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We introduce a simple but efficient PDE method that uses interpolation wavelets for their
advantages in compression and interpolation in order to define a sparse computational domain.
It uses finite difference filters for approximate differentiation, which provide us with a simple
and sparse stiffness matrix for the discrete system. Since the method only uses a nodal basis,
the application of non-constant terms, boundary conditions and free-boundary conditions is
straightforward. We give empirical results for financial products from the equity and fixed
income markets in 1, 2 ant 3 dimensions and show a speed-up factor between 2 and 4 with no
significant reduction of precision.

1 Introduction

Wavelets are functions that are used in representing data sets or other functions. The el-
ements of a vector space can be represented in terms of a basis and wavelets form a basis
for the Hilbert function space of square integrable functions. The most famous basis for this
function space is that of Fourier, which represents a function in terms of sines and cosines, in
other words, in terms of frequencies. Unfortunately, a function that has only finite support
(i.e. is non-zero on a small part of its domain) may well have infinite support in the Fourier
world. This has no consequence in the case of periodic functions, but it causes trouble for
many other applications.

Wayvelets use a different approach. The basis functions are well localised both in space and
frequency. As a result, they can be used to identify regions where a function encounters high
variation. Moreover, using a technique called thresholding we can then obtain a compressed
version of a function or data set. The most successful application of wavelets is in image
compression. The image is treated as a signal to which the wavelet transform is applied.
Thresholding then identifies the area of low variation where it lowers the resolution. Wavelets
are now the main feature of the JPEG2000 image coding system [8] serving Internet users
everyday. But wavelets have other important uses — from speech recognition to partial differ-
ential equations.
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In [14, 15], Dempster et al. designed a wavelet PDE method for financial derivatives. Their
method solved the PDE using a Galerkin wavelet method in space and the method of lines
for time evolution. However, the method can not be adapted to American and Bermudan
options efficiently as the application of boundary conditions is difficult in the wavelet space.

We have designed a new method, inspired by the work of Jameson [19, 20, 21] and Walden
[31, 32]. This method uses wavelets for what they do best - compress and interpolate -
but resorts to finite differences for derivative approximation. This amounts to designing an
optimised computational domain where finite differences can be applied. The new method
is called interpolating wavelet optimised finite differences (IWOFD). The main advantage is
that all the computations are done on a nodal basis and the application of non-constant
terms, boundary conditions and free-boundaries is straightforward. This allows us to apply
the method to a wide range of financial products and to use different stochastic processes to
model the underlying asset.

The layout of the paper is as follows. In Section 2 we give a brief introduction to wavelet
theory and give the main steps of the algorithm used to generate the sparse computational
domain. In Section 3 we review comparable PDE methods and detail the IWOFD algorithm.
Numerical results are given in Section 4 and Section 5 concludes.

2 Wavelet Theory

Multiresolution Analysis and Orthogonal Wavelet Basis
The fundamental idea behind wavelet analysis is that the space L?(R) of square integrable
functions can be approximated as a nested hierarchy of subspaces. Formally, from, e.g. [10]

Definition 1

A multiresolution analysis (MRA) is a sequence of closed subspaces of L?(R) such that:
1. The sequence is nested, i.e. for all j € Z, V; C Vji1.

2. The spaces are related to each other by dyadic scaling, i.e.

fe Vj = f(2) € Vj+1 = f(27j-) € Vy.

3. The union of the spaces is dense, i.e. for all f € L*(R), limj_, o ||f — P{’,ijLz =0,
where P{’,j is an orthogonal projection onto V.

4. The intersection of spaces is zero, i.e. limj_, o, ||P\",jf|\Lz =0.

5. There is a function ¢ € Vg such that the family ¢(xz — k), k € Z is a Riesz basis' of V.

Since ¢(z) € Vg, ¢(z/2) € Vy (by diadic scaling), we have (hy) € £2 such that
Bo) =Y b2z~ B), () € £(2), )
k

This functional equation is called the dilation equation and its solution the mother scaling

LA Riesz basis in a Hilbert space can be reduced by the Gramm-Schmidt process to an orthonormal basis
which defines ¢2 as the sequence space of basis coefficients.
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function. We term the filter H = {hy}rez the scaling filter. Once a basis is found for Vy, we
may consider the functions

bin(z) = 0Pz — k), j, k€L, (2)

as a basis for V;. We normalise ¢ so that (¢(z), ¢(z)) = 1. To obtain an orthogonal scaling
function, we naturally impose orthogonality of the corresponding basis so that (¢(z), ¢(z —
n)) = don, where dy,, is the Kronecker delta.

For every j, we define the innovation space W; to be the orthogonal complement of V;
in Vj_|_1

Vj D Wj = Vj_|_1. (3)

From the definition of the multiresolution analysis, the innovation spaces satisfy

A basis for the detail space is given by Theorem 2, see e.g. [23], p.110.

Theorem 2
Let {V,,} be a MRA generated by the orthogonal scaling function ¢ € Vi and define the
mother wavelet function ¢ € V1 by

o

b(x) = ), gnd(2z —m) (5)
with gy = (—1)*hi_y, then
{$jn(@) = »(2z —k)|k € Z} (6)

is an orthonormal basis for W .

