
More generally, the generalised extreme value
distribution (GEV) given by Hξ(x) describes the
limit distribution of suitably normalised maxima.
The random variable X may be replaced by (X-
µ)/σ to obtain a standard GEV with a distribution
function that is specified as shown in the box
above, where µ, σ and ξ are the location, scale
and shape parameters respectively. 

Three standard distributions correspond to dif-
ferent values of ξ. They are the:

� Gumbel distribution Λ, ξ = 0

� Fréchet distribution Φα, ξ = α-1 > 0

� Weibull distribution ψα, ξ = -α-1 < 0

The purpose of tail estimation procedures is
to estimate the values of X outside the range of
existing data. To do this, researchers have em-
ployed both extreme epochs (events), and ex-
ceedances of a specified level. The standard
approach assumes that the tail of the population
follows the selected family of distributions. 

Pickands (1975) showed (with some additional
assumptions) that the generalised Pareto distrib-
ution (GPD) – the limit distribution of excesses 
Y := max { X-u, 0} over sufficiently high thresh-
olds u – offers a good approximation of the tail
of F for some fixed ξ and β, which depend upon
u. Similar results have been obtained for station-
ary sequences of observations, whose depen-
dence extends only to a finite number of previous
values, see Leadbetter et al (1983).

Thus the distribution of Y may be thought of
as the conditional distribution of X given X > u.

The GPD with shape parameter ξ and scale
parameter β is specified as:

and the sign of the shape parameter ξ determines
its tail behaviour and thus the tail behaviour of
the original distribution. 

For ξ>0, the tail of the distribution function F
of X decays like a power function x-1/ξ . In this
case, F belongs to a family of heavy-tailed distri-
butions that includes, among others, the Pareto,
log-gamma, Cauchy and t-distributions. 

For ξ=0, the tail of F decreases exponential-
ly, and belongs to a class of medium-tailed dis-
tributions that include the normal, exponential,
gamma and lognormal distributions. 

Finally, for ξ<0, the underlying distribution F
is characterised by a finite right endpoint, which
class of short-tailed distributions includes the uni-
form and beta distributions. 

It can be shown that the mean excess func-
tion (expectation) of the GDP is given by the
expression: 

where

and maxn Yn follows a GEV distribution with pa-
rameters ξ, µ, σ.
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S
ince Gnedenko’s Limit theo-
rems for the maximal term of
a variational series (1941), and
Gumbel’s Statistics of Extremes
(1958), theories concerning
the calculation of extreme val-

ues have been applied to a great variety of prac-
tical problems. Extreme value theory (EVT) has
found applications in structural, aerospace,
ocean and hydraulic engineering, as well as in
studies of pollution, meteorology and highway
traffic. Actuaries also now use EVT extensively
to model casualty insurance claims. So perhaps
it’s not surprising that researchers have begun
to explore whether EVT can be used to measure
operational risk in financial institutions. 

The key attraction of EVT is that it offers a set
of ready-made approaches to the most difficult
problems in operational risk analysis: how can
risks that are both extreme, and extremely rare,
be modelled appropriately? 

Key literature
The literature on EVT is now quite extensive.
Galambos et al (1994) offers a useful exposition
of EVT theory and practice, while Castillo (1998)
describes its applications in engineering. The de-
finitive exposition of EVT is given in Extremes
and Integrated Risk Management edited by Paul
Embrechts and published by Risk Books earlier
this year. Other authoritative texts include a se-
ries of working papers and a monograph by Em-
brechts et al (1997). Significant theoretical and
experimental results can be found in Smith
(1987, 1997); McNeil and Saladin (1997); Mc-
Neil’s extreme value software library written in
S-plus; and Danielson and de Vries (1997). 

