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There is reliable evidence that technical analysis, as used by traders in the foreign exchange
markets, has predictive value regarding future movements of foreign exchange prices. Although
the use of Al-based trading algorithms has been an active research area over the last decade,
there have been relatively few applications to intraday foreign exchange—the trading frequency
at which technical analysis is most commonly used. Previous academic studies have concen-
trated on testing popular trading rules in isolation or have used a genetic algorithm approach to
construct new rules in an attempt to make positive out-of-sample profits after transaction costs.
In this paper we consider strategies which use a collection of popular technical indicators as in-
put and seek a profitable trading rule defined in terms of them. We consider two computational
learning approaches, reinforcement learning and genetic programming, and compare them to a
pair of simpler methods: the exact solution of an appropriate Markov decision problem and a
simple heuristic. We find that although all methods are able to generate significant in-sample
and out-of-sample profits when transaction costs are zero, the genetic algorithm approach is
superior for non-zero transaction costs, although none of the methods produce significant prof-
its at realistic transaction costs. We also find that there is a significant danger of overfitting if
in-sample learning is not constrained.

1 Introduction

Since the era of floating exchange rates began in the early 1970s, technical trading has be-
come widespread in the foreign ezchange (FX) markets. Academic investigation of technical
trading however has largely limited itself to daily data. Although daily data is often used for
currency overlay strategies within an asset-allocation framework, FX traders trading contin-
uously throughout the day naturally use higher frequency data.

In this investigation, the relative performance of various optimization techniques in high
frequency (intraday) foreign exchange trading is examined. We compare the performance of a

genetic algorithm (GA) and a reinforcement learning (RL) system to a simple linear program



Computational Learning Techniques for FX Trading Using Popular Technical Indicators 2

(LP) characterising a Markov decision process (MDP) and a heuristic.

In Section 2 we give a brief literature review of preceding work in technical analysis.
Sections 3 and 4 then introduce the GA and RL methods. The stochastic optimization problem
to be solved by all the compared methods is defined in Section 5, while Sections 6, 7 and 8,
describe in more detail how each approach can be applied to solve this optimization problem
approximately. The computational experiments performed are outlined and their results given
in Section 9. Section 10 concludes with a discussion of these results and suggests further
avenues of research.

Reinforcement learning has to date received only limited attention in the financial liter-
ature and this paper demonstrates that RL methods show significant promise. The results
also indicate that generalization and incorporation of constraints limiting the ability of the
algorithms to overfit improves out-of-sample performance, as is demonstrated here by the

genetic algorithm.

2 Technical Analysis

Technical analysis has a century-long history amongst investment professionals. However,
academics have tended to regard it with a high degree of scepticism over the past few decades
largely due to their belief in the efficient markets or random walk hypothesis. Proponents of
technical analysis had until very recently never made serious attempts to test the predictability
of the various techniques used and as a result the field has remained marginalised in the
academic literature.

However due to accumulating evidence that markets are less efficient than was originally
believed (see for example [1]), there has been a recent resurgence of academic interest in the
claims of technical analysis. Lo and MacKinlay [2, 3] have shown that past prices may be
used to forecast future returns to some degree and thus reject the random walk hypothesis
for US stock indices sampled weekly.

LeBaron [1] acknowledges the risk of bias in this research however. Since various rules
are applied and only the successful ones are reported, he notes that it is not clear whether
their returns could have been attained by a trader who had to make the choice of rules in
the first place. LeBaron argues that to avoid this bias, it is best simply to look at rules that
are both widely used and have been in use for a long period of time. Neely et al. [4] use a

genetic programming based approach to avoid this bias and found out-of-sample net returns
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in the 1-7% per annum range in currency markets against the dollar during 1981-1995.
Although there has been a significant amount of work in technical analysis, most of this
has been based on stock market data. However, since the early 1970s this approach to trading
has been widely adopted by foreign currency traders [4]. A survey by Taylor and Allen [5]
found that in intraday trading 90% of respondents reported the use of technical analysis,
with 60% stating that they regarded such information as at least as important as economic
fundamentals. Neely et al. [4] argue that this can be partly explained by the unsatisfactory
performance of exchange rate models based on economic fundamentals. They cite Frankel

and Rose [6] who state that

. no model based on such standard fundamentals like money supplies, real in-
come, interest rates, and current-account balances will ever succeed in explaining
or predicting a high percentage of the variation in the exchange rate, at least at

short or medium-term frequencies.

