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Abstract 
 
This paper describes a dynamic stochastic optimization model of strategic asset liability 
management useful for advising under-funded defined benefit pension schemes on best 
practice for returning the fund to solvency and long term stability.  We present an 
overview of the dynamic stochastic programming techniques involved and briefly 
describe the nature of Pioneer Investment’s proprietary CASM simulator from which the 
asset class returns and pension scheme liabilities are generated.  The stochastic 
optimization model is set out precisely and its solution using linear programming 
discussed.  To illustrate the approach, two examples of defined benefit schemes using 
simple conservative fund liability models are presented.  The optimal dynamic asset 
allocations of these examples reflect the motivation of second generation liability driven 
investment schemes.  Although the final salary scheme models used in our examples are 
simple, more complex models can be incorporated into the system described with little 
extra effort.  Most actuarial assessments used in practice can be modelled for this 
purpose. 
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Recent market turbulence, falling valuations of equity and property and lower long term 
bond yields have re-highlighted the problems of pension fund deficits.  Since the start of 
2008 some of the worst affected UK pension schemes have lost considerable amounts of 
capital and the substantial falls in interest rates have lowered discount factors to result in 
increased liabilities across the board.  The total funding situation of UK defined benefit 
(DB) plans swung from a surplus of £130.4 billion in June 2007 to a £194.5 billion deficit 
in December 2008 (ONS, 2008b). Amongst the worst affected companies have been BT, 
Northern Foods and AGA Foodservice. 

The international situation is varied, owing to different regulatory environments and 
historical backgrounds in different countries.  Countries which have had mandatory 
pension funds for many years exhibit the largest pension fund totals with respect to the 
size of their economies (Clark et al., 2006).  This is most evident in the Netherlands and 
Sweden where the ratios of assets to liabilities (coverage ratios) are highest.  The UK, 
US, Ireland, Germany and Austria are lagging in terms of coverage and a third group, 
including France, Italy, Turkey, China and India, have very low coverage ratios.  
Accounting standards also affect the picture;  standards such as FTK in Holland, FRS 17 
in the UK and the international IAS 19 all require liabilities to be discounted on a 
corporate bond yield equivalent, but they differ in terms of practice, and changing the 
discount rate to a risk free rate—which would increase liabilities even more—has been 
mooted in a number of regions. 

In considering the risks pension funds face we must look at the fund in its entirety.  On 
the liability side funds are exposed to interest rates, inflation and mortality (Babel et al., 
2008).  On the asset side they face exposure to risk in different markets such as fixed 
income, equity and credit (Clark et al., 2006).  Hence they operate in a multi factor 
environment, exposed to a wide range of asset classes and liabilities which also have 
varying degrees of correlation amongst themselves.  Because of this, the worst situation 
for pension funds is falling asset prices and lower bond yields as low yields lead to less 
discounting of future liabilities. 

Approaches to providing solutions to the pension fund problem have developed over the 
last three to five years (see e.g.  Deutsche Bank, 2005).  In so-called ‘first generation’ 
products, pension funds attempted to hedge the interest rate and inflation components of 
their exposure using a mixture of bonds, interest rate swaps and inflation swaps.  Funds 
invest in a variety of solutions, mostly individually on a bespoke basis (see e.g.  Goldman 
Sachs, 2008) but also for some smaller schemes on a pooled fund basis, both of which 
involve cashflow matching and multi-year buckets with a single instrument in each 
bucket.   

Whilst this has had the effect of hedging unwanted interest rate and inflation volatility, it 
also hedged ‘good’ volatility (see Dempster et al., 2007a, 2008) by locking in the funding 
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ratio.  The main consequence of single factor liability hedging, therefore, is that it 
crystallises any existing deficit (Waring & Siegel, 2007) and immunizes the scheme from 
good as well as bad volatility.  This may be acceptable in schemes where the funding 
ratio is already very high but it can be a problem for under-funded schemes.  The most 
serious consideration for any liability hedging solution is the level of current long term 
yields.  When real bond yields are at a historic low locking-in at this point in the yield 
cycle may be particularly undesirable. 

Recent approaches to the problem are more holistic and attempt to manage liability 
exposure whilst seeking to add value within a given risk budget.  Second generation 
solutions tend to focus on maximising the excess return above a liability benchmark at 
some specified level of risk (Babel et al., 2008). 

In this paper we will present a new type of solution for defined benefit pension schemes.  
The approach we adopt here uses Monte Carlo generation of asset returns and prices and 
the liabilities of a defined benefit pension scheme over a wide range of economic 
conditions.  We employ dynamic stochastic optimization to determine the optimal asset 
allocation and employer contribution rates which will enable the scheme to achieve a 
desired funding ratio within a give time horizon while respecting the trustees’ risk 
appetite. 

Our approach is dynamic and is based on an active asset allocation strategy with periodic 
portfolio rebalancing.  We view this as superior to a sequential static Markowitz surplus-
type strategy for several reasons, such as the dynamic nature of the liabilities and the fact 
that dynamic asset allocation can cope with the flow of capital in and out of the scheme 
in the form of contributions and benefit payments.  Also static asset allocation relies on 
Gaussian return distributions for assets whereas dynamic asset allocation based on Monte 
Carlo is free to adopt any return distributions appropriate. 

The paper is organised as follows.  Section 2 briefly discusses the concepts behind the 
stochastic optimization techniques employed in the paper.  An overview of asset return 
and liability generation using CASM, Pioneer Investments’ proprietary corporate 
simulator, are summarised in Sections 3 and 4.  In Section 5 the multiobjective dynamic 
stochastic optimization problem of restoring a DB pension scheme to a target coverage 
ratio is formulated and solved.  Sections 6 give results for two simplified example 
schemes – one under-funded and the other well-funded.  Section 7 concludes. 