Key components
The principal results of EVT concern the limit-
ing distribution of sample extrema (maxima or
minima). Suppose that X = (X1,…,Xn) is a se-
quence of independent identically distributed
observations with distribution function F, not
necessarily known, and let the sample maximum
be denoted by Mn = max {X1,…,Xn}. Under cer-
tain assumptions – subexponential distributions
– the tail of the maximum determines the tail of
the sum as n → ∞.

Measuring risk by
extreme values
Elena Medova introduces extreme value theory and looks at how it relates to operational
risk initiatives. The latter part of the paper describes a new EVT approach that uses
Bayesian simulation techniques to measure firm-wide operational risk
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concerns capital allocation, the second supervision
and controls and the third transparency and con-
sistency of risk management procedures. What is
the relation of EVT to these three pillars – most
problematically, the second and third pillars? 

Another problem is that, while risk capital is
generally understood as a way of protecting a
bank against “unexpected” losses – expected loss-
es are covered by business-level reserves – it is
not clear to what degree risk capital is used to
cover the most extreme risks. 

Some practitioners and regulators have made
it clear that they do not intend to include the risk
of the most extreme losses in their calculations of
either economic risk capital or regulatory risk cap-
ital.1 So in what way is extreme value theory use-
ful in measuring operational risk? 

Lastly, how can an analyst deal with market
and credit risk management without double-
counting? A framework that identifies the roles of
credit, market, and other risks must be con-
structed. Below we suggest some thoughts on
these issues that help to show how they relate to
the nature of EVT. 

Some solutions
Let us assume that a bank’s market and credit risk
management is informed by quantitative models
that compute the VAR for market risk and credit
risk and allocate economic capital to these risks.
Is such a capital allocation sufficient for unex-
pected losses due to human errors, fraudulent ac-
tivities and other external factors? Clearly not, for
two reasons. 

Firstly, the models do not take into account
operational risks (extreme or not). Secondly, they
make various assumptions about “normality”, and
so exclude extreme and rare events. Such events
include natural disasters, as well as major social
or political events. 

How can we think clearly about operational
and extreme events? In our research, we termed
the related risk factors primal (catastrophic). Pro-
cessing all information and taking decisions at dif-
ferent levels of the bank may lead to further losses
reflected in increased business costs. Such sec-
ondary causes include human or technological
errors, lack of control to prevent unauthorised or
inappropriate transactions, fraud and faulty re-
porting. Many of these secondary causes are used
in one or other definition of operational risk.
Some of them, such as the failure of a bank’s in-
ternal computer system, may themselves be re-
garded as primal and catastrophic.

The first step in operational risk management
should be a careful analysis of all available data to
identify the statistical patterns of losses related to
identifiable primal and secondary risk factors. 

Ideally, this analysis would form part of the fi-
nancial surveillance system for the bank. In the
future, perhaps such an analysis might also form
part of the duties of bank supervisors. In other
words, at a conceptual level, it relates to the sec-
ond of the Basle Committee’s three pillars. 

Here, the important point is that this surveil-
lance is concerned with the identification of 
the “normality” of business processes. The 

identification of suitable market and credit risk
models also forms a natural part of this opera-
tional risk assessment.

Such an analysis should allow an analyst to
classify a bank’s losses into two categories:
(1) significant in value but rare, corresponding to
extreme loss events distributions;
(2) low value but frequently occurring, corre-
sponding to “normal” loss event distributions. 

Next, we might take the view that control pro-
cedures will be developed for the reduction of
the low-value/frequent losses, and for their illu-
mination and disclosure (the third pillar of the
Basle approach). 

These control procedures, and any continuing
expected level of loss, should be accounted for
in the operational budget. This allows us to as-
sume that only losses of a large magnitude need
be considered for operational risk economic cap-
ital provision. 

Again, an analysis of the profit and loss data
and the verification or rejection of the assump-
tion of normality, related to the universe of pri-
mary and secondary risks, are all part of the
(usually internal) risk supervisory process. 

