Example sheet 1 - Lent 2012
Problem 1 (Allais paradox). (a) Consider these two measures on $(\mathbb{R}, \mathcal{B})$:

$$
\begin{aligned}
& \lambda_{1}=0.33 \delta_{101}+0.66 \delta_{100}+0.01 \delta_{0} \\
& \mu_{1}=\delta_{100}
\end{aligned}
$$

That is, λ_{1} corresponds to the random payout of $£ 101$ with probability 33%, of $£ 100$ with probability 66% and of zero with probability 1%, while μ_{1} corresponds to a certain payout of $£ 100$. Which would you prefer?
(b) How about

$$
\begin{aligned}
& \lambda_{2}=0.34 \delta_{100}+0.66 \delta_{0} \\
& \mu_{2}=0.33 \delta_{101}+0.67 \delta_{0} ?
\end{aligned}
$$

(c) Suppose you answered μ_{1} in part (a) and μ_{2} in part (b). Show that your preferences do not conform to the independence axiom.
[Hint: $\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)$.]
Problem 2. Suppose preference relation \succ satisfies the von Neumann-Morgenstern axioms as described in lectures.
(a) Show that if $\lambda \succ \mu$ and $1>p>q>0$, then

$$
p \lambda+(1-p) \mu \succ q \lambda+(1-q) \mu .
$$

(b) Show that if $\lambda \succ \mu \succ \nu$ there exists a unique $p \in(0,1)$ such that $\mu \sim p \lambda+(1-p) \nu$.

Problem 3. Given the preference relation \succ satisfying the axioms from the lectures, and two distinguished probability measures $\lambda_{1} \succ \lambda_{0}$, let U_{0} be the function as defined in lectures. Let μ and ν be such that

$$
\lambda_{1} \succ \mu \succ \nu \succ \lambda_{0} .
$$

(a) Show that $U_{0}(\mu)>U_{0}(\nu)$.
(b) Show that then for any $0<p<1$

$$
U_{0}(p \mu+(1-p) \nu)=p U_{0}(\mu)+(1-p) U_{0}(\nu)
$$

Problem 4. Let $\mathcal{X} \subseteq \mathbb{R}^{n}$ be a convex set. Suppose is $f: \mathcal{X} \rightarrow \mathbb{R}$ concave and $g: \mathcal{X} \rightarrow \mathbb{R}^{m}$ linear. Show that the function ϕ defined by

$$
\phi(b)=\sup \{f(x): g(x)=b, x \in \mathcal{X}\}
$$

is concave.
Problem 5. The market model consists of the initial prices $P_{0} \in \mathbb{R}^{n}$ and terminal prices $P_{1} \sim N_{n}(\mu, V)$ where $\mu \in \mathbb{R}^{n}$ and V is non-negative definite $n \times n$ matrix.
(a) Show that there is no arbitrage if V is non-singular. In general, what are the precise conditions on the kernel of V and the vectors P_{0} and μ such that the market is arbitrage free?
(b) From now on, assume V is non-singular. Let $U(x)=-e^{-\gamma x}$ be the CARA utility function, where $\gamma>0$ is constant. For an initial wealth X_{0}, consider the problem

$$
\text { maximise } \mathbb{E} U\left(H \cdot P_{1}\right) \text { subject to } H \cdot P_{0}=X_{0}
$$

Find the optimiser H^{*} explicitly.
(c) Find the value function $V\left(X_{0}\right)$ explicitly. Is V an increasing function?
(d) Suppose $X_{0}<P_{0} \cdot V^{-1} \mu / \gamma$. Verify that $U^{\prime}\left(H \cdot P_{1}\right)=\lambda Z$ where $\lambda=V^{\prime}\left(X_{0}\right)$ and Z is a state price density.

Problem 6. Consider the one period utility maximisation problem. Show that if there exists a real $\lambda>0$, a state price density Z and portfolio $H \in \mathbb{R}^{n}$ such that

$$
X_{0}=H \cdot P_{0} \text { and } I(\lambda Z)=H \cdot P_{1}
$$

then H is an optimal solution.
Problem 7. Consider a single period market with two assets. The first asset is a riskless bond with prices $B_{0}=1$ and $B_{1}=1+r$ for a constant r. The second asset is a stock with prices $\left(S_{t}\right)_{t \in\{0,1\}}$.

Let $\left(\phi^{*}, \pi^{*}\right)$ be the optimal solution to the problem

$$
\text { maximise } \mathbb{E} U\left(\phi B_{1}+\pi S_{1}\right) \text { subject to } \phi B_{0}+\pi S_{0}=X_{0}
$$

for a given concave increasing utility function U. Prove that the investor is holds a nonnegative number of shares of the stock if

$$
\mathbb{E} S_{1}>(1+r) S_{0}
$$

Does this agree with your intuition?
Problem 8. Let A be a $m \times n$ matrix. Prove that exactly one of the following statements is true:

- There exists an $x \in \mathbb{R}^{n}$ with $x_{i}>0$ for all $i=1, \ldots, n$ such that $A x=0$.
- There exists a $y \in \mathbb{R}^{m}$ with $\left(A^{T} y\right)_{i} \geq 0$ for all $i=1, \ldots, n$ such that $A^{T} y \neq 0$.

What does this have to do with finance?