A number of researchers have examined net returns due to various trading rules in the
foreign exchange markets [7, 8]. The general conclusion is that trading rules are sometimes
able to earn significant returns net of transaction costs and that this cannot be easily ex-
plained as compensation for bearing risk. Neely and Weller [9] note however that academic
investigation of technical trading has not been consistent with the practice of technical analy-
sis. As noted above, technical trading is most popular in the foreign exchange markets where
the majority of intraday foreign exchange traders consider themselves technical traders. They
trade throughout the day using high-frequency data but aim to end the day with a net open
position of zero. This is in contrast to much of the academic literature which has tended to
take much longer horizons into account and only consider daily closing prices.

Goodhart and O’Hara [10] provide a thorough survey of past work investigating the sta-
tistical properties of high frequency trading data, which has tended to look only at narrow
classes of rules. Goodhart and Curcio [11] examine the usefulness of resistance levels published
by Reuters and also examine the performance of various filter rules identified by practitioners.
Dempster and Jones [12, 13] examine profitability of the systematic application of the popular
channel and head-and-shoulders patterns to intraday FX trading at various frequencies, in-
cluding with an overlay of statistically derived filtering rules. In subsequent work [14, 15] upon
which this paper expands, they apply a variety of technical trading rules to trade such data
(see also Tan [16]) and also study a genetic program which trades combinations of these rules

on the same data [17]. None of these studies report any evidence of significant profit oppor-
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tunities, but by focussing on relatively narrow classes of rules their results do not necessarily
exclude the possibility that a search over a broader class would reveal profitable strategies.
Gencay et al. [18] in fact assert that simple trading models are able to earn significant returns

after transaction costs in various foreign exchange markets using high frequency data.

3 Genetic Algorithms

In recent years, the application of artificial intelligence (AI) techniques to technical trading
and finance has experienced significant growth. Neural networks have received the most at-
tention in the past and have shown varying degrees of success. However recently there has
been a shift in favour of user-transparent, non-black box evolutionary methods like genetic
algorithms and in particular genetic programming. An increasing amount of attention in the
last several years has been spent on these genetic approaches which have found financial appli-
cations in option pricing [19, 20] and as an optimization tool in technical trading applications
[17, 14, 4].

Evolutionary learning encompasses sets of algorithms that are inspired by Darwinian evo-
lution. Genetic algorithms (GAs) are population based optimization algorithms first proposed
by Holland [21]. They have since become an active research area within the artificial intel-
ligence community and have been successfully applied to a broad range of hard problems.
Their success is in part due to their several control parameters that allow them to be highly
tuned to the specific problem at hand. Genetic programming (GP) is an extension proposed
by Koza [22] whose original goal was to evolve computer programs.

Pictet et al. [23] employ a GA to optimize a class of exponentially weighted moving
average rules, but run into serious overfitting and poor out-of-sample performance. They
report 3.6% to 9.6% annual excess returns net of transaction costs, but as the models of
Olsen and Associates are not publicly available their results are difficult to evaluate. Neely
and Weller [9] report that for their GA approach, although strong evidence of predictability
in the data is measured out-of-sample when transaction costs are set to zero, no evidence
of profitable trading opportunities arise when transaction costs are applied and trading is

restricted to times of high market activity.
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4 Reinforcement Learning

Reinforcement learning has to date received only limited attention in financial applications.
The reinforcement learning technique is strongly influenced by the theory of Markov deci-
sion processes (MDPs) which evolved from attempts to understand the problem of making
sequences of decisions under uncertainty when each decision can depend on the previous de-
cisions and their outcomes. The last decade has witnessed the merging of ideas from the
reinforcement learning and the control theory communities [24]. This has expanded the scope
of dynamic programming and allowed the approximate solution of problems that were previ-
ously considered intractable.

Although reinforcement learning was developed independently of MDPs, the integration
of these ideas with the theory of MDPs brought a new dimension to RL. Watkins [25] was
instrumental in this advance by devising the method of ()-learning for estimating action-value
functions. The nature of reinforcement learning makes it possible to approximate optimal
policies in ways that put more effort into learning to make good decisions for frequently
encountered situations at the expense of less effort for less frequently encountered situations
[26]. This is a key property which distinguishes reinforcement learning from other approaches
for approximate solution of MDPs.