OVERVIEW OF DYNAMIC STOCHASTIC PROGRAMMING 
Our approach to pension fund management uses dynamic stochastic programming to 
select allocations that are optimal with respect to fund liabilities and suitable measures of 
underfunding risk (Dempster et al., 2003, 2006, 2007b).  Dynamic stochastic 
programming (DSP) involves simulating economic factors, asset returns and liabilities 
forward over a number of scenarios.  Using simulated market scenarios allows any 
distribution to be used for each of the asset returns or liabilities according to the model 
for the dynamics of these quantities.   

The scenarios are arranged in a tree structure (shown in Exhibit 1) and decisions are 
made at points where the tree branches.  Each of these decisions is optimal with respect 
to the all the simulated evolutions of the asset returns and liabilities that could occur after 
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the decision point.  As the root node corresponds to the present moment, the decision 
made there is the one that is to be implemented.  This means that the root node decision is 
robust with respect to all generated future scenarios representing future market 
conditions. 

root 
node

leaf node

root 
node

leaf node

 

EXHIBIT 1  A Scenario Tree with a Single Scenario Shown Dashed 

In DSP scenarios are used as a way of representing current uncertainty about the future.  
Since only the decision at the root node is to be implemented, other decisions further in 
the (simulated) future can be viewed simply as a “what-if” model of rational behaviour at 
those future points in time.  In real applications, future decisions are made by re-running 
the simulation and optimization in the future after incorporating the further information 
that has become available through the passage of time.  In the DSP Monte Carlo approach 
used here all scenarios are equally weighted, meaning that the probability of any 
particular one is inversely proportional to the total number of scenarios at the particular 
point in time being considered.  To enhance the computational efficiency of solution it is 
possible to generate the tree based on the expected value of perfect information at each of 
the decision points (Dempster, 2006), increasing the branching of the tree to the planning 
horizon specifically in areas that have more influence on the objective function. 

Clearly, a crucial step in the DSP approach is the forward simulation of the quantities of 
interest, here economic factors, asset returns and liabilities.  Thus a requirement of the 
scenario generator in the present context is that it is possible to generate scenarios 
corresponding to a wide range of market conditions for both asset returns and liabilities.  
In the subsequent sections we describe the simulation of the quantities used in our model. 

ASSET RETURN SIMULATION 
Asset simulation is based on Pioneer Investments’ proprietary corporate simulator CASM 
(Cascade Asset Simulation Model).  Cascade simulators for asset price return simulation 
were introduced by Mulvey (1996).  Another implementation for Pioneer Investments is 
given in Dempster et al.  (2003) and Arbileche & Dempster (2005).  In this 
implementation the complex nonlinear relationship between parameters of the major 
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currency region models is approximated by analytical expressions describing the drift 
parameters and the currency regions are linked by exchange rates. 

CASM is a modification and extension of these simulators reflecting the overall view of 
Pioneer Investments and linking different risk factors across divisions of the firm.   

CASM 
CASM is based on a hierarchical econometric model with EU GDP growth and inflation 
considered as the basic driving forces from which further economic factors, such as 
interest rate term structure and asset prices, are derived, as shown in Exhibit 2.  The 
economic and financial risk factors are modelled with parameters and correlations fitted 
to quarterly data in a three level ‘cascade’ fashion:  

Level 1: Macro factors: GDP cycle, GDP trend, oil cycle, real short rates 

Level 2: Cyclical financial variables and term structure 

Level 3: Equities, credit spreads, FX. 

The pension scheme asset classes used in the examples of Section 6 are a selection 
proxied by nominal and inflation-linked bond indices of various durations, a money 
market fund index and an equity index.  For this set of asset classes the key quantities that 
determine their returns are interest rates and term structure, inflation and equity 
performance. 

GDP Commodities Real Rates

Inflation

Term Structure

EquitiesFX Credit Spreads

GDP Commodities Real Rates

Inflation

Term Structure

EquitiesFX Credit Spreads
 

EXHIBIT 2  Cascade Asset Simulation Model (CASM) 

The asset classes in Exhibit 3 were simulated for potential investment using CASM.  The 
complex nature of the nonlinear interaction between asset returns and economic variables 
in CASM result in dynamic interdependencies between the variables.  For each asset 
class a proxy index of similar instruments (see Exhibit 3) was used to assess the quality 
of the simulated scenarios. 
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Asset class Code Index 

Money Market EUR300M 3 month EURIBOR rate 

1-3 year duration Euro bonds EUM1TR Bloomberg 1-3 year Euro bond market tracker 

3-5 year Euro bonds EUM2TR Bloomberg 3-5 year Euro bond market tracker 

5-7 year Euro bonds EUM3TR Bloomberg 5-7 year Euro bond market tracker 

7-10 year Euro bonds EUM4TR Bloomberg 7-10 year Euro bond market tracker 

10+ year Euro bonds EUM5TR Bloomberg 10+ year Euro bond market tracker 

1-3 year inflation indexed bonds BEIG1T Barclays Euro Govt Inflation linked bond tracker for all 
maturities 

