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The optimal investment problem
We are ready to consider the central problem of this course. We work for now in a one-

period setting to highlight the central issues.
Consider an investor who has initial wealth X0 who wants to invest in such a way that

his terminal wealth X1 (for instance, the amount in his retirement account) is as large as
possible at some fixed future date. We model X0 as fixed real number since he knows his
initial wealth now, and model X1 as a random variable defined on some probability space
(Ω,F ,P) since he does not know what the future will bring.

What does it mean to invest optimally? We endow the investor with a preference relation�
on the set of probability measures on (R,B) (i.e. the distribution P ◦ X−11 of his terminal
wealth) and define optimality in terms of this preference order.

We assume the numerical representation of the investor’s preferences are given by the von
Neumann–Morgenstern representation:

U0(P ◦X−11 ) = E U(X1)

for a utility function U . Remember that this means we are assuming that his preference
relation � satisfy the transitivity, completeness, independence and continuity axioms.

So, the investor’s problem is to

maximise E U(X1) given X0

Next, introduce a financial market model. Suppose that there are exactly n assets in the
economy, and let P i

t denote the price of asset i ∈ {1, . . . , n} at time t ∈ {0, 1}. We will model
the time-0 price P i

0 as a fixed number, and the time-1 price P i
1 as a random variable. We

will let H i denote the investor’s holdings of asset i during the time interval (0, 1]. We will
allow each H i to take any real value, with positive values corresponding to ‘long’ positions
and negative values to ‘short’ positions.1

Since there are exactly n assets in the economy, we assume that the investor’s initial wealth
can be written as

X0 = H · P0 (budget constraint)

=
n∑

i=1

H iP i
0

That is to say, the investor has no choice but to invest all of his money.2

For this lecture, we assume that the investor has no external source of income, and that
he does not consume any part of his wealth. Hence, his time-1 wealth is given by

X1 = H · P1 (self-financing constraint)

In particular, all changes of the investors wealth arise from changes in the asset prices.

1Reality, of course, is more complicated. In real life, to short a share involves borrowing the asset from
a broker and paying the broker a fee. And the broker may call for the return of the share at anytime, for
instance if the price increases and the broker wants to sell it.

2Note that we can always assume that one of the assets, say asset 1, is cash so that P 1
0 = P 1

1 = 1. However,
we do not need this assumption now, so we will not make it.
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We can now rewrite the investor’s problem is to choose the portfolio H ∈ Rn to

maximise E U(H · P1) subject to H · P0 = X0.

Before we analyse this problem, we first recall basic ideas from Lagrangian optimisation.

Crashcourse in Lagrangian optimisation
Consider the contrained optimisation problem

P : maximise f(x) subject to g(x) = b, x ∈ Rn

for given functions f : Rn → R and g : Rn → Rm and a constant b ∈ Rm. The function
f is called a the objective function, any point x ∈ Rn such that g(x) = b is called feasible
solution, and a feasible x∗ is called optimal iff

f(x∗) ≥ f(x)

for all feasible x.
To the problem P , we assign a function L : Rn × Rm, called the Lagrangian, defined by

L(x, λ) = f(x) + λ · (b− g(x)).

The basis theorem is this:

Theorem. (Lagrangian sufficiency) Suppose x∗ is feasible and that there exists a λ∗ such
that

L(x∗, λ∗) ≥ L(x, λ∗)

for all x ∈ Rn. Then x∗ is optimal for problem P .

Proof. If x is feasible then

L(x, λ) = f(x) + λ · (b− g(x))

= f(x).

for any λ. Hence

f(x∗) = L(x∗, λ∗)

≥ L(x, λ∗) for all x by assumption

= f(x) for all feasible x

�

The λ∗ appearing in the hypothesis of the Lagrangian sufficiency theorem is called a
Lagrange multiplier for the problem P . The above theorem says that given a feasible x∗ and
Lagrange multiplier λ∗, we can verify that x∗ is optimal.

Do all problems have Lagrange multipliers? In general, the answer is no. Fortunately
for us, though, there is an easy to check condition that a given problem has a Lagrange
multiplier. To state this condition, we adopt notation to indicated the problem’s dependence
on the contraint b. We write consider the family of problems

Pb : maximise f(x) subject to g(x) = b, x ∈ Rn
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and associated Lagrangians

Lb(x, λ) = f(x) + λ · (b− g(x)).

We define the value function of the family of problems by

φ(b) = sup{f(x) : x ∈ Rn, g(x) = b}

Theorem. (Lagrangian necessity) Suppose for all b there exists an optimal solution x∗b to
problem Pb. If the value function φ is concave, then for all b there exists a Lagrange multiplier
λ∗b to problem Pb, that is

Lb(x
∗
b , λ
∗
b) ≥ Lb(x, λ

∗
b)

for all x ∈ Rn.

Proof. Suppose that φ is concave. Recall that concave functions have the supporting
hyperplane property: for fixed b, there exists λ∗b such that

φ(c) ≤ φ(b) + λ∗b · (c− b)

for all c. In other words, the graph of the function φ lies beneath the hyperplane tangent to
the graph at the point (b, φ(b)). Note3 that if φ happens to be differentiable at b, then we
have

λ∗b = ∇φ(b).

Fix b and let x∗b be the optimal solution of problem Pb. Pick an arbitrary x ∈ Rn define c
to be c = g(x). In particular, the point x is feasible for problem Pc. Therefore, we have

Lb(x
∗
b , λ
∗
b) = f(x∗b)

= φ(b)

≥ φ(c) + λ∗b · (b− c)
≥ f(x) + λ∗b · (b− c)
= Lc(x, λ

∗
b) + λ∗b · (b− c)

= Lb(x, λ
∗
b).

�
And, finally, here is an easy-to-check condition that the value function φ is concave:

Theorem. Suppose f is concave and g is linear. Then then φ is concave.

Proof. This is an exercise. �

Back to optimal investment.
Again, consider the problem to

maximise E U(H · P1) subject to H · P0 = X0.

The following gives the basic structural theorem for this one-period problem:

3We do not need this fact now, but will will come back to it shortly.
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Theorem. Suppose U is concave, everywhere differentiable and that E|U(H · P1)| <∞ for
all H in a neighbourhood of a point H∗. If H∗ is the optimal portfolio, then there exists a
real λ such that

E[U ′(H∗P1)P1] = λP0.

Proof. Consider the value function

V (X0) = sup{E U(H · P1) : H ∈ Rn, H · P0 = X0}
It is an exercise to show that V is concave. In particular, the Lagrangian necessity theorem
applies.

Let
L(H, λ) = E U(H · P1) + λ(X0 −H · P0).

The Lagrangian necessity theorem says that there is a λ∗ such that

L(H∗, λ∗) ≥ L(H,λ∗) for all H ∈ Rn

We now show that H 7→ L(H,λ∗) is differentiable at H∗. Note that for any direction h ∈ Rn

and ε > 0

0 ≥ L(H∗ + εh, λ∗)− L(H∗, λ∗)

ε

= E
[
U [(H∗ + εh) · P1]− U(H∗ · P1)

ε

]
− λ∗h · P0

Notice that the expression inside the square brackets increases pointwise to h ·P1U
′(H∗ ·P1)

since U is concave4. Hence, we may take the limit by the monotone convergence theorem to
conclude

∇HL(H∗, λ∗) = E[U ′(H∗ · P1)P1]− λ∗P0.

However, by Fermat’s theorem (i.e. the first order condition for a maximum) we must have

∇HL(H∗, λ∗) = 0

proving the claim. �.

4...again, using the fact that the graph of a concave function lies beneath its tangent
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