Since (6) defines a basis for L2(R), for any function f € L?(R) there is a family of coefficients
{d; r} such that

F@) =" disthin(e)  dig = (Fr k- (7)

JET kel

Orthogonal Wavelet Transform

In practice, computers being finite object manipulators, we need finite sums. We fix two
integer levels of coarseness J; and Jy (J1 < Jo) and describe the interplay between these.
Jo is the fine approximation space and we assume there is nothing finer than Jo. Then, by
successive transforms, we go down to J; and approximate our function f € L%(R) as

Jo—1

f(z) = Py, f(z) =Py, f(z)+ > Pw,f(z). (8)

Jj=J1
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First we need the projection coefficients of a function f € L?(R) in V, defined by s, 1 :=
(f,bs5k). They can be found in various ways either by a first order approximation (substi-
tuting a constant function on the support of ¢, ;) or a more refined approximation of the
integral defining the inner product. Once we have the sz, ; coefficients, we can then apply
the dilation equation (1) to find the sj,_; ; coefficients as follows

Py, flz) = Z 57,-1,kPT—1,(T)

kEZ

= Z<fa¢J2—1,k)¢J2—1,k(w)

kEZ

= Z Z hm(f, ¢J2,m+2k>¢-]2—1,k(x)

k€EZ mEZL
= Z (Z thJz,nH-Zk:) brr—1,k(T). )
k€EZ \MmEZ

We see, generalizing for any j, that we have
Sj—-1,k = Z thj,m+2k- (10)
m
Similarly we have

dj_1x = Z 9ImSjm+2k- (11)
m

The inverse transform can be found using the complementarity between V; ;1 and W;_ 1.
Using (3) we find the projection on V; as

PV]f(.’I)) = Pijlf(‘T) ©® PVijlf(‘,I")
Z sjkdik(z) = 23j71,1¢jf1,z($) + Z dj 1m¥Pj—1,m(z) (12)

kEZ leZ meL

and again, using the scaling equations and comparing coefficients, we obtain

Sjk = th72l3jfl,l + Z k—2mdj—1,m- (13)
IEZ MEZ

We can now write the two steps of the algorithm in terms of filter banks as illustrated in Fig-
ure 1. The left hand side of Figure 1 shows the forward transform from {s;} to {sj_1,d;_1}.
The signal s; enters the box, is duplicated and sent to two filters. Application of h followed
by downsampling? gives {s;_1}, application of g followed by downsampling gives {d;_1}. The
right hand side of Figure 1 shows the inverse wavelet transform, using {s;_1,d;_1} and the
mirror filter® to rebuild {s;}.

The recursive application of (10) and (11) is known as the cascade algorithm. Starting with
a signal sj,, we obtain the scaling coefficients sj, 1 and the detail coefficients dj, 1.

2Downsampling | a function f is defined as (| f)(z) := f(2x) and upsampling 1 as (1 f)(z) := f(z/2).
3The mirror filter of a filter u is defined by (k) := u(—k)
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Figure 1: The filter bank algorithm for orthogonal wavelets

The detail coefficients will not be touched anymore. We apply the procedure recursively
beginning with the scaling coefficients s;,_1; until the required resolution J; is obtained.
This is illustrated in (14).

Sj, — 8J,-1 — 8J,2 — .. — 8p

N szfl hV dJ2*2 N N dJl

All the coefficients in bold can be recovered using the fast wavelet transform algorithm and

therefore need not be stored, while all the other coefficients must be kept. Unfortunately,

orthogonality of W, and V; is a strong restriction. For instance, it can be shown?, that

if ¢ is symmetric and orthogonal, then the generating filter H can only have two nonzero

components. Smoothness of the scaling and wavelet functions is also often an issue, with a
trade off between smoothness and the length of the filter coefficients of H and G.

(14)

Biorthogonal Wavelets

Biorthogonal wavelets were introduced by Cohen et al. [11], we will only touch the surface
of biorthogonal wavelets and refer to [7] for more detail. The main idea behind biorthogonal
wavelets is to use a basis for the computation of the projection parameters different from that
of the projection basis. We need the following.

Definition 3
A function ¢ € L2(R) defined by the dilation equation
3e) = Y hed2z —K) (he) € (@) (15)
k

is dual to ¢ if it satisfies
(¢(z — 1), d(z — k) =ik j.k € L. (16)

From a dual pair of scaling functions we can define the projection by

Py, f(z) =) {f(u), §jnuw)gjk(), (17)

kEZ

where q~5 does not have to be in V and is not uniquely determined for a given ¢.

The dual space \7]- is defined as the range of the dual projection given by
Py flz) = > (F (@), d(u) bk (@) (18)
kEZ

“Bultheel, [5], p. 91.
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We therefore have two paired hierarchies of approximation subspaces:

{O}C"'CVj_1CVjCVj+1C---CL2(R) (19)
{0}c---CV;.1CV,;C V1 Coo CLAR) (20)

with the primal scaling functions ¢;x being a basis for V; and the dual scaling functions &M
a basis for V.

We then define two innovation spaces W and Wj as
VieW; =V V;eW; =V, (21)
with cross orthogonality conditions

VLW,  V,;1W;. (22)

As with orthogonal wavelets, we can now define the projections of f € L%(R) as

Pw, f(z) =Y (F(w), %jk(u)djk(z) (23)
kEZ

Py f(z) = D (F (W), i ()4 (). (24)
kEZ

Only the first projection is really used. Taking the fixed resolution levels J; < J; as before,
we can define the approximation of f with sy,  := (f(u), ¢, k(u)) and d; ;, := (f(u), 9,k (u))
as

Ja—1
Py, f(2) =Y snabni@) + DD dikthjk(@). (25)
keZ j=J1 keZ

The whole point of making things seemingly more complex here is to have an inner product
(f(u), djk(u)) which is easier to compute than (f(u), ¢;x(u)).