5 year inflation indexed bonds BEIG2T Barclays Euro Govt Over 5 Year 

5-7 year inflation indexed bonds BEIG3T Barclays Euro Govt 1-10 Year 

10+ year inflation indexed bonds BEIG4T Barclays Euro Govt Over 10 Year 

15+ year inflation indexed bonds BEIG5T Barclays Euro Govt Over 15 Year 

European equity DJST Dow Jones EuroStoxx 50 stock index 

EXHIBIT 3  Asset Classes and Related Indices 

To illustrate the complex nature of the output from CASM, forward simulations of the 
corresponding asset class returns have been performed quarterly from Q1 2006 to Q4 
2014.  Representative scenarios are shown in Exhibit 4 in the form of fan charts.  These 
charts illustrate the distribution of the scenarios across time as a fan plot, with the 
intensity of the shading declining through quantiles either side of the median (so that, for 
example, the 20th and 80th percentile values across all scenarios are coloured the same).  
The median scenario, inter-quartile range and envelope (a faint dotted line at the edge of 
the fans showing the most extreme value in any scenario in the given period) are also 
marked for clarity. 
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EXHIBIT 4  Fan Charts of Simulated Quarterly Asset Returns for Investment Assets 

These diagrams also allow us to make some assessment of the plausibility of our asset 
simulations with respect to historical data up to August 2008.  In almost all cases the 
envelope of the simulated scenarios includes realized returns over the simulation period 
seen to that date (the exceptions are in short-duration nominal bonds where recent large 
movements have gone beyond the scenario envelope).  The median of the simulated 
scenarios also fits with the observed returns during this period.  In all cases the volatility 
of the scenarios is on the same scale as the historical return volatility. 

MODELLING LIABILITIES 
Pension fund liabilities arise both from the number of members in the scheme and from 
the cost of purchasing annuities now and in the future to fund members’ retirement 
pensions.  The sizes of the annuities that must be purchased depend on the final salary of 
the scheme members at retirement and hence on interest and inflation rates.  The 
simplified model of the total defined benefit liabilities we use for illustration in this paper 
is based on Cairns (2004).  The techniques required to consider mortality risk may 
however be incorporated in the DSP framework (see e.g.  Medova et al., 2008). 

Scheme Structure Model 
The number of members of different ages in a scheme ( tM ) is modelled starting with an 
initial age profile for the scheme 

0 1

0 0 0 0( , ,..., )
nx x xM M M M= ,  (1) 

where t
xM  is the number of members in the scheme at time t of age x. 

This evolves deterministically over time with members moving from one age band to the 
next each year 

1

1
i i

t t
x xM M

−

+ =  i = 1,…,n.   (2) 

All members are assumed to retire at age nx .  Our simplified model only allows members 
to join the scheme at age 0x  and does not account for death in service or early retirement.  
However, it would be straightforward to add these features to our model and to allow 
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members to join at any age.  The process by which members join the scheme (
0

t
xM ) can 

be specified by a fund’s own model or modelled using an appropriate stochastic process1. 

Salary Model 
A model of the salaries of scheme members is important for two reasons: contributions 
from scheme members are made as a fixed proportion of their salary and, being a final 
salary pension scheme, liabilities depend on scheme members’ final salaries.  The first of 
these means that it is necessary to have a complete salary model, rather than just a model 
of salary at retirement. 

We use a simple model for salary evolution.  Real salaries increase with age each year, 
with the proportional increase fixed for each particular age.  Salaries also increase with 
inflation, so that their real value is not eroded over time. 

We start with an initial profile of salaries 

0 1 1

0 0 0 0( , ,..., )
nx x xS S S S

−
= .    (3) 

We use this to define the (real) age related salary increase from age ix  to 1ix +  that will 

be used throughout the simulation as ( )1

0 0/
i ix xS S
+

. 

Nominal salary evolution is therefore 

1

1

0
1

0 ( , 1)i

i i

i

xt t
x x

x

S
t t

S −

−

+
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

S c S ,  (4) 

where ( , 1)t t +c  is the CPI inflation factor from time t to t + 1.  Note that since inflation 
is a simulated stochastic quantity the resulting salaries in (4) are scenario dependent. 

The expected final salary of a scheme member of age ix  can be written as 

( )
0

0( , ) n

i i

i

xt t
x t x

x

S
t t n i

S
⎛ ⎞

= + − ⎜ ⎟⎜ ⎟
⎝ ⎠

F c SE .  (5) 

Since, the inflation process from t to t + n – i is not known at t we must take its 
conditional expectation (over forward scenarios) in (5) in order to estimate the final 
salaries of scheme members at time t, which is necessary for calculating liabilities. 

As with the scheme structure model, it would be completely straightforward to replace 
this salary model with a more nuanced model of salary evolution corresponding to a 
fund’s actuarial forecasts. 

Contributions 
Contributions are made to the scheme from two sources: employees and the employer to 
whom the scheme belongs.  Employee contributions are modelled as a fixed proportion of 

                                                 
1 We used bold face throughout the paper to denote random scenario dependent entities. 
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salary2.  Employer contributions are a variable proportion of the total salary roll, 
typically somewhere up to 20%, whose exact level is to be determined at the optimization 
stage. 

Annuity Model 
Generally, pension benefits to retirees are funded through the purchase of life annuities.  
These are life-linked products, paying a constant (or inflation linked) payment at some 
regular interval until the death of the annuity holder.  Many schemes have retirement 
payments that are linked to consumer price inflation (CPI) over the lifetime of the 
annuity.   

