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The von Neumann–Morgenstern expected utility representation
Given our measurable space (E, E), we now define some preliminary notions:

Definition. For each x ∈ E, the measure δx, defined by the rule

δx(A) =

{
1 if x ∈ A
0 if x 6∈ A

is called the Dirac point mass at x. A probability measure measure µ of the form

µ = p1δx1 + . . .+ pnδxn

where x1, . . . , xn ∈ E and p1, . . . , pn > 0 and p1 + . . .+ pn = 1 is called simple.

Proposition. Suppose that U0 : P → R is affine. Define a function U : E → R by
U(x) = U0(δx). Then for every simple probability measure µ we have the representation

U0(µ) =

∫
E

U(x)µ(dx).

Proof. It follows from the definition of affine and induction that

U0(µ) = p1U0(δx1) + . . . pnU0(δxn)

= p1U(x1) + . . . pnU(xn)

=

∫
E

U(x)µ(dx).

�

The following corollary provides a justification for the expected utility hypothesis:

Corollary. Let� be a preference relation satisfying transitivity, completeness, independence
and continuity. Then there exists a function U : E → R such that for simple measures λ
and µ we have

λ � µ if and only if

∫
E

U(x)λ(dx) >

∫
E

U(x)µ(dx).

The conclusion is that in order to compare simple measures λ and µ, it enough to com-
pare the integrals (expected values) of the utility function U . Hence, the von Neumann–
Morgenstern axioms more-or-less justify the expected utility hypothesis. Note the above
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corollary is not quite everything we want since it only applies to simple measures.1 Never-
theless, we will ignore this technicality and adopt the expected utility hypothesis from now
on (unless we explicitly abandon it to look at other problems).

Properties of utility functions
We have seen that there exists that an axiomatic framework that justifies Bernoulli’s idea

that preferences are determined by expected utility. Now, we consider what properties we
should insist that the function U have. In this section, we will let E = R, so we can think
of our experiment as a random payment of money at some fixed future date. Later in the
course, E maybe a sequence space modelling a sequence of payments, or even E may be all
(suitably regular) functions on [0,∞) when we have continuous streams of money.

Axiom 5. (Preference for more-to-less) For all x > y, we have δx � δy. In terms of the
expected utility representation, this means U(x) > U(y); i.e. U is increasing.

Axiom 6. (Risk aversion) For an integrable random variable X, we have2

δE(X) < P ◦X−1.

In terms of expected utility, we have U(x) ≥ E[U(X)]; i.e. U is concave.3

Unless other stated, all utility functions in this course will be increasing and concave. Now
to get some intuition about utility functions, we do a formal calculation. Suppose you have
a certain amount x of money and you are offered two payments

• A certain payment of y units of money, or if y is negative, a certain loss of |y| units
of money.
• A payment of a random variable Y , where E(Y ) = 0.

1Suppose that E is separable metric space. Then the simple measures are dense in P with respect to
the topology of weak converence. If we assume that U0 is continuous and bounded, then we can extend the
representation

U0(µ) =

∫
E

U(x)µ(dx).

to all µ ∈ P. What must we assume about the preference relation � to guarantee that the affine numerical
representation U0 is continuous? or bounded? In fact, things are slightly more subtle since we are really
interested in cases where the utility function U is unbounded.

Fortunately, with there exist several alternative axioms, when added to the four other axioms, that yield
the desired integral represenation of �, even when U is unbounded. See, for instance, Chapter 2 of Stochastic
Finance: An Introduction in Discrete Time by Fölmer and Schied.

2A clearer way to write this is

E(X) < X

but this really is an abuse of notation. The idea is that given a choice between a random payment X and a
certain payment of E(X), the certain payment is preferred.

3This supplements Bernoulli’s argument of decreasing marginal utility.
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How big, or small, must y be so that you are indifferent between these two options? We
consider the case where y and Y are very small and do a Taylor series expansion:

U(x+ y) = E[U(x+ Y )]

U(x) + U ′(x)y ≈ E[U(x) + U ′(x)Y + 1
2
U ′′(x)Y 2]

= U(x) + 1
2
U ′′(x)Var(Y )

so the answer is given, roughly, by

y ≈ 1

2

U ′′(x)

U ′(x)
Var(Y ).

Note that y is negative since U is increasing and concave. The point of this calculation is to
justify the following definition:

Definition. Given a smooth utility function U , the Arrow–Pratt coefficient of absolute risk
aversion is the function

= −U
′′(x)

U ′(x)
.

Examples.

(1) Constant absolute risk aversion (CARA):

U(x) = −e−γx

for a constant γ > 0.
(2) Constant relative risk aversion (CRRA):

U(x) =
x1−R

1−R
for a constant R > 0 and R 6= 1.

(3) The R = 1 case of CRRA
U(x) = log x
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