As with the orthogonal wavelet transform, we can write the forward and backward steps of
the algorithms in terms of filter banks as illustrated in Figure 2 and see that the dual filters
are used for the forward transform, whereas the mirrors of the primal filters are used for the
backward transform. Exactly like the orthogonal case, once one forward transform has been
applied to get {s;_1,d;_1} from s;, the transform can be applied again to {s;_1} in order to
obtain {s;j_2,d;j_2}. For a fixed resolution level difference, both the forward and the inverse
fast biorthogonal wavelet transforms are O(J;), i.e. they are linear algorithms.

Donoho’s Interpolating Biorthogonal Wavelets

Donoho’s biorthogonal wavelets [17] were designed to find a wavelet compression algorithm
that would be highly parallelisable, where the computation of any new wavelet coefficient
would not require the knowledge of other coefficients at the same level. The mother scaling
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Figure 2: The filter bank algorithm for biorthogonal wavelets

function ¢ is the Deslauriers and Dubuc [16] interpolating function, with filter values given
in Table 1. The other bases take the form

bik(z) = ¢z —k) (26)
Pie(z) = @z —2k-1) (27)
bik(z) = 6(lz—k) jkeZ (28)

where 4(.) is the Dirac delta function centered at zero and z;; = k/27 are the grid points
at the given resolution. No analytical solution of the dual wavelet function 4 is known. The
dual filter H is always composed of only one non-zero value, normalised to 1.

The fast wavelet transform algorithm works as in Figure 2, but with extra optimisation in
that the filters G and H have only one non-zero component each. Filter values for symmetric
wavelets are given in Table 1. The dual filters are found using the flipping rule

gk = (D g = (-1)Fhi_y. (29)

H H
1 5(1,2,1)
E(_l, Oa g,ma 9, Oa _1)
(3,0, —25,0, 150, 256, 150, 0, —25, 0, 3)

Ch#kl\ﬁz

A~ N N

1
1
1

— — ~—

Table 1: Filter parameters for Donoho’s interpolating wavelets

Although interpolating biorthogonal wavelets are an extremely useful tool for data compres-
sion, they are not suited for most numerical methods. Technically, they are not a basis
anymore since a translation and scaling of the Dirac deltas do not define a proper basis of
L?(R). As a result Pyy; is not a bounded operator, see Cohen [10] p. 57, which affects many
convergence results for Galerkin PDE methods.

On the other hand, we can apply any of the wavelet transform algorithms if they allow us to
find a compact representation of a data set. The great advantage of Donho’s interpolating
wavelets is that the scaling coefficients can be very easily computed at all levels independently
of other scaling coefficients. The extension of this theory to finite intervals can be found in [25].
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Wavelets in Higher Dimensions

The wavelet theory presented so far can be extended to higher dimensions in many differ-
ent ways, the most common being nested triangulations and tensor products. We will focus
on tensor products and assume for simplicity that the resolution in both dimensions is the
same. To keep the notation simple, we work with functions of two variables and orthonormal
wavelets, the extension to higher dimensions and biorthogonal wavelets does not present any
extra difficulties, see Cohen [10]. The two dimensional grid V is defined as

V;=Vi® V?. (30)
Both V7 and V? can be decomposed in the usual way

V; = (VisieWj_) e (Vi e W/ ). (31)

We can use the distributivity of the tensor product to define the two dimensional detail spaces

V, = (ViLieVi)e (Wi, eV )e (Vi oW/ )e (Wi oW/ )

= V10 W! e W, @ WS . (32)

We now have three detail spaces W?_I,Wg-_l and Wj_; generated by three families of

orthogonal bases {¢?,k’¢g,k’ ]C’k} The mother functions of the wavelets can be constructed
as follows

Yi(z,y) = P(z)d(y) (33)
Wz,y) = ¢@)p(y) (34)
Pz, y) = P(@)P(y). (35)

Translation and dilation of the mother functions occurs in the usual way, e.g. for the first
mother wavelet:

W= V42— k, 20y —1). (36)
A two dimensional function can now be expressed as

Ja—1
Py, f(z,y) = ZSJl,k,zfﬁJl,k,z(w,y) + Z Zd?,k,l¢?,k(x,y)
Kl j=J1 Kyl

Ja1

+ Z ng,k,l"pb,k,l(may)
j=J1 k|l
Jo—1

+ Y k(@ y)- (37)

7j=J1 k|l

Although an extension of the wavelet transform to higher dimensions is relatively easy, meth-
ods to solve partial differential equations are often difficult to extend to higher dimensions
due to the extra complexity of the geometry.
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Thresholding and Sparse Grids

The first, and so far most successful, application of wavelets has been in data compression
through thresholding. In short, one can delete all the detail coefficients dj ; below a given
threshold in the detail space and compress the resulting data. If a large enough proportion of
the coeflicients are small, this leads to an effective data compression algorithm. In numerical
analysis, the embodiment of data compression is a nonuniform grid. Fortunately, grid adap-
tation is a natural extension of wavelets.

