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The expected utility hypothesis
The aim of this section is to describe the so-called expected utililty hypothesis and give a

plausible argument why expected utility maximisation is the right problem to study.

The Saint Petersburg paradox (usually attributed to Nicolas Bernoulli in 1713) is this.
Suppose I offer you a choice:

(1) I will flip a coin repeatedly, until the first time it lands heads up. I will then pay you
2n units of money if the coin first comes up heads on the nth flip.

(2) I will pay you x units of money.

How big1 does x have to be before you would prefer (2) to (1)? You may first think to
compute your expected payout in choice (1). However, since the probability of the first heads
appearing on the nth flip is 2−n, your expected payout is∑

n≥1

2n × 2−n =∞.

Does this mean you would always prefer choice (1) to choice (2)? This can’t be right! It is
probably safe to say most people would prefer (2) to (1) if x is sufficiently large. Indeed, if
x = 106 then I certainly would prefer (2) to (1).

Daniel Bernoulli in 1738 argued that there is function U that measures the happiness, or
utility, derived from his wealth. That is to say, a wealth of x corresponds to U(x) units of
utility. The function U is clearly increasing, but Bernoulli argued that the marginal utility

U(x+ ε)− U(x)

ε
≈ U ′(x)

of a small amount ε should be decreasing in the level of wealth x; that is, the utility function
U should be concave. Bernoulli went on to argue that his marginal utility is inversely
proportional to level of wealth, so that

U ′(x) =
a

x

for some a > 0. Thus, Bernoulli’s utility function is

U(x) = a log x+ b

logarithmic.
The next step of his argument is to invoke the expected utility hypothesis : an economic

agent’s preferences for a random payment are determined by the expected value of the utility
of the payment. For someone with logarithmic utility, the expected utility of the payout2 of

1In lecture I asked, ‘how much would you be willing to pay for choice (1)?’ This is nearly the same
question. Indeed, if you are willing to pay x for choice (1), then you would be willing to forgo x units of
certain money for the random payout. But please don’t worry too much over the details here since this
section is only intended for motivation.

2we are assuming here that he has no other wealth aside from the payout of the game
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choice (1) is ∑
n≥1

a(log 2n)2−n log 2 + b = 2a log 2 + b.

Now, Bernoulli’s expected utility of receiving a certain payment of x is

a log x+ b.

Hence, if x > 4 Bernoulli would prefer choice (2), and if x = 4 he would be indifferent.

In this course, we will consider the problem of maximising the expected utility of an
economic agent. There are (at least) two points of view:

(1) We might think that expected utility maximisation is a realistic description of eco-
nomic behaviour, and hence the solution of this problem would lead to predictions
about the economy.

(2) We might think that this constitutes rational economic behaviour, and hence the
solution is merely a suggestion of what one ought to do.

This course will remain agnostic on this philosophical issue3.
Before we begin studying utility maximisation problems, let’s first think a little about

Bernoulli’s argument. Now, even if you are happy assuming people have utility functions
which they consult to find out how happy they are with a fixed (non-random) payment,
you might wonder why, when faced with a random payment, we should care about the
expected value of the utility. At this point, the expected utility hypothesis seems a bit ad
hoc. Fortunately, there is an axiomatic framework for preferences which shows that the
expected utility hypothesis is natural. This is the subject of the next section.

The von Neumann–Morgenstern theorem
Consider a measurable space (E, E), i.e. a set E and sigma-field E of subsets of E. The

set E models the possible outcomes of a random experiment, and the sigma-field E models
the measurable events. In most cases considered in this course (including the example from
last section) the set of outcomes will be a set of possible payouts of an investment, so we can
identitify E with the real line R, and the sigma-field E with is the Borel sigma-field. But for
the sake of generality, we will not impose any structure on E now.

Rather than considering preferences over possible outcomes of the experiment, i.e. ele-
ments of E, the idea here is to assign preferences over the collection P of probability measures4

on the measurable space (E, E).
First we introduce a symbol � which should read as is preferred to. For instance, if

λ, µ ∈ P are probability measures, then

λ � µ

means that the hypothetical person prefers the random outcome of the experiment drawn
according the probability distribution λ to an outcome drawn from the distibution µ.

3However, it should be noted that though there is now much empirical evidence that view (1) is not
entirely accurate. Google the phrase experimental economics

4In the preference literature, the terms lottery and gamble are often used in place of probability measure.
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Now we introduce some more notation which is built from �.

λ ≺ µ means µ � λ
λ < µ means that λ ≺ µ is not true
λ 4 µ means that λ � µ is not true
λ ∼ µ means that both λ < µ and λ 4 µ are true

Von Neumann and Morgenstern introduced the following axioms for the relation �.

Axiom 1 (Transitivity) λ � µ and µ � ν implies λ � ν.

Axiom 2 (Completeness) For two probability measures λ, µ ∈ P we have exactly one of the
following possibilities:

λ � µ, µ � λ or λ ∼ ν

Axiom 3 (Independence) If λ � µ then

pλ+ (1− p)ν � pµ+ (1− p)ν
for any 0 < p < 1 and ν ∈ P .

Axiom 4 (Continuity) If λ � µ � ν then there exists a 0 < p < 1 such that

µ ∼ pλ+ (1− p)ν
Our goal is to understand what structure these axioms give to the preference relation. To

write down a clean theorem, let’s now introduce some definitions:

Definition. A function U0 : P → R is called a numerical representation of the preference
relation � iff

λ � µ if and only if U0(λ) > U0(µ).

Definition. A function U0 : P → R is called affine if

U0(pλ+ (1− p)µ) = pU0(λ) + (1− p)U0(µ)

Theorem. (von Neumann and Morgenstern 1947) A preference relation � satisfies Axioms
1, 2, 3 and 4 if and only if there exists an affine numerical representation U0 of �.

Furthermore, if an affine numerical representation U0 of � exists it is unique in the sense
that if V0 is another affine numerical representation then

V0 = aU0 + b

for some constants a > 0 and b ∈ R.

Proof. Given an affine numerical representation U0 of �, it is an exercise to show that �
satisfies Axioms 1, 2, 3 and 4.

So suppose that � satisfies Axioms 1, 2, 3 and 4. We will need a lemma: If λ � µ � ν
then there exists a unique 0 < p < 1 such that

µ ∼ pλ+ (1− p)ν.
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The proof of this lemma is sketched on the example sheet.
We need to build a numerical representation U0. If λ ∼ µ for every pair λ, µ ∈ P there is

nothing to show. So fix two probability measures such that

λ1 � λ0.

Assign U0(λ1) = 1 and U0(λ0). Now for every other probability measure µ, let

U0(µ) =


1/p if µ � λ1 � λ0 and λ1 ∼ pµ+ (1− p)λ0
1 if µ ∼ λ1
q if λ1 � µ � λ0 and µ ∼ qλ1 + (1− q)λ0
0 if µ ∼ λ0

−r/(1− r) if λ1 � λ0 � µ and λ0 ∼ rλ1 + (1− r)µ
It is an exercise to verify that U0 is an affine numerical representation of �.

Now suppose that V0 is another affine numerical representation of �. Define constants a
and b by

a = V0(λ1)− V0(λ0) and b = V0(λ0).

Since λ1 � λ0 we have that a > 0. Note that if λ1 � µ � λ0 then there is a 0 < q < 1 such
that µ ∼ qλ1 + (1− q)λ0. Hence

V0(µ) = qV0(λ1) + (1− q)V0(λ0)
= a[qU0(λ1) + (1− q)U0(λ0)] + b

= aU0(µ) + b

The other cases are left as exercises. �
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