From VAR to extreme
event analysis
VAR has been adopted as the central measure of
market risk by many financial institutions. Under
normal market conditions, VAR provides a mea-
sure of the market risk due to adverse market
movements. Any deviation from normality will
tend to underestimate the VAR. Similarly, under
normal conditions for credit risk, which corre-
spond to credit ratings higher than triple B, cred-
it models provide measures for credit risk. 

But there are theoretical alternatives to VAR
that also offer a coherent risk measure (Artzner
et al, 1997, 1999). One approach is to define a
measure for the expected shortfall, or tail condi-
tional expectation, with respect to the unknown
maximal loss distribution. 

We adopt a similar conditional measure for op-
erational risk. But we assume that a threshold has
been derived from the marginal statistical distrib-
ution of losses as a part of the operational risk
supervisory process. A quantitative treatment of
this approach will begin to be developed in the
next section. This gives a slight twist to the usual
definition of operational risk. For the purpose of
calculating capital provision, operational risk is
everything which is not credit and market risk
under normal conditions, including catastrophic
market and credit losses where appropriate. 

In effect, operational risk is redefined as a tail
of the profit and loss distribution of the appro-
priate level – business unit, or enterprise-wide –
of the bank (see figure 2). In the presence of ex-
tremes, further analysis will be required for the

The POT model
The peaks-over-threshold (POT) model can be
used to estimate the excess distribution with re-
spect to a threshold level u, and to estimate the
tail shape of the original distribution. It should be
noted that the threshold setting of the POT model
is data dependent. The model defines a two-di-
mensional (Yn, Nu ) space-time point process on
Xn ≥ u, n=1,…, Nu.

Here Yn and Nu are independent random vari-
ables, such that Yn ~ GPD(ξ, b), and the number
of excesses Nu follows a Poisson process with in-
tensity λ, representing the average number of ex-
ceedances over the time interval used for the
sampling process and given by: 

.

The threshold u is usually chosen using mean
excess plots, and other statistical devices developed
by Smith (1987, 1997), that consider the trade off
between bias in estimating the excess distribution
function parameters and their sampling variance. 

The POT model for
operational risk
The estimation of the parameters of the POT
model is usually based on the maximum likeli-
hood method, which requires a relatively large
number of observations above the threshold (eg,
more than 100). But in an operational risk situa-
tion, it might be more realistic to think in terms
of 20 or 30 excesses. This suggests that another
estimation technique will be necessary for oper-
ational risk, and we propose the use of Bayesian
simulation techniques (Medova, 1999). A pre-
sentation of this estimation procedure, which has
been developed with Marios Kyriacou, will be
given in the second part of this paper. 

Another complex issue is the question of con-
sistency in deciding upon threshold values. In an
ideal world, the threshold obtained from the POT
model should correspond to the integrated mar-
ket and credit risk value-at-risk (VAR) quantile.
This is currently one topic of our programme of
research into integrated risk management.

Some problems
To justify the modelling of operational risk using
EVT, many obstacles must be overcome. Not all
the obstacles are technical in nature. Many are
caused by the fact that operational risk continues
to be ill-defined for the purpose of calculating
risk capital. For example, one might ask how any
approach to operational risk using extreme value
theory relates to definitions of “normality” and the
problem of internal bank controls and external
supervision? And how does EVT relate to the Basle
Committee on Banking Supervision’s present pro-
posals for controlling operational risk?

The Committee has attempted to clarify the
complex issues of risk management by adopting
a “three-pillared” approach. The first pillar 
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1For example, see practitioner Tony Peccia’s comments
on capital allocation at CIBC World Markets, one of
Canada’s leading banks, in April’s Operational Risk
newsletter, page 12, and comments by Jeremy Quick of
the UK’s Financial Services Authority, in February’s
Operational Risk newsletter, page 10
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Extreme losses are rare by definition and, con-
sequently, the issue of limited data availability
becomes of crucial importance to the accuracy
of the resulting risk measures against extreme
losses due to all sources.