As fundamental research in reinforcement learning advances, applications to finance have
started to emerge. Moody et al. [27] examine a recurrent reinforcement learning algorithm
that seeks to optimize an online estimate of the Sharpe ratio. They also compare the recurrent

RL approach to that of )-learning.

5 Applying optimization methods to technical trading

In this paper, following [15, 17, 14], we consider trading rules defined in terms of 8 popular
technical indicators used by intraday foreign exchange traders. They include both buy and
sell signals based on simple trend-detecting techniques such as moving averages as well as
more complex rules. The indicators we use are the Price Channel Breakout, Adaptive Mov-
ing Average, Relative Strength Index, Stochastics, Moving Average Convergence/Divergence,
Moving Average Crossover, Momentum Oscillator and Commodity Channel Index. A com-
plete algorithmic description of these indicators can be found in [15, 14].

To define the indicators, we first aggregate the raw tick data into (here) quarter-hourly

intervals, and for each compute the bar data — the open, close, high and low FX rates —
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and the total trading volume. Most of the indicators use only the closing price of each bar,
so we will introduce the notation F; to denote the closing GBP:USD FX rate (i.e. the dollar
value of £1) of bar ¢ (here we use boldface to indicate random entities).

We define the market state s; at time ¢ as the binary string of length 16 giving the buy and
sell pounds indications of the 8 indicators, and define the state space S = {0,1}'® as the set
of all possible market states. Here a 1 represents a trading recommendation for an individual
indicator whose entry is otherwise 0. In effect we have constructed from the available tick
data a discrete time data series: at time ¢ (the end of the bar ¢ interval) we see F}, compute s;
and must choose whether or not to switch currencies based on the values of the indicators
incorporated in s; and which currency is currently held. We consider this time series to be a
realization of a binary string valued stochastic process and make the required trading decisions
by solving an appropriate stochastic optimization problem.

Formally, a trading strategy ¢ is a function ¢ : S x {0,1} — {0,1}, (s,h) — ¢(s), for
some current position h (= 0, dollars or 1, pounds), telling us whether we should hold pounds
(¢ = 1) or dollars (¢ = 0) over the next timestep. It should be noted that although our
trading strategies ¢ are formally Markovian (feedback rules), some of our technical indicators
require a number of periods of previous values of F' to decide the corresponding 0-1 entries
in s;. The objective of the trading strategies ¢ used in this paper is to maximize the expected

dollar return (after transaction costs) up to some horizon T

-1 #(s¢)
Fi1 _ \b(s)—(s-1)|
E{H (Fer)™ -9 , )

t=1

where E denotes ezpectation, ¢ is the proportional transaction cost, and ¢ is chosen with the
understanding that trading strategies start in dollars, observe s; and then have the oppor-
tunity to switch to pounds. Since we do not have an explicit probabilistic model for how
FX rates evolve, we cannot perform the expectation calculation in (1), but instead adopt
the familiar approach of dividing our data series into an in-sample region, over which we
optimize the performance of a candidate trading strategy, and an out-of-sample region where
the strategy is ultimately tested.

The different approaches utilised solve slightly different versions of the in-sample opti-
mization problem. The simple heuristic and Markov Chain method methods find a rule
which takes as input a market state and outputs one of three possible actions: either ‘hold
pounds’; ‘hold dollars’ (switching currencies if necessary) or ‘stay in the same currency’.

The GA and RL approaches find a rule which takes as input the market state and the
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currency currently held, and chooses between two actions: either to stay in the same currency
or switch. Thus the RL and GA method are given slightly more information (their current
position) than the heuristic and MDP methods and we might thus expect them to perform
better. The GA method also has an extra constraint restricting the complexity of the rules

it can generate which is intended to stop overfitting of the in-sample data.

6 Applying RL to the Technical Trading Problem

The ultimate goal of reinforcement learning based trading systems is to optimize some relevant
measure of trading system performance such as profit, economic utility or risk-adjusted return.
A standard RL framework has two central components; an agent and an environment. The
agent is the learner and decision maker that interacts with the environment. The environment
consists of a set of states and available actions for the agent in each state.

