN} is finite1. In particular, every scalar
random variables Y : Ω→ R can be identified with the a vector in y ∈ RN in by Y (ωj) = yj.

1This assumption is needed to get the argument presented in lecture to work. However, it is not necessary.
Here is a proof in the general case. Let

φ(b) = inf{E[Û(λZ)] : Z > 0 a.s., E(Z|P1|) <∞ and E(ZP1) = b}

Note that φ is convex, so that by the Lagrangian necessity theorem there exists a Lagrange multiplier
−H∗ ∈ Rn such that

E[Û(λZ∗)−H∗ · [P0 − E(Z∗P1)] ≤ E[Û(λZ)−H∗ · [P0 − E(ZP1)]
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Now note that the set of state price densities is a convex and open subset of RN . Hence
if Z is another state price density, then the random variable Zε = (1− ε)Z∗ + εZ is one too
if |ε| is small enough. Note that the map

ε 7→ E Û(λZε)

is minimised at ε = 0. Hence, Fermat’s theorem says that the derivative of the map vanishes
at ε = 0 assuming it is differentiable. Since Ω is finite, interchanging expectation and
differentiability is not an issue

E

(
Û(λZε)− Û(λZ∗)

ε

)
→ E[(Z − Z∗)Û ′(λZ∗)]

Noting that Û ′(y) = −I(y) completes the proof in this case. �

Putting it all together
Suppose you have a market model (P 1

t , · · · , P n
t ) and you want to introduce a contingent

claim with time-1 payout ξ1. What time-0 price ξ0 should you assign it?
Well, if the original market has no arbitrage, then there would exist a state price density

Z. Then if you set ξ0 = E(Zξ1), then the augmented market with prices (P, ξ) is also free of
arbitrage. Indeed, Z is a state price density for the augmented market as well.

If ξ1 is attainable, then for any choice of state price density Z, we would get the same
initial price ξ0. Otherwise, what should we do?

We could go back to our preference ideas. The buyer’s indifference price (also called
reservation bid price) pB(ξ1) is defined by

sup{E U(H · P1) : H · P0 = X0} = sup{E U(H · P1 + ξ1) : H · P0 = X0 − pB(ξ1)}
Similarly, the seller’s indifference price (also called reservation ask price) pA(ξ1) is defined
by

sup{E U(H · P1) : H · P0 = X0} = sup{E U(H · P1 − ξ1) : H · P0 = X0 + pA(ξ1)}
Clearly, pB(ξ1) = −pA(−ξ1), so it is sufficient to consider just buyer’s prices.

At this point, you should
Exercise. show that if the market is complete, then

pB(ξ1) = pA(ξ1) = E(Zξ1)

where Z is the unique state price density.
Consider the buyer’s unit price pB(εξ1)/ε of a small quantity of the claim. Doing Taylor

expansions, we arrive at the linear pricing rule

E[ξ1U
′(H∗ · P1)] = λξ0

for all Z > 0 such that E(Z|P1|) <∞. Let Zε = Z∗(1 + εY ) where |Y | < 1 a.s. and 0 < ε < 1. Then

E(Z∗Y H∗ · P1) ≥ E

(
Û(λZ∗)− Û(λZε)

ε

)
→ −E[Z∗Y Û ′(λZ∗)]

by the convexity of Û and the monotone convergence theorem. But since Y is arbitrary and Û ′ = −I, we
can conclude that H∗P1 = I(λZ∗) as claimed. �
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where we let ξ0 = limε↓0 pB(εξ1)/ε.
That is to say, in order to find the time-0 indifference price ξ0 of a small quantity of a

contingent claim with payout ξ1, we can set

ξ0 = E(Z∗ξ1)

where Z∗ = U ′(H∗ · P1)/λ. But the conclusion of the last section is that Z∗ can also be
identified with an optimal solution of the problem

D : minimise : E Û(λZ) subject to Z a state price density.

Example. If

U(x) =
x1−R

1−R
is the CRRA utility function with relative risk aversion parameter R > 0, R 6= 1, then the
marginal utility is

U ′(x) = x−R ⇔ I(y) = y−1/R

so the convex dual function is

Û(y) = − y1−1/R

1− 1/R
.

If you read papers2 on financial mathematics, you may come across the so-called q-optimal
equivalent martingale measure, defined as the equivalent martingale measure that minimises
the q-th moment of its density:

E
[(

dQ
dP

)q]
.

Why is this measure important? Well, letting q = 1−1/R > 0, we see that the state price
density that the agent with this utility function would use to compute indifference prices
corresponds to the q-optimal measure.

Example. If
U(x) = log y

(corresponding to R = 1 above) then the marginal utility is

U ′(x) =
1

x
⇔ I(y) =

1

y

so the convex dual function is
Û(y) = − log y − 1.

The dual optimiser for this objective function corresponds to the Föllmer–Schweizer minimal
martingale measure, in the case when the asset prices are continuous semimartingales. We
will come back to this point later in the course.

Example. If
U(x) = −e−γx

2For instance: D. Hobson. Stocastic volatility models, correlation and the q-optimal measure. Mathemat-
ical Finance. 14(4): 537–556. (2004)
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then U is not Inada according the definition given last time. So far, we have considered
utility functions which are finite the positive half-line (0,∞). But without too much effort
we can define the right concepts for utility functions finite on the whole (−∞,∞). For
instance, the correct Inada condition in this case is

lim
x↓−∞

U ′(x) =∞ and lim
x↑+∞

U ′(x) = 0.

which the CARA utility function clearly satisfies. Now

U ′(x) = γe−γx ⇔ I(y) = −1

γ
log(y/γ)

and hence
Û(y) =

y

γ
(log(y/γ)− 1).

The dual optimiser in this case corresponds to the minimal entropy martingale measure. 3

This measure arises in many papers on indifference pricing since, among other reasons, the
calculations of indifference prices in the CARA case are often somewhat tractable.

3See, for instance, Delbaen, Grandits, Rheinlander, Samperi, Schweizer, Stricker. Exponential hedging
and entropic penalties. Mathematical Finance 12: 99–12. (2002)
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