The conventional method to estimate para-
metric extreme loss distributions is maximum
likelihood estimation (MLE), which chooses pa-
rameter estimates to make the observed sample
most likely. This method is widely used because
it is theoretically robust and fast to implement
from a computational viewpoint. However, the
sampling distributions of MLEs are based on large
sample theory and they perform unstably when
the MLE method is applied to small, or even mod-
erate, sample sizes. 

Our procedure for capital allocation for “un-
expected” operational risks is therefore based on
simulated parameter estimates of the model. Let

us assume that an agreement on how to collect
profit and loss data has been reached, that the
data has been collected and that appropriate
threshold levels have been chosen for business
units and at firm-wide level (this may require a
number of statistical techniques as noted above).
The matrix of losses (see table A) may be classi-
fied into several sub-samples, each associated
with a different risk factor and business unit.

Since sufficient data is seldom available for
accurate estimation of extreme values, we have
developed a computationally intensive hierar-
chical Bayesian simulation technique for fitting
heavy-tailed distributions to small samples. At
present, the procedure is developed for one busi-
ness unit across different loss types. Alternative-
ly, it may be applied to one type of loss across
all business units, as will be demonstrated below.
Essentially, the technique is trading computa-
tional power for lack of data, but its empirical es-
timation efficiency when tested on subsets of
large data sets is surprisingly good.

A Bayesian viewpoint treats uncertainties
about parameters by considering them to be ran-
dom variables possessing probability density
functions. If the prior density fθ|ψ of the random
parameter vector θ is parametric, given a vector
of random hyper-parameters ψ, and of a mathe-
matical form such that the calculated posterior
density fθ|X1,...,Xn,ψ := fθ|ψ+ is of the same
form with new hyper-parameters ψ+ determined
by ψ and the observations X1,…, Xn, we say that
fθ|ψ is a parametric family of densities conju-
gated prior to the sampling density fX|θ. 

The Bayesian hierarchical model provides a
transparent risk assessment by taking into ac-
count the possible classification of the sample ac-
cording to loss data subtypes or classes (ie, risk
factors or business units), as well as the aggre-
gate (Smith, 1998a). In this model, the Bayesian
prior density for the hyper-parameters ψ is com-
mon to all loss subtype Bayesian prior densities
for the parameters θ. At the model initialisation
stage, the hyper-hyper parameters ϕ, which are
the Bayesian parameters of this common prior
hyper-parameter, are chosen to generate a vague
prior, indicating a lack of information on the
hyper-parameters’ prior distribution before the
loss data is seen. Thus we have a Bayesian hier-
archical decomposition of the posterior parame-
ter density fθ|X,ψ, given the observations and the
initial hyper-hyper parameters ϕ, as:

where ∝ denotes proportionality (up to a posi-
tive constant). We may thus perform the Bayesian
update of the prior parameter density fθ ∝ fθ|ψ
fψ in two stages – first updating the hyper-hyper
parameters ϕ to ϕ+ conditional on a given value
of θ, then calculating the value of the corre-
sponding posterior density for this q given the
observations X. Figure 3 schematically depicts the
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identification of a threshold, and for the evalua-
tion of a capital requirement for unexpected op-
erational losses.

2. Calculating operational
risk by Bayesian simulation
Above, we argued that the expected severity and
frequency of losses are required to evaluate a
capital requirement for unexpected operational
losses. A Bayesian simulation methodology will
be developed in order to measure firm-wide op-
erational risk and allocate capital risk against it.
In our framework, the capital requirement is
given by the expectation of the excess distribu-
tion and the frequency by the average number
of exceedances over time, with respect to a suit-
ably chosen threshold for the POT model in-
volving GPD.
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2. Profit and loss distribution and a chosen threshold for
extreme operational losses 

3. Hierarchical Bayesian model parameter and observation
dependencies conditional on their hyper-parameters
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Catastrophic loss
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Loss type
Technology
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A. Firm-wide matrix of operational losses
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data classes (risks or business units) and the
hyper-parameter vector ψ consists of {mµ, s2