The agent is bound to the environment through perception and action. At a given time
step t the agent receives input 7, which is representative of some state s; € S, where S is
the set of all possible states in the environment. As mentioned in the previous section, s; is
defined here as being a combination of the technical indicator buy and sell pounds decisions
prepended to the current state of the agent (0 for holding dollars and 1 for pounds). The
agent then selects an action a; € A where A := {0, 1} telling it to hold pounds (¢ = 1) or
dollars (¢ = 0) over the next timestep. This selection is determined by the agent’s policy
7 (:= ¢, i.e. defined in our case as the trading strategy) which is a mapping from states to
probabilities of selecting each of the possible actions.

For learning to occur while iteratively improving the trading strategy (policy) over passes
of the in-sample data, the agent needs a merit function that it seeks to improve. In RL, this is
a function of expected return R which is the amount of return the agent expects to get in the
future as a result of moving forward from the current state. At each learning episode for every
time-step t the value of the last transition is communicated to the agent by an immediate
reward in the form of a scalar reinforcement signal r;. The expected return from a state is
therefore defined as

Ry = rip1 + g2 + Vrops + o+ 97 trr

T
= Z ’Yth+k+1a (2)
k=0

where vy is the discount factor and T is the final time step. Note that the parameter ~y
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determines the “far-sightedness” of the agent. If vy = 0 then R; = ry4; and the agent
myopically tries to maximize reward only at the next time-step. Conversely, as v — 1 the
agent must consider rewards over an increasing number of future time steps to the horizon.
The goal of the agent is to learn over a large number of episodes a policy mapping of S — A
which maximizes R; for all ¢t =0,...,T as the limit of the approximations obtained from the
same states at the previous episode.

In our implementation, two different approaches to rewards were followed. The first one
we term one way reward. In this case, the agent is directly attempting to maximize (1). The
reward signal is therefore equivalent to actual returns achieved from each state at the previous
episode. This implies that whenever the agent remains in the base currency, regardless of what
happens to the FX rate, the agent is neither rewarded nor penalized.

Often RL problems have a simple goal in the form of a single state which when attained
communicates a fixed reward and has the effect of delaying rewards from the current time
period of each learning episode. Maes and Brookes [28] show that immediate rewards are most
effective — when they are feasible. RL problems can in fact be formulated with separate state
spaces and reinforcement rewards in order to leave less of a temporal gap between performance
and rewards. In particular it has been shown that continuity of rewards lead to effective
learning. Matari¢ [29] demonstrates the effectiveness of multiple goals and progress estimators,
for example, a reward function which provides instantaneously positive and negative rewards
based upon “immediate measurable progress relative to specific goals”.

For this reason we initially introduced a second two way reward approach in which the
agent is rewarded or penalized by the amount the currency currently held moved against the

other currency (minus transaction costs). In this approach the reward is given by

rpay e (F;:1> (1= &) 9ls0)—(s1-1)] 3)

Thus rewards are given at every time step in which a decision is made that is deemed correct by
the environment, regardless of the actual monetary effect it has on the agent. Similarly every
incorrect decision incurs a negative reward regardless of whether or not the agent would have
actually lost money by taking that decision. Unfortunately however, by imposing this added
constraint the algorithm is encouraged to trade too often. As a result, although it performed
well at low slippage values, the two way reward variant was unable to infer successful trading
strategies at more realistic slippage values. As the one way reward RL method consistently
outperformed the two way reward method, we will only report results from the former in the

sequel. However, in a trading environment in which a trader is allowed to bet an equivalent
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limit amount in either currency, the two way reward method might be expected to be superior
to the one way RL algorithm used here.