We use a simplified model of mortality, assuming that all scheme members live for a 
fixed number of years from retirement.  This allows us to price the annuities that fund 
their pensions as the value of all future payments for this deterministic period (Milevsky, 
2006).  Though such deterministic mortality seems like a major simplification, in the 
absence of any currently traded liquid asset capable of hedging such mortality risk this 
simplification will not have a qualitative effect on scheme asset allocations; allocations 
will concentrate on hedging inflation and duration exposure of liabilities.  It is a 
consequence of Jensen’s inequality (Milevsky, 2006, p.116) that the price of an annuity 
calculated with stochastic mortality is strictly less than the price of an annuity with a 
fixed length equal to expected life remaining.  Our estimates of liabilities based on fixed 
length annuities will therefore be pessimistic when compared to those made with a 
stochastic mortality model.     

To price the life annuities used to fund retiree benefits therefore we only need price an 
annuity with constant tenor (i.e.  payment length), where this tenor is the expectation of 
employee survival after retirement.  The time t price of a non-inflation-linked unit 
annuity-due (i.e. one paying a single unit of currency each year with immediate initial 
payment) is 

1

0
( ) ( , )

n

n
i

t t t i
−

=

= +∑a v&& ,  (6) 

where  n  is the tenor of the annuity in years, and 

 ( , )t t i+v  is the time t value of a unit cashflow occurring at time t + i.   

The rates ( , )t τv  depend on the simulated term structure of interest rates given by 

( ) ( )( , ) 1 ( , ) tt t ττ τ − −= +v r ,  (7) 

where ( , )t τr  is the interest rate on bonds maturing atτ > t taken from the yield curve 
simulated at t.  These are scenario dependent because the term structure of interest rates is 
simulated on each scenario, thus making the annuity prices in (6) scenario dependent.  If 
the annuity is inflation-linked then the formula for a real unit annuity becomes 

                                                 
2 With a mean of 4.9% in the UK in 2007 according to the Office for National Statistics, ONS (2009a). 
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1

0
( ) ( , )

n
real

realn
i

t t t i
−

=

= +∑a v&& ,  (8) 

where ( , )real t t i+v is the real time t value of a unit cashflow occurring at time t + i. 

The rate realv  is defined as 

( ) ( )( , ) 1 ( , ) T t
real realt T t T − −= +v r ,  (9) 

where  ( , )real t Tr  is the real (as opposed to nominal) interest rate at maturity T taken from 
the simulated real yield curve at time t. 

Total Liabilities 
In the UK FRS17 demands that the total liability of a pension scheme be calculated as the 
present value of all future expected payments, taking into account only payments from 
service given to date but calculating the benefits on the basis of the inflation-adjusted 
expected final salary. 

According to this rule (and on the basis of our simplified scheme and salary structures) 
the member liability to the scheme at time t of a member of age ix , who has provided i 
years of service and has another (n – i) years until retirement, is 

0

current value of future annuity
expected liability based

on years of service

( ) ( , ) ( )
60 i

ti
x n

x x t t n i t n i−
⋅ + − + −F v a&&
1444424444314243

.  (10) 

The total scheme liability at time t is the sum of liabilities for all scheme members 
1

0

0

( ) ( , ) ( )
60i i

n
t ti

t x x n
i

x xM t t n i t n i
−

=

−
= ⋅ + − + −∑L F v a&& .  (11) 

The fund liability is scenario-dependent and here is shown for nominal annuities but 
these could be substituted for by real annuities using (8) if required.  Using a 
deterministic model of fund membership and salary structure means that the stochastic 
component of fund liabilities is driven by inflation and interest rates; adding a stochastic 
component to membership or salary structure would add a further random element to 
fund liability.  Depending on the model used, this random component might be difficult 
to hedge using the assets currently available in the market. 

OPTIMIZATION PROBLEM 
Annuity prices, and therefore fund liabilities, are heavily dependent on interest rates and, 
when the annuities are inflation linked, on inflation rates.  Since these basic processes 
underlie our asset return models, the fund’s liabilities are linked to its returns.  The 
evolution of the fund’s portfolio must be constructed in such a way as to optimize its 
exposure to various instruments in order to match its liabilities.  This is the basis of the 
asset liability management (ALM) problem in the absence of mortality risk.   
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To solve this problem optimally we must trade off considerations of three conflicting 
objectives in each time period: maximizing fund wealth, minimizing shortfall relative to a 
target wealth and minimizing employer contributions.  We construct a target wealth for 
the fund for each period in terms of a target funding ratio which is a desired ratio of 
current assets to liabilities for the period.  The target funding ratio in each period TRt is 
set to vary linearly between the initial funding ratio TR1 and the final target funding ratio 

TTR  at the amortization horizon T, i.e. 

1
1

1 1t T
T t tTR TR TR
T T

− −
= +

− −
 t = 2,…,T–1.    (12) 

The target wealth of the fund is then simply this target funding ratio multiplied by the 
total liability of the fund at that period. 

t t tTR=TG L  t = 1,…,T.    (13) 

Note that the fund liabilities Lt are stochastic, so that unlike the target funding ratio the 
target wealth is scenario dependent.   

Fund Shortfall and Surplus 
The shortfall of the fund t

−w  is defined as the amount by which the fund wealth tw  is 
below the target wealth tTG , or zero if there is a surplus.  The fund surplus t

+w  is 
defined the amount by which the fund wealth is above the target wealth, or zero if there is 
a shortfall.  Clearly these possibilities are mutually exclusive on each scenario at any 
given point of time, i.e. the fund is either below or above its current target.  The relations 
between the variables are therefore 

t t t t
+ −− = −w w w TG     

0t
+ ≥w   (14) 

0t
− ≥w   t = 1,…,T.   