µ,
mlogσ, s2logσ, mξ, s2ξ}, which are the parame-
ters of a common (across all risk types, or alter-
natively across all business units) multivariate
Gaussian prior distribution of the GPD parame-
ters. To implement the strategy, Gibbs sampling
and the Metropolis-Hastings algorithm (Smith &
Roberts, 1993) are used to construct the Markov
chain possessing our specific target posterior dis-
tribution as its stationary distribution. This target
distribution is defined by standard Bayesian 

calculations in terms of the peaks over threshold
likelihood and appropriate prior distributions.
Running the Markov chain for very many 
transitions (about one million) produces an em-
pirical parameter distribution that is used to es-
timate the posterior density fθ|X,ψ. These MCMC
dynamical methods generate the sequence
{θj0, θj1, θj2,…} of parameter estimates θj = {µj,
logσj, ξj}, j = 1,2,…,  J, for each data class, 
with θjt+1 (for time t ≥ 0) depending solely upon
θj

t. This process represents the traditional 
exchange of computational intensity for low data

relationships between the three parameter levels
and the excess loss observations for each risk
class. Note that even though the prior specifica-
tion of parameters for individual risk classes is
as an independent sample from the same hyper-
parameter Gaussian prior distribution, their pos-
terior multivariate Gaussian specification will not
maintain this independence given observations
that are statistically dependent.

The Bayesian posterior density fθ|X,ψ may be
calculated via Markov chain Monte Carlo (MCMC)
simulation (Hastings, 1970, Smith & Roberts,
1993, and Smith, 1998a). The idea is to simulate
a sample path of a Markov chain whose state is
the parameter vector q and whose visited states
converge to a stationary distribution that is the
Bayesian joint posterior distribution fθ|X,ψ
(termed the target distribution) given the loss data
X and a vector ψof hyper-parameters as discussed
above. As used here, a Markov chain is a discrete
time continuous state stochastic process, whose
next random state depends statistically only on
its current state and not on the past history of the
process. Its random dynamics are specified by
the corresponding state transition probability
density. In this application, the parameter vector
state space of the chain is discretised for calcu-
lation, to create a parameter histogram approxi-
mation to the required posterior parameter
marginal distributions. 

For our application, the parameter vector q
represents the GPD parameters of interest 
{µj, log σj, ξj : j = 1,2,…,J} for the j = 1,…,J

Risk factor: external event
Business unit: 1 2 . . . J

x1,1 x1,2 . . . x1,J
x2,1 x2,2 . . . x2,J
. . . . . .
. . . . . .
. . . . . .
xn1,1 xn2,2 . . . xnj,J

POT parameters Hyper-parameters Hyper-hyper parameters
Mean µ1, µ2, . . . µJ mµ, sµ

2 αµ, βµ, γµ, κµ
Log scale logσ1, logσ2,. . . logσJ mlogσ, slogσ

2 αlogσ, βlogσ, γlogσ, κlogσ
Shape ξ1, ξ2, . . . ξJ mξ, sξ

2 αξ, βξ, ξγ, κξ

Firm-level Daily severity Daily Expected Excess
u=150 ξξ ββ distribution expected excesses annual

quantile excess beyond u risk
.95 .99 beyond u (per year) capital

Aggregated P&L 0.25 340 691.0 1,639.5 517.0 47 24,294
Business units
Threshold u = 130
One 0.34 205.2 601.6 1,360.3 365.9 72 26,345
Two 0.25 108.1 116.3 324.5 190.4 11 2,095
Three 0.24 118.6 179.2 442.0 206.5 19 3,924
Four 0.26 106.1 71.2 250.0 192.8 7 1,350
Total 33,714