Although sj,k,l,d?,k,l,d;’-,k,l and dg,k’l are coefficients of the basis functions, they are directly
associated with the value of f at some given grid point. A result of the use of Donoho’s
interpolating wavelets is that

skt = (F(2:9), $j ki, y) = (f(2),02z — k)6(2Ty — 1)) = f(277k,2771). (38)
Therefore, the coefficients s; ;. ; are actually values of f on the grid
QF = {(277k,2771) : k,1 € [0,27]}. (39)
In the same vein, the coefficients d7, ; can be associated with the grid
Q= {277k, 277 (1 4+ 1)) : k € [0,27],1 € [0,27 — 1]}, (40)

While df ;| is not the value f(279k,277(1 + 1)) of the function, it is the detail coefficient at

that location. In other words, it is the difference between f(277k,277(I 4+ 1)) and the interpo-
lation of f at neighbouring points. Therefore, if dj ., is small, the function f can be expected

to be smooth at (z,y) = (277k,277 (I + 1)).
Similarly, we can define Qg and 2} associated with d;’-’k,l and dj ;. ; as follows
b . —J —J7\ - j . ]
Q; = {(2 7(k+ 1),2 Jl) 1k e0,2) — 1],'l €[0,27]} | (41)
QF = {(277(k+1),27701+1)):k€0,2 —1];1 € [0,27 —1]}. (42)
Since we have
Vi=Vi10Wj oW, o Wj_,, (43)
the multiresolution analysis on the grid can be read as
Q=0 ,00f UL LUQS . (44)

It is clear that we can write the fine grid 2% as the union of the coarse grid {7 and the
detail grids (J1 < J2) as

Jo—1
=05 u(J@uatuay). (45)
Jj=J
This can be used to design a recursive algorithm which selects grid points in high gradient
regions while deleting the others.
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First we include in the grid all the coefficients in the coarse grid Q% . We then look at
the detail coefficients at level Jy, i.e. points in 7 , Q’}l and 9 . If the sum of the absolute
value of the three detail coefficients with the same indices is greater than a given threshold
value € > 0, we add the trio to the grid. We define the set of such points as

0, i1 o—j
T4 = {Q7k270+1) €9F IdS gl + 15 gl + 1S ]l > €}
0,b —j —j
Y7 = {@7I(k+1),2770) € Qs [|d] gl + 1 gl + (15 gl > €}
0, i .
Y¢ = {7k +1),277(1+1) € Q5 Id5 gl + (15l + 115 kll > €}

and their union as
=717 urPurde (46)
which is the grid of relevant detail points at level j.

At this level, we also add M extra points in the immediate neighbourhood of the selected
points in T?. This will allow us to renew the grid less often, saving computational work.
Following Vasiliev and Bowman [30] we call these latter points type I points. We define the
set of such points as

le- :={(277k,2771) : such that Jo,p € [-M, ..., M]
with op = 0 and (277 (k + 0),277(l + p)) € T?}.

We can now define all the points added at level j as
Y =TjUT;. (47)

Adding extra coefficients at the edges of a sparse grid is often called smear in the wavelet
literature.

Repeating the above procedure at each level j € [J1,...,Jo — 1], we get the sparse grid at
maximum resolution J, as

Jo—1

T, =050 ([ 1)) (48)
j=J1

Figure 3 shows the sparse grid defined by a unitary impulse, with Jy := 6, J; := 4, € := 107
First the coarse grid €27, is set out, then the detail points with norm above € are added, finally
the neighbouring or type I points, here with M = 2 extra points, are included.

A useful capability would be to perform the wavelet transform on the sparse grid. To
do so we need to ensure that all the coefficients needed for the transform belong to the grid.
The easiest way to do this is to perform the transform on the sparse grid by red-marking
all the points that are needed and adding them to the original sparse grid. A nice property
of Donoho’s interpolating wavelets is that all the points needed to reconstruct points in €27
belong to Qg’- and Q? All the points needed to reconstruct points in Q;’- or Q? belong to Qj_l.
One therefore avoids contamination, i.e. adding neighbouring points ad infinitum. In detail
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Figure 3: Unitary impulse (upper left), coarse grid with detail coefficients added (upper right),
and coarse grid with type I points added (left). Sparse grid augmented with type II points
for the wavelet transform (right)

the algorithm is as follows.
We start at the finest level of detail Jo — 1.

We first inspect all the points in T; N Q] and red-mark those in Q7 U Q;’- which we need to
perform the inverse transform; we call them T?. The number of points added depends on the
support of the scaling function. If the scaling function is of order N, we will add the N even
indexed neighbouring points in each direction and we can write

T%={(277k,2791) : such that 3o,p € [-(N —1),...,(N —1)]
with op = 0 and (277(k +0),277/ (I +p)) € T, N Q5 }.

We then inspect all the points in (Y; U T?) N Qg u Qg) and red-mark the points in Q7 _; we
need and call them T?_l. Once again, we can write

T?—1 = {27 Vk,270-1)) . such that Jo,p € [-(N —1),...,(N —1)] with op =0
and (277 (2k +0),277 (20 + p)) € (Y; UTS) N(QFUQY)}.
We update the original sparse grid with the detail coefficients necessary at level j to give
Tj="T;UY3 (49)

and the next grid with the scaling coefficients we know we will need at level j — 1 to give
similarly

Tj1:="; 1UY . (50)
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We apply the same procedure recursively until we reach €2j,. Nothing needs to be done at
this level since €2, is included in the sparse grid and the algorithm ends.

We call the resulting sparse grid the augmented sparse grid and the points that have been
added in this procedure type II points. Cohen [9] calls the addition of such points a tree
structure. The final grid is denoted by T := T ;, and the number of nodes in T is denoted by

Ne.

Figure 3 shows the effect of this algorithm on the unitary impulse. We see that it has only
local consequences. We can also observe the presence of dangling points, points that do not
have the necessary surrounding points to apply a finite differences filter. The method to deal
with such points will be explained later. We obtain a sparse grid which is refined in regions of
high gradient, with a few extra points added next to the boundary of such regions, on which
we can perform the forward and inverse wavelet transforms.