Objective 
Pension funds would ideally like to reach their target funding ratio whilst minimizing 
both their exposure to risk and the level of additional contributions made by the employer 
to whom the scheme belongs.  The objective function to be maximized reflects these 
conflicting objectives as 

1

1

(1 )
T

t
t t t t

t

dα β γ+ − −

=

⎛ ⎞− − −⎜ ⎟
⎝ ⎠
∑ w w c SE ,  (15) 

where tc  is the proportion of the total salary roll contributed by the employer at time t, 

d  is the discount rate per period used by the employer, 

tS  is the total salary roll at time t, 

T  is the number of periods over which the dynamic optimization takes place, 
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α , β  and γ  are weights on the objective terms, which set the balance of 
importance between the competing objectives. 

The first term in the objective aims to maximize total expected surplus over periods when 
the fund exceeds its target, the second to minimize total expected shortfall over periods 
when the fund falls short of its target and the third to minimize total expected employer 
contributions over all periods.   

All these quantities are in units of currency.  Shortfall and surplus would be expected to 
be comparable in magnitude and might be in the region of 10% of the fund wealth.  We 
can roughly determine the size of the contributions in terms of fund wealth by assuming 
full funding and then equating fund wealth with fund liability defined in terms of salary.  
For full funding the liability is approximately equal to the value of, say, a 15 year annuity 
of two thirds of the final salary for all retired scheme members, which for a fund in the 
steady state is something around two thirds of the total salary roll of employed scheme 
members.  This gives a fund wealth in the region of 10 times total salary roll and, since 
contributions are in the region of 0-20% of this (ONS, 2009a), this means that the 
contribution term will be in the region of 1% of the fund wealth.  So, the objective term 
values are in magnitude ratio of roughly 10:10:1 for surplus, shortfall and contributions, 
respectively.  

If we assume that varying decisions has a proportionally similar effect on the objective 
terms, this can give us some indication as to the appropriate relative magnitudes of the 
objective term weights.  This is a significant assumption but it can at least serve as a 
heuristic to help us in the task of finding appropriate parameter values within the 
parameter space of the model.  Since fund shortfall is much more important than surplus 
(which is not beneficial per se) β should be much greater than α.  The contribution term is 
of similar importance to the shortfall, but can be expected to be around ten times smaller 
than the shortfall term, so γ should be roughly ten times the size of β 

,
10 .

α β
γ β

<<
≈

  (16) 

We also discount the employer contributions by some amount to reflect the fact that 
future payments to the scheme are less costly (and so more desirable) for the employer 
than current ones.  The discount rate d used by the employer depends on the company’s 
cost of capital, so it would be expected to be in the region of 10% per annum. 
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Cashflow Constraints 
The cashflow model represents the basic movement of value in the fund and ensures 
proper accounting of cashflows into, out of and within the fund.  It can be represented by 
Exhibit 5, where circles represent stores of value and arrows represent paths along which 
value can be transferred. 
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EXHIBIT 5  Cashflow Diagram for Defined Benefit Pension Fund 

This leads to the cashflow constraint  

( ) 1 , ,1 cash
t t t E t t t a t a t t

a A a A
μ − +

−
∈ ∈

= + + + + − −∑ ∑z r z S c S x x B  a A∈ , t = 2,…,T,    (17) 

where A is the set of assets from which the portfolio can be composed, 

tB  is the payment of employee benefits (annuity purchases) at time t, 
cash
tr  is the interest rate on bank cash at time t, 

,a t
−x  is the sale by value of asset a at time t, 

,a t
+x  is the purchase by value of asset a at time t, 

tz  is the holding of bank cash at time t, 

Eμ  is the (fixed) proportion of salary contributed by employees, 

and to the asset balance constraints, which account for the asset holdings and their 
accrual of value due to returns: 

, , 1 , , ,(1 )a t a t a t a t a t
+ −

−= + + −x x r x x  a A∈ ,  t = 2,…,T,    (18) 
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where ,a tx  is the fund’s holding of asset a at time t, 

,a tr  is the return on asset a from time t–1 to t. 

These two constraints do not apply in the first period (since 0z  and the ,0ax are not 
defined) and are replaced in that period by the initial cashflow constraint 

1 0 1 1 1 ,1 ,1 1E a a
a A a A

z W S c S x x Bμ − +

∈ ∈

= + + + − −∑ ∑ ,  (19) 

where  0W  is the initial wealth of the fund, and the initial asset balance constraints 

,1 ,1 ,1a a ax x x+ −= − , a A∈  (20) 

which simply states that the initial asset holding is equal to the amount of asset bought 
less the amount of asset sold at time 1. 

For simplicity we abstract from fund management fees, transactions costs and turnover 
constraints but these may easily be included (see e.g. Dempster et al. 2006, 2007b). 

Total Wealth 
The total wealth of the fund is defined as the sum of all asset holdings, i.e. 

,t t a
a A∈

= ∑w x . t = 1,…,T.    (18) 

Employer Contribution Rate 
The level of employer contributions is constrained to lie between an upper and lower 
limit ( minc  and maxc  respectively) specified by the user, i.e.   

min t maxc c≤ ≤c  t = 1,…,T.    (19) 

Short Selling Constraint 
In this model we restrict the fund to long-only positions, meaning that all asset holdings 
must be non-negative 

, 0a t ≥x  a A∈ ,  t = 2,…,T.    (20) 

Cash Constraint 
Cash is constrained to be nonnegative, so that the fund is not allowed to borrow from the 
bank at the cash rate 

0t ≥z  t = 1,…,T.    (21) 

Solution 
In order to make a large scale dynamic stochastic programming problem such as ours 
computationally tractable we must limit the number of scenarios and branch points at 
which portfolio rebalances are undertaken.  However, the CASM simulator produces 
asset returns at quarterly time steps and this is used as the basic frequency of accounting 
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and decisions in the model.  In order to limit the number of scenarios whilst still using 
quarterly simulation data and allowing quarterly portfolio and contribution adjustment we 
adopt a tree that only branches at a limited subset of stages, as shown in Exhibit 6. 

