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Motivation
Last time we considered the problem to

maximise E U(H · P1) subject to H · P0 = X0.

If U is concave and satisfies a regularity condition, we saw that there exists a λ such that

E[U ′(H∗ · P1)P1] = λP0

where H∗ is the optimal portfolio. Furthermore, introducing the indirect utility (or value
function)

V (X0) = sup{E U(H · P1) : H · P0 = X0, H ∈ Rn}
we saw that the Lagrange multiplier λ is just the marginal indirect utility V ′(X0).

We usually assume that the utility function U is increasing. Unfortunately, this assumption
alone does not necessarily imply that V is increasing also. But if we further assume that V
is increasing (which seems reasonable, since this says we prefer having more initial wealth
to less), we can conclude the Lagrange multiplier for the investment problem is positive.

Now, if we define a random variable Z by

Z =
U ′(H∗ · P1)

λ

then Z has two properties:

(1) Z > 0 a.s.
(2) E[ZP1] = P0

Crashcourse on one-period financial mathematics
The previous section was merely motivation. We now make a definition which is indepen-

dent of any expected utility maximisation problem.

Definition. Given a market model (P 1
t , . . . , P

n
t )t∈{0,1} a state price density is a random

variable Z such that

(1) Z > 0 a.s.
(2) E(Z‖P1‖) <∞ and E[ZP1] = P0.

Remark. Synonyms for state price density include pricing kernel and stochastic discount
factor.

In many situations, we assume that one of our n given assets is a numéraire, i.e. has
always has positive price. Then we can decompose our market model as

P = (B, S)

where B = (Bt)t∈{0,1} is a positive scalar processes and S = (St)t∈{0,1} is an n−1-dimensional
process. Let Z be a state price density, and introduce a new measure Q by the density

dQ
dP

= Z
B1

B0

.

1



First, note that Q is a probability measure since

EP
(
Z
B1

B0

)
= 1

Similarly, we have

EQ
(
S1

B1

)
= EP

(
Z
S1

B0

)
=
S0

B0

.

The measure Q is called an equivalent martingale measure relative to the numéraire modelled
by B, since the discounted process (St/Bt)t∈{0,1} is a martingale under the equivalent measure
Q. If we assume that B1 is not random (for insance, if the numéraire is a government bond1),
then we say the numéraire is risk-free, in which case the equivalent martingale measure is
called a risk neutral measure. Finally, if the numéraire is unambiguous in a given context,
we might call Q the pricing measure.

Now recall a fundamental notion in market modelling:

Definition. An arbitrage is a portfolio H ∈ Rn such that

(1) H · P0 ≤ 0 ≤ H · P1 a.s.
(2) P(H · P0 < H · P1) > 0.

The most important structural theorem is then:

Theorem. (The first fundamental theorem of asset pricing) A market is free of arbitrage if
and only if there exists a state price density.

Proof.2 One direction is easy. Suppose there exists a a state price density Z. Let H be a
strategy such that

H · P0 ≤ 0 ≤ H · P1.

Since Z > 0 we must have

0 ≤ E(ZH · P1)

= H · E(ZP1)

= H · P0

≤ 0

and hence H · P0 = 0 = H · P1 a.s. In particular, P(H · P0 < H · P1) = 0 and H is not an
arbitrage.

The other direction is more difficult. One possibility is to suppose that there is no arbitrage
and show that a certain utility maximisation problem always has an optimal solution. Then

1Nowadays, it might be hard to argue that the payout of Euro zone bonds are certain.
2Not lectured.
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by the arguments outlined above, the marginal utility is proportional to a state price density.
This approach was presented in the Advanced Financial Models course.

Another approach, due to Douglas Kennedy, is a follows. First define a set of candidate
state price densities by

Z = {Z > 0 a.s. and E(Z‖P1‖) <∞}
and the consider the set

C = {E(ZP1) : Z ∈ Z} ⊆ Rn.

First note that Z is non-empty, since Z0 = e−‖P1‖ is certainly an element. In particular, the
set C is non-empty. Also, it is easy to check that C is convex.