3 IWOFD A Wavelet Optimized PDE Method

Wavelets in numerical analysis show promising results in three domains: namely operator pre-
conditioning, where discretised elliptic operators generate large stiffness matrices; adaptive
approximation, where different parts of a function’s domain show different degree of curva-
ture; and sparse representation of large full matrices arising in the discretisation of integral
operators. The first application can be linked to the multigrid approach, in which the stiff-
ness maftrix is successively smoothed, but not solved, at different levels of discretisation. The
second domain is related to mesh refinement in finite element methods, although it works in
the opposite direction. While a mesh refinement starts with a coarse mesh and adds points
where they are needed, an adaptive approximation using wavelets starts with a dense mesh
and removes useless nodes. The last application is related to panel clustering algorithms for
integral equations.

Problems of Interest
Mathematical finance provides us with classical time dependent initial® value problems of
hyperbolic type

{ uy = Pu V(t,.’l?) € [O’T] x (51)

u(z,0) = A(z) Vre

where P is a partial differential operator defined on 2. Once discretised it is called the stiff-
ness matriz. In most real life problems, P is not constant in space and time (due to local
volatility and non-constant interest rate). The solution vector u tends to possess a smooth
gradient in most parts of the domain with sharp changes in localised parts. We will use a
wavelet method to discretise the partial differential operator P, which will leave us with an
ordinary differential equation that we will tackle using the method of lines. In some cases,

5The original problem works backwards in time, so we have made a change of variable to make it forwards.
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when the option allows early exercise, the problems become a free boundary problem with
complementarity conditions to be applied at all times. The extra complexity added by the
free boundary condition requires special algorithms which most wavelet methods cannot in-
corporate efficiently.

Related Methods

In most wavelet PDE methods in numerical analysis one looks for a solution of the type
up = u € V with up := Y7 | Ujxi, where the x; are basis functions {¢, x,%;x} of V, by
solving the weak form

{<65L_f—PUh,x’>=0 VX' € V' V(t,z) € [0,T] x Q

up(7,0) = Ap(z) Vz € (52)

and the x' are known as test functions.

Wavelet Galerkin methods [1, 15, 25] solve equation (52) using the basis functions of V
as test functions. The most striking results are when solving an integro-partial differential
equation (IPDE). The integral term results in a full operator and therefore a full stiffness ma-
trix. It can easily be shown that this matrix can be compressed with great efficiency speeding
up all the linear algebra involved in inverting the stiffness matrix by a significant factor; see
Matache et al. [24]. Another advantage of Galerkin methods lies in the properties of the
stiffness matrix. Thanks to the wavelet construction, one can bound the condition number
(the product of the norm of a matrix and its inverse) of the resulting stiffness matrix; see,
e.g., [10]. The consequence is that the numerical methods used to invert the stiffness matrix
converge more rapidly, independent of the step size in the discretisation. Another advantage
is that multilevel methods naturally lead to multigrid preconditioning, where one successively
smooths but does not completely solve the PDE at different levels (discretisation steps); see
[13].

The main disadvantage is that computing the stiffness matrix is an expensive task, which
is bearable if one only needs to perform it once, e.g. for a PDE with constant coefficients,
but extremely expensive if it needs to be done more often. Another disadvantage is that
even if the basis functions are highly localised, the stiffness matrix is much less sparse than it
would be with a plain finite differences method, due to the fact that cross products between
bases at different levels are not zero. A last, and non-negligible inconvenience in our case, is
that free-boundaries are extremely expensive to apply. One cannot compare functions in the
wavelet basis. In other words, if we know the coefficient values for u and A, there is no way
to compare them unless we invert them back to nodal values. Therefore, the solution needs
to be continuously transformed back and forth to test the free boundary conditions.

Collocation methods [6, 29] generally involve operations on nodal values using Dirac functions
centred at the collocation points in the original domain as test functions when solving (52). A
great advantage of this method is that it naturally reverts to nodal values at every time step,
making the application of boundary conditions, non-constant coefficients and free boundaries
relatively easy. Adaptivity also comes naturally to those methods. This is done by thresh-
olding the transformed solution to know where to increase the number of collocation points
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and thereby increase precision. On the other hand, a disadvantage is that one needs to trans-
form back and forth between nodal values and wavelet coefficients everytime the differential
operator is applied. This overhead is expensive if the support of the wavelets is large and
unnecessary if the collocation points of importance do not move. Another related method is
the filter bank method [31, 32] that uses the wavelets (or filter banks, a more general family
of transforms) to define the sparse domain and then applies a finite differences filter at each
level.

Wavelet Optimised Finite Differences Methods

Since interpolating wavelets were designed in order to reproduce a polynomial perfectly up
to a given order it seems natural to use polynomials for differentiation. Finite differences
methods are constructed from an underlying interpolation polynomial that is differentiated
to obtain the appropriate filter (or from a Taylor expansion of the function, which gives the
same result). The combination of the two is finite differences on a non uniform grid generated
by a wavelet “shock detector”.

Jameson introduced the wavelet optimised finite difference method in [20, 19, 22]. WOFD
uses wavelets for what they do well — compress a signal — but uses finite difference filters for
differentiation. The idea when solving an evolution equation is simple: compute the wavelet
transform of the initial conditions, threshold to define an optimal grid and then compute the
derivative using finite differences. Since the grid is not regular, one needs to design a local
differentiation operator that takes into account the situation of each node, but it is a price
worth paying if the number of nodes can be reduced significantly.