 

EXHIBIT 6  2.2.2 Tree with Ten Stages and Three Branching Stages (shown in black) 

The difficulty with this two time scale scenario tree structure without further 
enhancement is that at periods between major rebalance points, the exact evolution of the 
scenario up to the next major rebalance point is visible to the optimizer.  In order to 
prevent the optimizer exploiting this information we insist that it makes these portfolio 
adjustment and contribution assignment decisions for the non-branching periods at the 
preceding branching stage (or major rebalance point), where there is still uncertainty as 
to which scenario will be realized. 

This introduces the further problem that, at the preceding branch point, the exact value of 
an asset at forthcoming stages is not known.  Thus the exact value of purchases or sales 
of the asset are unknown, which could result in a surfeit or shortage of bank cash on a 
particular scenario.  In fact it is possible to exclude one of these mutually exclusive 
possibilities by restricting the sign of the cash variable and so we choose to only allow 
positive cash holdings, enforced by the nonnegativity constraint (21) above.  Overcoming 
this effect is the reason for introducing non-investable bank cash, which acts as a slack 
variable able to absorb excess value between major rebalance points.  Bank cash holdings 
tend to grow slowly between major rebalance points and return to zero at the major 
rebalance points.  Bank cash is not intended to be an investment asset and so we make the 
cash interest rate uncompetitive with the returns on other assets (we have used a zero 
cash interest rate in our examples). 

We formulate the model and solve the example problems using tools from the 
STOCHASTICS TM suite for dynamic stochastic programming problem formulation, 
analysis and visualization (CSA, 2008). 
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EXAMPLES 
We present two sample problems.  In the first we have a severely under funded scheme 
that aims to become fully funded within ten years.  In the second we have an almost fully 
funded scheme that aspires to improve its funding ratio over fifteen years.  We present 
two solutions for each scheme, one with variable employer contributions and a second 
with employer contributions fixed to a constant proportion of the total salary roll. 

Under-funded Scheme 
We consider a hypothetical under-funded pension scheme with a joining age of 0 25x =  
and retirement age of 65nx = .  The initial age profile is  

0 (20,20,..., 20)M = ,  (22) 

and the joining rate is taken to be constant, 
0

20t
xM =  throughout the problem.  The initial 

salary profile is  
0 (20,21,...,59)S = ,  (23) 

where the salaries are given in thousands of euros.  The annuities provided for retiring 
scheme members are taken to have a constant tenor of 15 years with inflation linked 
payments. 

The initial liability in Q2 2007 is calculated to be €150,235,000 and the initial fund 
wealth is €125,000,000 from which a payment of €10,439,000 is immediately made to 
pay for annuities for retirees at time 0.  Thus the initial wealth is €114,561,000 giving the 
scheme an initial funding ratio of 76.37%.   

In the first solution, employer contributions are constrained to lie between 0% and 20% 
of  the total payroll.  This range covers the realistic range of pension contributions made 
by UK employers; in 2007, 40.7% of UK schemes had employer contributions between 
8% and 15%, whilst 58.7% had contributions above 15% (ONS, 2009a).  The mean was 
15.6%. 

In the second solution, contributions are fixed to a constant 12%.  This would place the 
scheme in the 24th percentile of UK defined benefit schemes in terms of employer 
contributions in 2007 (ONS, 2009a). 

Employee contributions are fixed at 5% of salary, which places the scheme around the 
21st percentile of UK defined benefit schemes in terms of 2007 employee contribution 
rate according to ONS 2009a, though just above the mean of 4.9%.  As with employer 
contributions, the distribution of employee contributions is negatively skewed. 

Model Parameters 
The asset return and liability simulation is quarterly with a 10 year horizon from Q2 
2007, quarterly portfolio rebalancing and major rebalancing at the branching times.  We 
use a (50.8.4.4) regular branching tree with branching times of 0, 2½, 5 and 7½ years and 
the investable asset classes are those described in Section 3.  The aim is to achieve a fully 
funded scheme within 10 years, giving a target funding ratio of 100%.   
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The optimization uses the parameters 6: 10α −= , : 0.1β =  and : 1γ = , which fit closely 
with the values in (16) determined heuristically in Section 5.  By using such a small value 
of α relative to β we are saying that the negative impact of €1 of shortfall is equivalent in 
magnitude to the positive impact of €100,000 of surplus.  In other words, we are 
effectively requiring the optimizer never to build up surplus above the target on some 
scenarios at the expense of increasing shortfall on other scenarios.  We use a discount rate 
for employer contributions of 6.5% per annum. 