In reinforcement learning the link between the agent and the environment in which learn-
ing occurs is the value function V™. Its value for a given state is a measure of how “good”
it is for an agent to be in that state as given by the total expected future reward from that
state under policy w. Note that since the agent’s policy 7 determines the choice of actions
subsequent to a state, the value function evaluated at a state must depend on that policy.
Moreover, for any two policies m and 7’ we say that 7 is preferred to «’', written = > «/, if
and only if Vs € S, V™(s) > V™ (s). Under suitable technical conditions there will always be
at least one policy that is at least as good as all other policies. Such a policy #* is called
an optimal policy and is the target of any learning agent within the RL paradigm. To all
optimal policies is associated the optimal value function V*, which can be defined in terms

of a dynamic programming recursion as
V¥ (s) = maxE{rsy1 + V" (s141)]81 = s}- (4)

Another way to characterize the value of a state s is to consider it in terms of the values
of all the actions a that can be taken from that state assuming that policy 7 is followed

subsequently. This value @ is referred to as the Q-value and is given by

Q*(s,a) =E{riy1 + 7y max Q*(st11,0d)|sy = s,a; = a}. (5)

The optimal value function expresses the obvious fact that the value of a state under an

optimal policy must equal the expected return for the best action from that state, i.e.
V*(s) = max Q*(s, a).
a

The functions @Q* and V* provide the basis for learning algorithms for MDPs.

Q-learning [25] was one of the most important breakthroughs in the reinforcement learning
literature [26]. In this method, the learned action-value function @ directly approximates the
optimal action-value function Q* independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enables convergence proofs. As a bootstrapping
approach, (-learning estimates the ()-value function of the problem based on estimates at

the previous learning episode. The Q-learning update is the backward recursion

Q(st,a1) = Qstes ar,) + afrpr +ymax Q(s41,0) — Qlste, ar, )], (6)
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where the current state-action pair (sy a¢) = (s, as,) from the previous learning episode.
At each iteration (episode) of the learning algorithm, the action-value pairs associated with
all the states are updated and over a large number of iterations their values converge to
optimality for (5). We note that there are some parameters in (6): in particular, the learning
rate « refers to the extent with which we update the current @Q-factor based on future rewards,
v refers to how ‘far-sighted’ the agent is and a final parameter of the algorithm is the policy
followed in choosing the potential action at each time step. (Q-learning has been proven to
converge to the optimal policy regardless of the policy actually used in the training period
[25]. We find that following a random policy while training yields the best results.

In order for the algorithm to converge, the learning rate o must be set to decrease over the
course of learning episodes. Thus « has been initially set to 0.15 and converges downwards
to 0.00015 at a rate of 213~ where E is the episode (iteration) number which runs from 0

(1+15)
to 10000. The parameter v has been set to 0.9999 so that each state has full sight of future

rewards in order to allow faster convergence to the optimal.

With this RL approach we might expect to be able to outperform all the other approaches
on the in-sample data set. However on the out-of-sample data set, in particular at higher
slippage values, we suspect that some form of generalization of the input space would lead to

more successful performance.

7 Applying the genetic algorithm

The approach chosen extends the genetic programming work initiated in [17, 14]. It is based
on the premise that practitioners typically base their decisions on a variety of technical signals,
which process is formalized by a trading rule. Such a rule takes as input a number of technical
indicators and generates a recommended position (long £, neutral, or long $). The agent
applies the rule at each timestep and executes a trade if the rule recommends a different
position to the current one.

Potential rules are constructed as binary trees in which the terminal nodes are one of
our 16 indicators yielding a Boolean signal at each timestep and the non-terminal nodes are
the Boolean operators AND, OR, and XOR. The rule is evaluated recursively. The wvalue of a
terminal node is the state of the associated indicator at the current time; and the value of
a mon-terminal node is the associated Boolean function applied to its two children. The

overall value of the rule is the value of the root node. An overall rule value of one (true) is
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interpreted as a recommended long £ position and zero (false) is taken as a recommended
neutral position. Rules are limited to a maximum depth of four (i.e. a maximum of sixteen
terminals) to limit complexity. An example rule is shown in Figure 1. This definition of a
rule generalizes that used in [17, 14] which allows trees in the comb form of Figure 1, but to
depth 10.

The fitness score of such a rule ¢ is defined as the total return cumulated over the appro-

priate data period (cf. (1)), i.e.
-1 ¢(st)
(@) 7 (1 = o) #le=0se-)], )

The genetic algorithm is used to search the space of all such rules and is tuned to favor rules
that trade successfully (i.e. achieve high fitness scores) in the in-sample training period. An
initial population of 250 rules is randomly generated and each rule is evaluated according
to (7). A new population of rules is generated from this in which high scoring rules are
preferred to low scoring rules. This bias means that the fitness scores of the new population
should be greater than those of the old population. New rules are generated by two processes:

crossover and mutation.