A great advantage of this method is that the domain does not need to be updated every
time one computes the derivative of the function, which happens frequently when one tries to
invert the stiffness matrix using iterative methods. Furthermore, the domain does not need
to be updated at every time step. As with collocation methods, all the computations are done
with nodal values and, since we only use the wavelet transform every so often to update the
grid, we therefore have no problem with boundary conditions, non-constant coefficients and
free boundary conditions.

Unfortunately, WOFD uses Daubechies wavelets thats have a strong interrelation between
subspace levels. As a result, contamination is observed and the grid fills in much faster than
necessary. Furthermore, for some irregularities, the grid fills completely even though the
irregularity is highly localised. This does not occur with Donoho’s interpolating wavelets
(although these introduce other problems such as dangling points).

Finite Differences on Irregular Grids

The easiest way to look at finite differences on a non uniform grid is to locally interpolate the
function by a polynomial using a Lagrange formula and differentiate the polynomial to find
the weights of the finite difference filter. We approximate the function f of a real argument
using the points zg, ..., Z,,, which do not have to be evenly spaced, with the formula

pa(z) = f(@k) Lx(z) € P", (53)
k=0
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where the L;(z) are the well known Lagrange interpolation polynomials

szo,k#(fﬂ — T)
szo,k;ﬁj(xj — Tp)

Lj(z) = (54)
As aresult, L;(z;) = d;, which implies p,(z;) = f(zr). We can then find the finite differences

approximation of the derivative of f at point x; using f(xg), ..., f(x,) by differentiating the
relevant interpolation polynomial as

I'(z:) = pl, () Zf xg) L) (z;) € P71 (55)

For the case of a second order interpolation and the second derivative, differentiation gives

i+1
py(mi) = > flan)L§ (56)
k=i—1

with L} = If the points are evenly spaced with distance h, we find [L]_,, L}, L |] =

2
[i=o,kzi(zi—2k)"
%[1, —2, 1], which is the classical finite differences filter. These concepts are extended to par-
tial derivatives of a function of a vector argument in a natural way.

Dangling points

The application of finite differences is extremely easy in one dimension, since the points
zo, ..., Tn, even if unevenly spaced, are always ordered and easy to find. When the dimen-
sion increases, such a situation cannot be assumed since the uneven grid generated by the
thresholding of the wavelet transform will create so-called dangling points. It is therefore not
convenient to apply a finite differences operator on these points.

We define the set of regular points = on the grid I as

BEi={z;; €T :3k,l,m,n eNs.t. Tiipj, Ti1js Tijtm> Tijn €T} (57)

If z; ; € '\ E is a dangling point. Interpolating wavelet optimised finite differences can use
the convenient properties of the wavelet transform to interpolate these points instead of up-
dating them. Since the proportion of such points is very small, and since they are located at
the boundaries of the regions containing large gradients (in other words, far away from the
“interesting” regions) this will not tend to affect convergence. The main advantage is that it
allows us to easily design the discretisation of partial differential operators.

Method of Lines

Since we deal with evolution equations, we have two parts to the problem, the first problem is
the partial differential operator P. Most wavelet methods discretise the operator P to provide
us with a stiffness matrix A. We are then left with the following system of ODEs

(U 2s, el g

where A € RN<()XNe(®) g o matrix, v € RV<® the solution vector, A € RV<®) the appropri-
ately discretised initial condition and N(t) the grid size at time t. For clarity, we assume
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we have inverted the time and solve the equation forwards and that the boundary conditions
have been included into the stiffness matrix. We have implemented several standard ODE
solvers such as Crank-Nicolson (with different solvers for the linear algebra), backward dif-
ferentiation and Dufort-Frankel (see Section 4).

IWOFD Algorithm

We now have all the tools to define the interpolating wavelet optimised finite difference
(IWOFD) algorithm. IWOFD can be seen as a version of the WOFD algorithm that uses
Donoho’s interpolating wavelet for grid selection and the interpolating wavelets again for
interpolation of the function values at the dangling points. The main steps are given in Al-
gorithm 1.

Algorithm 1 IWOFD

1:t=0

2: At = T/ N

3u=A

4: fori=0to N —1do

5. if i%RENEW GRID =0 then

6: Decompress u

7 Interpolate missing values

8: Compute wavelet transform

9: Define sparse Grid T’

10 Identify dangling points I' \ =

11: Compress u

12: Compute stiffness matrix A on =
13:  end if

14:  Solve uy = Au,t € [iAt, (i + 1)At] with the method of lines
15: end for

16: Decompress u
17: Interpolate missing values on u

The first step is to initialise and create the operator. We transform the (initial) solution
into wavelet space and threshold, adding type I and type II neighbouring points to obtain
a grid on which we can perform the forward and inverse wavelet transforms. We define the
computational domain I" and identify any dangling points. We can then compress the (origi-
nal, non-transformed) solution vector by keeping values only on the optimised computational
domain. We then compute a stiffness matrix for the regular points in =. The application
of the complete discretised operator is simply the application of the stiffness matrix on the
points in E and the application of the inverse wavelet transform for the points in I' \ =. We
therefore have a stiffness matrix A, even though we do not access it directly. Once we have
the stiffness matrix, time evolution can be applied with the method of lines using different
numerical schemes. It is important to note that the stiffness matrix A can change with time,
it is only its computational domain which is fixed between updates.

The computational domain is updated every few steps, this variable is controlled by “RE-
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NEW_GRID”. To update the domain, we decompress the solution vector u, interpolate the
solution to the finest grid and apply the same steps as before to design the operator.

There is a trade off between the value of “RENEW_GRID” and the number of Type II
neighbouring points we add. The more Type II points we add at the edge of the region of
computational interest, the bigger our computational domain is, but the less often we need
to renew the grid. Optimal values for such parameters must be found by trial and error at
this point.