Results 
In Exhibit 7 we chart the average fund wealth across all scenarios along with its target 
and liability.  The drop in wealth at every fourth step is due to the annual purchase of 
annuities for retiring members.  Initially the expected wealth is far less than the liability 
but by the amortization horizon the expected wealth has reached the target in both cases. 
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EXHIBIT 7  Expected Wealth, Liability and Funding Target with Variable (left) and 
Constant (right) Employer Contributions 

In Exhibit 8 we chart the average level of employer contributions.  For the problem with 
variable contributions initial employer contribution rates are at their maximum permitted 
level.  As the fund starts to surpass its funding target the contributions drop steadily from 
2½ years into the problem.  The pattern of contributions seen in the variable contribution 
optimizations makes intuitive sense, as the optimizer chooses to take employer 
contributions early when they can contribute to fund growth. 
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EXHIBIT 8  Expected Employer Contribution Rate with Variable (left) and Constant 
(right) Employer Contributions 

In Exhibit 9 we show the (expected) dynamic asset allocations averaged across scenarios.  
In both instances, the initial asset allocations are largely made up of long maturity 
inflation linked bonds.  This is because all scenarios start with a small shortfall to the 
target which the optimizer must reduce, but is penalized heavily for increasing.  As well-
performing scenarios rise above the target they can afford to increase their exposure to 
equity, which can provide them with enhanced returns.  The bulk of the assets are still 
held in inflation-linked bonds, which makes sense in light of the fund’s inflation-linked 
liabilities.  Notice that the final allocation contains a high proportion of long maturity 
inflation-indexed bonds which reflects the long maturity of many of the promised 
payments and an attempt to hedge exposure to future inflation.  The allocation for both 
problems is quite similar, although the constant contribution problem contains slightly 
more equity in the first 2½ years to compensate for lower contributions during this 
period. 
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EXHIBIT 9  Expected Dynamic Asset Allocation with Variable (top) and Constant 
(bottom) Employer Contributions (equity topmost) 
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Exhibit 10 shows the evolution of the fund’s shortfall (against the target) across all 
scenarios.  As with the fan plots of the asset simulations in Section 3, these plots show 
the distribution of the fund shortfall throughout the optimization, with the median, inter-
quartile range and scenario envelope marked. 

The two charts are fairly similar, with variable contributions leading to lower early 
shortfalls.  With constant contributions the range of the extreme scenarios is increased 
somewhat as the fund is unable to use variable contributions to ameliorate funding 
difficulties or reduce contributions when funding levels are high.  

The range of fund shortfall across the scenarios can also be influenced using the α and β 
parameters; increasing the emphasis on minimizing shortfall (increasing β relative to α) 
will decrease the range of fund wealth, whereas increasing the emphasis on wealth will 
increase the range of fund wealth, as more risk will be taken in order to increase expected 
return.   

 

EXHIBIT 10  Fan Plots of Fund Shortfall Across Scenarios with Variable (left) and 
Constant (right) Employer Contributions 

The variable and constant contribution cases of the under-funded problem took 149s and 
137s to solve, respectively, using a dual Xeon 3GHz computer. 

Well-funded Scheme 
We now consider the case of a fund with a healthier funding ratio which seeks to achieve 
a high funding ratio over a longer 15 year horizon from Q2 2007.  Again we set 0 25x =  
and 65nx = .  The initial age profile is  

0 (25,25,..., 25)M =   (24) 

with a constant joining rate 
0

25t
xM =  at all times.   

The initial salary profile is  
0 (25,26.25,27.5,...,73.75)S =   (25) 
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in thousands of euros.  The annuities purchased to fund retirees’ pensions are inflation 
linked with a constant tenor of 15 years. 

In this example, the initial liability is €234,743,000 and after an initial lump sum annuity 
payment of €16,311,000 from the fund value of €235,000,000 the initial wealth is 
€218,689,000, giving a funding ratio of 93.16%.   

In the first solution, employer contributions to the scheme are constrained to lie between 
0% and 20% of the total payroll.  In the second they are fixed to be a constant 7%, which 
would place the scheme around the 4th percentile of UK pension schemes for employer 
contributions in 2007 (ONS, 2009a).  Employee contributions are fixed at 5% of salary. 

Model Parameters 
We use a (50.8.4.2.2) regular branching tree with branching times of 0, 3, 6, 9 and 12 
years.  The simulation is quarterly with a 15 year horizon, quarterly portfolio rebalancing 
and major rebalancing at the branching times.  The aim is to achieve a well funded 
scheme within 15 years, with a target funding ratio of 120%.  As in the under-funded 
case, the optimization uses the parameter values 6: 10α −= , : 0.1β =  and : 1γ = .  Again, 
we use an employer discount rate of 6.5% per annum. 

Results 
Exhibit 11 shows the liability and wealth for this scheme.  The fund wealth starts just 
below the initial liability and for both constant and variable contributions increases to a 
final level which is above 120% of the fund’s liability at the 15 year amortization 
horizon.  In both regimes the expected fund wealth considerably exceeds the target 
wealth.  As will be seen in the surplus plots below, this reflects the fact the fund is above 
the funding target in nearly all scenarios. 
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EXHIBIT 11  Expected Wealth, Liability and Funding Target with Variable (left) and 
Constant (right) Employer Contributions   

Exhibit 12 charts the average employer contribution rates.  Here we see a similar pattern 
to the under funded case, with the variable contribution fund using early contributions to 
reach the target funding ratio and then reducing them once a high level of funding has 
been achieved.  Total employer contributions made under the variable contribution 
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regime are €40.9m (present value €34.8m), lower than the €61.0m (present value 
€37.4m) made in the fixed-contribution rate scheme, yet the expected fund wealth is just 
€3.1m (present value €0.94m) higher at the problem horizon in the constant contribution 
scheme.  In reality the value of early contributions to a pension scheme is determined by 
the rate of discounting used by the employer.  If the company uses a high discount rate 
(indicating, for example, a high cost of capital) early contributions will appear less 
attractive. 

