Michael Tehranchi

Optimal Investment Example sheet 2 - Lent 2012

Problem 1. Find an example of a discrete-time local martingale that is not a true martingale.

Problem 2. Consider a discrete-time market model P = (B, S) with n = d + 1 assets. The first asset is a numéraire, with price $B_t > 0$ a.s. for all $t \ge 0$. The other d assets have price $(S_t)_{t\ge 0}$, a d-dimensional adapted process. Assume that there are no dividends.

Writing the agents holdings as $H = (\phi, \pi)$, show that the budget constraint and selffinancing conditions combine to become

$$\frac{X_{t+1}^{(\phi,\pi);c}}{B_{t+1}} = \frac{X_t^{(\phi,\pi);c}}{B_t} + \pi_{t+1} \cdot \left(\frac{S_{t+1}}{B_{t+1}} - \frac{S_t}{B_t}\right) - \frac{c_{t+1}}{B_{t+1}}.$$

Problem 3. Consider the set-up of problem 2. Now suppose the numéraire is cash, so that $B_t = 1$ a.s. for all $t \ge 0$, and that the other d assests have independent Gaussian increments

$$S_{t+1} - S_t \sim N(\mu, V).$$

where S_0 is a given constant vector, and V is non-singular. (a) Use the dynamic programming principle to find the strategy $(\phi_t, \pi_t)_{1 \le t \le T}$ that

maximises $\mathbb{E}[U(X_T^{(\phi,\pi)})]$ subject to $X_0 = x$

where $U(x) = -e^{-\gamma x}$. (Note that there is no consumption, and we do *not* insist that the strategy is admissible. Indeed, the optimal strategy you will find is not admissible.)

(b) Show that there exists a non-random vector $u \in \mathbb{R}^d$ that does not depend on the time horizon T, the initial wealth x or the coefficient of absolute risk aversion γ , and scalar predictable process $(k_t)_{1 \leq t \leq T}$ such that $\pi_t^* = k_t u$ a.s. for all $t \geq 0$.

(c) Let V be the value function. Show that

$$V(0,x) = U(x)e^{-H(\mathbb{Q}|\mathbb{P})}$$

where

$$H(\mathbb{Q}|\mathbb{P}) = \mathbb{E}^{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}\log\frac{d\mathbb{Q}}{d\mathbb{P}}\right]$$

is the relative entropy and \mathbb{Q} is an equivalent martingale measure. Why is this not surprising?

Problem 4. Consider the utility maximisation appearing in problem 3, but this time with an arbitrary¹ utility function U for all feasible H. Again show that there is non-random vector $u \in \mathbb{R}^d$ independent of T, x and U, and a scalar predictable process $(k_t)_{1 \leq t \leq T}$ such that $\pi_t^* = k_t u$. [Hint: You'll probably need the integration by parts formula for Gaussian measure:

$$\mathbb{E}[Zf(Z)] = \mathbb{E}[\nabla f(Z)]$$

where $Z \sim N(0, I)$ and $f : \mathbb{R}^d \to \mathbb{R}$ is sufficiently well-behaved.]

 $^{^1\}ldots$ but suitably well-behaved so that all formal manipulations can be justified...

Problem 5 (Martingale representation). Let ζ_1, ζ_2, \ldots be a sequence of independent Bernoulli random variables such that

$$\mathbb{P}(\zeta_t = 1) = p = 1 - \mathbb{P}(\zeta_t = 0)$$

Suppose that the filtration is $\mathcal{F}_t = \sigma(\zeta_1, \ldots, \zeta_t)$. Show that for every martingale M there exists a predictable process $(\theta_t)_{t\geq 1}$ such that

$$M_t = M_0 + \sum_{s=1}^t \theta_s(\zeta_s - p)$$

Problem 6. Suppose N is a bounded (but non-constant) martingale and θ is a bounded predictable process. Let M be the process defined by

$$M_t = M_0 + \sum_{s=1}^t \theta_s (N_s - N_{s-1}).$$

Show that M is a martingale and that θ can be recovered from M and N by the formula

$$\theta_t = \frac{\mathbb{E}(M_t N_t | \mathcal{F}_{t-1}) - M_{t-1} N_{t-1}}{\mathbb{E}(N_t^2 | \mathcal{F}_{t-1}) - N_{t-1}^2}$$

Problem 7. Let ξ_1, ξ_2, \ldots be a sequence of independent random variables such that

$$\mathbb{P}(\xi_i = u) = p = 1 - \mathbb{P}(\xi_i = d)$$

where 0 < d < 1 + r < u are constants. Let

$$S_t = S_0 \xi_1 \cdots \xi_t$$
 and $B_t = (1+r)^t$

Consider the two asset market with price process P = (B, S). Suppose that the filtration is $\mathcal{F}_t = \sigma(\xi_1, \dots, \xi_t).$

(a) Find the unique state price density process Z with $Z_0 = 1$.

(b) Solve the problem

maximise
$$\mathbb{E}\log(X_T^H)$$
 subject to $X_0^H = x$

in two ways: (1) by finding the Lagrange multiplier λ such that $U'(\lambda Z_T)$ is attainable from initial wealth x and applying problem 5 and 6, and (2) by solving the Bellman equation.

Problem 8. Consider a discrete time model with an asset with non-negative prices $(P_t)_{t>0}$ and non-negative dividends $(\delta_t)_{t\geq 1}$. Let Z be a state price density process.

(a) By considering the martingale defined by $Z_t P_t + \sum_{s=1}^t Z_s \delta_s$, show that there exists a finite-valued non-negative random variable S such that

$$\sum_{s=1}^{t} Z_s \delta_s \to S \text{ a.s.}$$

[Hint: use the martingale convergence theorem.]

(b) Show that $\sum_{s=1}^{t} Z_s \delta_s \to S$ in L^1 . (c) Show that $P_t \ge \mathbb{E}\left(\sum_{u=t+1}^{\infty} Z_t^{-1} Z_u \delta_u | \mathcal{F}_t\right)$ for all $t \ge 0$. Can you give this inequality a financial interpretation?

(d) What condition must you assume on the process $(Z_t P_t)_{t\geq 0}$ to assert equality in part (c)?

Problem 9. Consider a discrete time model with an asset with *positive* prices $(P_t)_{t\geq 0}$ and non-negative dividends $(\delta_t)_{t\geq 1}$. Show that there is a self-financing trading strategy with corresponding wealth process $Q_t = P_t \prod_{s=1}^t \left(1 + \frac{\delta_s}{P_s}\right)$. What is the financial significance of this process? Let Z be a positive adapted process. Show that the process $(Z_t P_t + \sum_{s=1}^t Z_s \delta_s)_{t\geq 0}$ is a martingale if and only if $(Z_t Q_t)_{t\geq 0}$ is.