4 Numerical Results

We now give empirical results for the interpolating wavelet optimised finite differences method.
Since IWOFD is, at its core, a finite difference method with an optimiser, it is natural to use
a basic finite difference algorithm as a benchmark. It is hoped that IWOFD will provide the
same accuracy with reduced computation time.

The IWOFD method was always implemented with three resolution levels, i.e. going from the
highest resolution J» to the lowest resolution J; with Jo — J; = 2. Donoho’s biorthogonal in-
terpolating wavelets with a cubic (N = 4) interpolation scheme were used in all experiments.
Run times on a Pentium Xeon 3.4 GHz machine are given in hundredths of seconds. When a
running time of 0 is given, it means the code ran in less than a hundredth of a second, when
“XX” is given, it means that the program failed to find a solution, usually because the ex-
periment took too long or sometimes because the time evolution algorithm did not converge.

Equity Derivatives
The Black-Scholes model [2] gives the price of European option® on a stock z with volatility
o as the solution to the following PDE

ox?

u(z,T) = (x) Vr € R, .

We have implemented a direct tridiagonal solver which applies Gaussian elimination directly
to a tridiagonal matrix. We have also implemented two iterative solvers, successive over-
relaxation (SOR) with over-relaxation parameter w fixed at 1.2 and a conjugate gradient
squared (CGSq) method for non symmetrical matrices. The last solver is a backward differ-
entiation solver for stiff problems taken from the Lawrence Livermore National Laboratory
package Slatec [18].

{ W (w,t) + 10222 2V (2,) + rz8Y (z,1) — rV(z,t) =0 V(t,z) € [0,T] x Ry (59)

The option valued is a plain vanilla at-the-money European call option with the following
parameters:

SA European call option, with maturity T and exercise price K, is a security which pays 1 (S(T)) =
(S(T) — K)T := max(S(T) — K, 0) at the maturity date T
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Stock price (S): 10 Ezercise price (K): 10  Interest rate (r): 5%
Volatility (0): 20%  Time to maturity (T): 1 Year.

The exact solution, found by direct integration is 1.04505. Results using IWOFD and fi-
nite differences are given in Table 2. The number of space discretisation points is 2V and T'T
is the number of time discretisation steps. The time steps given do not apply to the backward
differentiation solver as the method is adaptive and chooses its own time step. The value
below the solution is the relative error at the exercise price. This can be seen as a kind of
||-]|loc norm since it is where the error can be expected to be the greatest. For the IWOFD
solver, we have used the thresholding value of 1e — 06 x AS, where AS is the space step. The
number of type I points kept is proportional to the logarithm of the number of discretisation
points, fixed to 2N. We have recomputed the grid every 100 time steps.

We see that the fastest and most reliable solver is the tridiagonal solver. In this case, the
improvements due to the use of the wavelet optimiser is negligible. For the iterative solver,
the speed up factor is between 2 and 3. This is better than for the direct solver since the
discretised operator has to be applied several times in order to invert the stiffness matrix. As
a result, the thresholding is more effective. The speed up factor for the backward differenti-
ation solver is around 4.

CN CN CN Backward
Tridiag SOR, w=1.2 CGSq Diff

FDIFF IWOQOFD | FDIFF IWOFD | FDIFF IWOQFD | FDIFF IWOFD

N=5 |1.03531 1.02121 | 1.03528 1.02119 | 1.03531 1.02121 | 1.03521 1.03523
TT =200 | (9e-03)  (2-02) | (9e-03) (2e-02) | (9e-03)  (2e-02) | (9e-03)  (9e-03)
T=0 T=0 | T=1 T=0 | T=I T=1 T=1 T=1

N=6 1.04272  1.04271 | 1.04271 1.04271 | 1.04272 1.04271 | 1.04261 1.04264
TT =200 | (2e-03) (2e-03) | (2e-03) (2e-03) | (2e-03) (2e-03) | (2e-03) (2e-03)
T=0 T=0 T=1 T=1 T=1 T=1 T=5 T=3

N=71 1.04449 1.04449 | 1.04449 1.04449 | 1.04449 1.04449 | 1.04442 1.04445
TT =400 | (5e-04) (5e-03) | (5e-04) (5e-04) | (5e-04) (5e-04) | (6e-04)  (6e-04)
T=4 T=1 T=2 T=3 T=3 T=3 T=13 T=6

N=28 1.04493 1.04493 | 1.04493 1.04493 | 1.04493 1.04493 | 1.04487  1.0449
TT =800 | (1e-04) (1le-04) | (1e-04) (1le-04) | (1e-04) (le-04) | (2e-04) (1le-04)
T=4 T=5 T=9 T=9 T=13 T=9 T=35 T=13

N=0 |1.04504 1.04504 | 1.04503 1.04503 | 1.04504 1.04504 | 1.04501 1.04502
TT =800 | (9e-06) (9e-06) | (26-05) (2e-05) | (9e-06)  (9e-06) | (4e-05)  (3e-05)
T=9 T=7 | T=40 T=23 | T=47 T=16 | T=269 T=67

Table 2: Black-Scholes vanilla call Ve = 1.04505

Fixed Income Derivatives
We now value a Bermudan swaption under a three factor Gaussian short rate model. A
swap is an agreement between two parties to exchange payments at fixed dates for a specified
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amount of time, typically, one party pays a fixed amount while the other pays a floating rate
function of the market at payment time. A Bermudan swaption is an option on a swap that
can be exercised at a number of specified dates, entitling the owner to enter into a swap at a
pre-specified rate. The three factor Gaussian short rate model assumes that the short-rate is
the sum of a deterministic function s(¢) and a mean-zero stochastic process:

(1) = Xa(?) + Xa(t) + X3(1), (60)
where the X; are defined by the following stochastic differential equations (SDE).
dX;(t) = =X\ X;(t) dt + 0;dW,(t), (61)

The Q-Brownian motion W;(t) are correlated such that E[dW;(t)dW(t)] = pi; dt. The
function s(t) is chosen so that the model fits the time-t term structure. The bond prices
under this model have been derived by Thompson [27] by direct integration of the bond
equation. The pricing equation is a multi-dimensional version of (59) and can be found in
[7]. The deal is a 5 year semi-annual settlement Bermudan swaption with notional 1008, fixed
rate 5% and the market parameters for the deal the following:

e Flat term structure of 5%

e Parameter values: A\; = 0.01, Ay = 0.7, A3 = 3.0,
g1 = 0.006, g9 = 0.012, g3 = 0.005, P12 = —0.8, P22 = 0.0.

Table 3 gives the numerical results. The exact solution used is a Richardson extrapolation of
all the results and was found to be within the interval of confidence of a simulation method
developed by Thompson [28] similar to the techniques presented in [12] and [26]. The grid
was revised at every settlement date during the time evolution. We see that the speed up
factor is above 2 for the Dufort-Frankel solver. Results for the Crank-Nicolson method with
SOR and biconjugate gradient stabilised have not been given as both methods took too long
to converge at high resolution.

BGM Model

The next product is valued using the Brace-Gatarek-Musiela model [4]. It is a three year
annual fixed-for-floating Bermudan swaption with notional 100$ and strike price 5%. The
holder can exercise the swaption at times Ty = 0, 71 or T» and enter a swap with maturity
T3. This is a two dimensional problem, with underlying variables L; and Lo, the LIBOR
rates expiring at time 75 and T3 respectively. Data was taken from Blackham [3], provided
by Dresdner Kleinwort Wasserstein.

e Parameter values: Ly = 0.02433306, L; = 0.03281384, Ly = 0.03931690,
or, = 24.73%, oL, = 22.45%, PLi,Ly = e~ 01

For the IWOFD solver, we have used a thresholding value of 1le — 06 X min(AL;, ALy), where
AL; is the space step for rate . The number of type I points kept is proportional to the
logarithm of the number of discretisation points, fixed to N. We have revised the grid every
200 time steps.

Table 4 gives the numerical results. Successive over relaxation and biconjugate gradient
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Dufort-Frankel

FDIFF IWOFD
N=M=5K=4 | 0.935071 0.935071
TT=100 (2.8¢-02) (2.8¢-03)

RT= 281 RT= 285
N=M=6,K=5 0.910827 0.910827
TT=100 (1.8¢-03)  (1.8e-03)
RT=2545 RT= 2392
N=M=7K=5 0.907663 0.907663
TT=200 (1.7-03)  (1.7¢-03)
RT= 17451 RT= 11358
N=M=8 K=5 0.907908 0.907906
TT=400 (1.4e-03) (1.4e-03)
RT= 119543 RT= 54245

Table 3: Gaussian model Bermudan fixed-for-floating swaption Vg, = 0.911

stabilised were used as time solvers. The reference solution was found using Richardson ex-
trapolation. The speed up factor for SOR was 2 and BCGStab did not converge for the finest
resolution with finite differences.

Figure 4 shows the payoff of the swaption at time £ = 0 and an example of the grid used by
the IWOFD solver.
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Figure 4: BGM model Bermudan swaption: payoff at time ¢t = 0 (left), localisation of grid
points at time ¢ = T5 (right)

5 Conclusions

In this paper, we have shown that an accurate, efficient and flexible adaptive method for
contingent claim valuation could be designed using wavelets. The inherent problem with nu-
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CN CN
SOR, w=1.2 BCGStab
FDIFF IWOFD FDIFF IWOFD
N=5 0.112164 0.112164
TT=200 | (3.0e-02) (3.0e-02)
RT=6 RT=8 RT=18 RT=18
N=6 0.113605 0.113605
TT=200 | (1.7e-02) (1.7e-02)
RT=40 RT=35 RT=91 RT=94
N=T7 0.114402 0.114402
TT=400 | (1.0e-02) (1.0e-02)
RT=272 RT=269 | RT=1094 RT=897
N=8 0.115468 0.115468
TT=800 | (1.1e-03) (1.1e-03)
RT=2219 RT=1847 | RT=11803 RT=8027
N=9 0.115653 0.115651
TT=800 | (4.2e-04) (4.0e-04)
RT=16235 RT=8057 | RT=XX RT=38762

Table 4: BGM model fixed for floating Bermudan swaption Ve,; = 0.115604

merical methods in mathematical finance is that the variety of problems is extremely vast.
Firstly, different models, according to different markets or underlying variables, imply differ-
ent kinds of partial differential equations which cannot all be transformed to the simplistic
heat equation. Secondly, different derivative products imply different boundary conditions.
The boundary conditions resulting from some problems, such as American or Bermudan op-
tions can be extremely hard to fit into a numerical scheme.

This wide variety of problems is the main reason why methods that can handle all kinds
of PDEs and boundary conditions easily, such as finite differences, are so popular. The
method described in this paper is based on finite differences and benefits from its extreme
flexibility. It also makes extensive use of signal compression theory, more precisely wavelets,
to design an optimal computational domain on which the PDE can be solved. The method
has been applied to different practical problems, showing a speed-up factor between 2 and 4.
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