If P0 ∈ C then there would exist a state price density. So suppose P0 6∈ C. We will show
that there exists an arbitrage. Now, by the separating hyperplane theorem, there exists a
vector H ∈ Rn such that

(1) H · (y − P0) ≥ 0 for all y ∈ C
(2) there exists y∗ ∈ C such that H · (y∗ − P0) > 0.

But since every y ∈ C can be written y = E(ZP1) for some Z ∈ Z, we can rewrite the above,
using the notation Xt = H · Pt. as

(1) E(ZX1) ≥ X0 for all Z ∈ Z
(2) there exists Z∗ ∈ Z such that E(ZX1) > X0.

Letting Z = εZ0 for ε > 0 in (1) and sending ε ↓ 0 yields

X0 ≤ 0.

Now let Z = (1
ε
1{X1<0} + 1)Z0 for ε > 0 in (1) and multiplying by ε yields

E(Z0X11{X1<0}) ≥ ε(X0 − E Z0X1)→ 0

But since the left-hand side is non-negative, we must conclude that P(X1 < 0) = 0, i.e.

X1 ≥ 0 a.s.

Finally, by (2) we see that P(X1 > X0) > 0 and hence H is an arbitrage. �

Given our n assets with prices P , we ask what happens if we introduce a new asset. We
will call this new asset a contingent claim (since its payout may depends on the realisations of
the other asset prices) and we will call its time-1 payout ξ1. Note that ξ1 is simply modelled
a scalar random variable.

A certain class of contingent claims are easy to handle–those whose payouts are simply
linear combinations of the payouts of the existing assets. We give them a name:

Definition. A claim is attainable (or replicable) if there exists a portfolio H such that
ξ1 = H · P1.

The following classification of attainable claims was proven in Advanced Financial Models:

Theorem. A claim with payout ξ1 is attainable in an arbitrage-free market if and only if
there is a real number ξ0 such that E(Zξ1) = ξ0 for all state price densities Z such that
E(Z|ξ1|) <∞.
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Definition. A market model is complete if every contingent claim is attainable.

Theorem. (The second fundamental theorem of asset pricing) An arbitrage-free market is
complete if and only if there exists a unique equivalent martingale measure.

A sufficient condition for optimality.
We are now returning to the investor’s optimisation problem. We already have a charac-

terisation of the solution, so if we were only interested in one-period models, we would be
done. But since we are interested in multi-period models in both discrete and continuous
time, we now rewrite some of the results we have in terms of the notions introduced in the
previous section since they carry forward to more complicated models.

First, let us refine some assumptions on the utility function:

Definition. A utility function U : R→ R ∪ {−∞} satisfies Inada conditions if

(1) U is increasing, continuously differentiable and concave,
(2) limx↓0 U

′(x) =∞ and limx↑∞ U
′(x) = 0.

If U is Inada, then the marginal utility U ′ is a decreasing bijection from (0,∞) to (0,∞).
In particular, there exists an inverse function I = (U ′)−1.

Again, consider the problem

P : maximise E U(H · P1) subject to H · P0 = X0.

where U is Inada and X0 > 0. Our main result is the following:

Theorem. Suppose there exists a λ > 0 and a state price density Z∗ such that

E[ZI(λZ∗)] = X0

for all state price densities Z. Then there exists a portfolio H∗ ∈ Rn such that

H∗ · P1 = I(λZ∗)

and H∗ is an optimal solution to the investment problem P .

Proof. This is an exercise. �

Note that in complete markets, there exists only one state price density Z. Hence we need
only find such that

E[ZI(λZ)] = X0

to apply the theorem. However, the left-hand side is a decreasing, and most cases continuous3

function of λ so finding λ amounts to inverting λ 7→ E[ZI(λZ)]. In this sense, we get the
following meta-theorem:

Meta-theorem. Optimal investment complete markets is trivial.

3If there exists a λ∗ > 0 such that E[ZI(λ∗Z)] < ∞, then by the monotone convergence theorem λ 7→
E[ZI(λZ)] is continuous and decreasing on [λ∗,∞). In the one-period case, complete models are necessarily
defined on finite probability spaces, so integrability is not an issue. However, in the continuous-time models
to come, we should be more careful.
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