1/10/97 1/12/97 1/2/98 1/4/98 1/6/98 1/8/98 1/10/98

1

0

-1

-2

1/12/98

k

4. Aggregated profit and loss data from four trading desks

B. Statistical analysis of the aggregated P&L and the four individual P&L data sets

5. Mapping the Bayesian hierarchical framework to data



Technical paper 2

S26 • OPERATIONAL RISK SPECIAL REPORT • RISK • NOVEMBER 2000

availability. After sufficient iterations the Markov
chain will forget its initial state and converge to
the stationary required posterior distribution
fθ|X,ψ, not depending on the initial state θj

0 or
time τ. By discarding the first k (= 10,000) states
of the chain, constituting the burn-in period, the re-
mainder of the Markov chain output may be taken
to be a parameter sample drawn from the high-di-
mensional target parameter posterior distribution. 

In summary, the MCMC simulation is used to
generate an empirical parameter distribution ap-
proximating the conditional posterior multivari-
ate parameter distribution given the available loss
data. A Bayesian hierarchical model (see figure
4) is used to link the posterior parameters of in-
terest through the use of common prior distrib-
ution hyperparameters. The simulation is
implemented using hybrid methods and para-
meter estimates are taken as median values of
the generated empirical parameter distributions.

Example: Bank trading
loss analysis through the
Russian crisis
The financial turmoil in 1998 caused by the Russ-
ian government’s default on August 24 was a po-
litical event that caused significant losses to major
banks. In financial crises, the separation of fi-
nancial risk sources into various types (market,
credit, etc) can prove to be a fallacy and the Russ-
ian crisis was no exception. The credit risk in the
primary market leads to market risk in the sec-
ondary markets and can lead to operational risk
within the financial institutions themselves. To
be more precise, operational risk in this case is
associated with the losses likely to be suffered
by the bank if it failed to set the appropriate con-
trols in place to quantify a potential political event
in a timely manner in order to reduce its expo-
sure. Of course, one could argue that these loss-
es do not belong to the category of operational
risk, but we will not debate this point further
here. Rather, we use trading data over this peri-
od of external market turmoil to test the proce-
dures outlined above. Note, however, that the
aggregated profit and loss data plot in figure 4
shows some extreme losses (along with a few
abnormal profits) through late summer and early
autumn 1998, before returning to normal volatil-
ity levels at the end of the year.

Our Russian crisis case study has two aims:
first, to estimate the extreme loss severity and fre-
quency applying our techniques described above;
second, to estimate similarly the corresponding
economic capital provision using the estimate of
expected excess loss over a suitably chosen
threshold (Medova, 2000). Here we report in de-
tail only on the estimation of economic capital
provision by business units and in total using our
hierarchical Bayesian simulation techniques.

Four daily profit and loss reports on trading
activities denominated in a domestic currency
have been rescaled for reasons of confidentiali-
ty. The aggregated profit and loss data consists
of 237 losses of a total size of 58,600 monetary
units and individual losses range from 0.002 to
2,942.028 (see figure 4) in the period from Oc-
tober 1, 1997 to December 31, 1998.

Statistical analysis indicates heavy-tailed be-
haviour, which for obvious reasons cannot be ex-
plained by market factors alone. The data X
consists of J(= 4) classes (business units), as in
figure 5. The necessary diagnostics were carried
out to test the quality of fit of the POT model to
the aggregated loss data. Having estimated the
frequency and severity of the aggregated losses,
our aim is to use the hierarchical structure of the
Bayesian model to analyse jointly the four indi-
vidual loss types.

The multivariate Bayesian estimation of the
POT model was applied jointly to the four sub-
samples. The values of the simulated parameters
and the resulting loss estimates are presented in
table B. Decentralisation of risk management al-
lows the identification of the risk sources and
more efficient capital allocation. 

The total capital estimated for the four trad-
ing desks in our case study is more than that cal-
culated at the firm level due to partially
independent tail events – capital allocation sat-
isfies the sub-additivity property of risk measures
and thus the firm’s operations enjoy the effects
of portfolio diversification and loss mitigation. ■
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