 

EXHIBIT 12  Expected Employer Contribution Rates with Variable (left) and 
Constant (right) Employer Contribution Rates 

Exhibit 13 presents the dynamic asset allocation averaged across scenarios.  The asset 
allocations here are similar to those seen in the under-funded case, with the fund relying 
on inflation-linked bonds to make up the bulk of its assets, in line with its liabilities.  As 
funding levels increase the fund can afford to allocate more of its wealth to equity.  The 
allocations for the two contribution schemes are similar, with the constant-contribution 
fund taking on more risk through a higher equity holding in the first three years. 
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EXHIBIT 13  Expected Dynamic Asset Allocation with Variable (left) and Constant 
(right) Employer Contributions (equity topmost) 

Finally, the fan plots of the fund shortfall in Exhibit 14 show that under both regimes the 
fund is expected to stay above its funding target in almost all scenarios.  As with the 
under-funded case the constant contribution regime initially falls below the target in 
many scenarios as variable contributions cannot be used to make up the shortfall. 

 

EXHIBIT 14  Fan Plots of Fund Shortfall Across Scenarios with Variable (left) and 
Constant (right) Employer Contributions 

The variable and constant contribution cases of the well-funded problem took 362s and 
333s to solve, respectively, using a dual Xeon 3GHz computer. 

CONCLUSION 
In this paper we have described a strategic level dynamic stochastic optimization model 
which can be used to advise under-funded defined benefit pension schemes on best 
practice for returning the fund to solvency and long term stability.  We have presented an 
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overview of the dynamic stochastic programming techniques involved and briefly 
described the nature of Pioneer Investment’s proprietary CASM simulator from which 
the asset class returns and pension scheme liabilities were generated.  The stochastic 
optimization model was set out precisely and its solution by linear programming 
discussed.  To illustrate the approach, two examples of defined benefit schemes using 
simple conservative fund liability models were presented and discussed.  The optimal 
dynamic asset allocations of these examples reflect the motivation of second generation 
liability driven investment schemes discussed in the introduction.  Although the final 
salary scheme models used in our examples are simple, more complex models can be 
incorporated into the system described with little extra effort.  Most actuarial assessments 
used in practice (see e.g. Clark et al., 2006 for examples) can be modelled for this 
purpose. 

REFERENCES 

S. Arbeleche-Gréla & M.A.H. Dempster (2005).  Econometric modelling for global asset 
management.  Working Paper WP 2005-15, Judge Business School, University of 
Cambridge. 

B. Babel, E. Bornsdorf & J. Kahlenberg (2008).  Future mortality improvements in the 
G8 countries.  Life & Pensions, February 2008. 

A.J.G. Cairns (2004).  Pension-fund mathematics.  Encyclopedia of Actuarial Science, 
Wiley. 

Cambridge Systems Associates Limited (CSA) (2008).  StochasticsTM Manual. 
http://www.cambridge-systems.com/solutions.html. 

G.L. Clark, A.H. Munnel & J.M. Orzag (2006).  The Oxford Handbook of Pensions and 
Retirement Income.  Oxford University Press. 

M.A.H. Dempster (2006).  Sequential importance sampling algorithms for dynamic 
stochastic programming.  Journal of Mathematical Sciences 133.4 1422-1444. 

M.A.H. Dempster, I.V. Evstigneev & K.R. Schenk-Hoppé (2007a). Volatility-induced 
financial growth.  Quantitative Finance 7.2 151-160. 

M.A.H. Dempster, I.V. Evstigneev & K.R. Schenk-Hoppé (2008). Financial markets.  
The joy of volatility  Quantitative Finance 8.1 1-3. 

M.A.H. Dempster, M. Germano, E.A.  Medova & M.  Villaverde (2003).  Global asset 
liability management.  British Actuarial Journal 9 137-216. 



 

 27

M.A.H. Dempster, M. Germano, E.A. Medova, M.I. Rietbergen, F. Sandrini & M.  
Scrowston (2006).  Managing guarantees.  Journal of Portfolio Management 32.2 51-61. 

M.A.H. Dempster, M. Germano, E.A. Medova, M.I. Rietbergen, M. Sandrini & M. 
Scrowston (2007b).  Designing minimum guarantee funds.  Quantitative Finance 7.2 
245-256. 

Deutsche Bank (2005).  UK Pensions: Regime change...again.  Research Report, Capital 
Structure Analysis Europe. 

Goldman Sachs (2008).  Presentation at Alpha Invest, Stockholm, 29th-30th January 2008. 

E.A. Medova, J.K. Murphy, A.P. Owen & K. Rehman (2008).  Individual asset liability 
management.  Quantitative Finance 8.6 547-560. 

M.A. Milevsky (2006).  The Calculus of Retirement Income.  Cambridge University 
Press. 

J.M. Mulvey (1996).  Generating scenarios for the Towers Perrin investment system.  
Interfaces 26.2 1-15. 

ONS (2009a).  Pension Trends, Chapter 8 (Pension Contributions).  Office for National 
Statistics, http://www.statistics.gov.uk/downloads/theme_compendia/... 
pensiontrends/Pension_Trends_ch08.pdf. 

ONS (2009b).  Pension Trends, Chapter 9 (Pension Scheme Funding and Investment).  
Office for National Statistics, http://www.statistics.gov.uk/... 
downloads/theme_compendia/pensiontrends/Pension_Trends_ch09.pdf. 

F. Sandrini (2008).  Simulators for the risk controlling system and profitability analysis 
for the German Retirement Product.  Quantitative Research Note, Pioneer Investments, 
1st May 2008. 

M.B. Waring & L.B. Siegel (2007).  Don’t kill the golden goose! Saving pension plans.  
Financial Analysts Journal 63.1 31-45. 