Figure 2: Genetic algorithm crossover

To use crossover two parent rules are selected from the current population. The selection
process is biased towards fitter (better performing) rules: all rules in the current population
are ranked in order of fitness score, and are chosen with a probability linearly proportional

to their rank. A random subtree is chosen from each parent rule and these two subtrees are
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swapped between the parent rules to create two new rules, each of which inherits character-
istics from both parents. This process is shown in Figure 2. The two new rules are then
inserted into the new population. For mutation, a single rule is selected from the current
population (again biased towards the better performers) and a random node is replaced with
a random node of the same type (e.g. an AND might become an OR). The mutated rule is then
inserted into the new population.

New rules are generated using 75% crossover and 25% mutation until a total of 250 new
rules are generated, when the new population is evaluated for fitness scores. The average
score of the new population should be greater than that of the old due to the favoritism
shown to the better performing rules in the old population. This process is repeated 100
times (generations) and the best rule found during the entire run is selected as the output of
the genetic algorithm.

The rules found by this process exhibit a number of desirable properties. First, with care-
ful tuning of the GA they should perform well in-sample. Secondly, a rule can be understood
by a humans: it is clear what the rule does, even if it is not clear why it does it. Thirdly,
this structure limits (but does not prevent) how much a rule can learn in detail (i.e. overfit)
the training data set. It is to be expected that this enforced generalization will lead to better

out-of-sample performance with a possible reduction in in-sample performance.

8 Markov Chain and Simple Heuristic

In addition to the RL and GA methods we will consider two alternative approaches. The
first replaces the in-sample dataset with a Markov chain on a small set of market states and
replaces the problem of maximizing the profit made over the in-sample period with that of
maximizing a total expected discounted return assuming Markov dynamics. This approach
is described in detail in Subsection 8.1

The second method is a simple heuristic: with each state we associate a number (which
will be interpreted as the expected rise in the exchange FX rate over the next £ trading periods
for some £) and consider strategies which buy pounds if this number exceeds one threshold,
and sell pounds when it falls below a second threshold. We then optimize over ¢ and the
two thresholds to maximize the in-sample profit. More details on this method are given in
Subsection 8.2.

These two methods were used to benchmark the success of the true computational learning
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approaches in maximizing the in-sample profit. Neither are likely to attain the true optimum,
but they should perform reasonably well. The heuristic was more successful at solving the
in-sample problem with non-zero transaction costs than any of the other approaches, although

it does not perform particularly well out-of-sample.

8.1 A Markov-chain linear programming approzimation

Recall that s; denotes the market-state at time ¢ (the values of the indicator recommendations
on which the trading decision at time ¢ is based). In this section we will let S denote the set
of all market states which occur in the in-sample dataset.

We will construct a controlled Markov chain on the set of pairs (s, h) where s € S denotes
a market state present in the in-sample dataset S = Ui<i<r{s;} and h € {0,1} indicates
whether or not pounds are currently held. The controls at each timestep are 0 or 1, indicating
the currency we wish to hold over the next timestep as before.

Denoting by N(s1) the number of times state s; appears in the in-sample dataset and
by N(s1,s2) the number of times state s; is followed immediately followed by state s2, we
define a controlled Markov chain Xy, t = 1,2,..., by fixing X1 := (s1,0) and choosing the
probability of a transition from (s1,h1) to (se, he) using control & to be

P®)((s1,hy), (s2,hg)) :=I(hy = k)N(sl,SQ)/ > N(s1,s).
SES
For se S, h e {0,1} we define an approximation to the ezpected dollar return over the next
timestep given we are in state s and hold currency h as
R(s,h) :=1I(h = l)ﬁ Z log (FtTtl) .
1<t<T:s4=s5
We are now in a position to replace the problem of maximizing the in-sample return with the

problem
mf}xEZ YTUHR(X 1, 7w (X)) + [7(X ) — (X 1)]log(1 — ¢)] (8)
t=1

where 7 is a feedback map from the state-space of the Markov Chain to the set of controls {0, 1}
and we treat the term 7(Xy) as zero (since we must start in dollars). The constant v is a
discount factor, chosen arbitrarily to be equal to 0.9999. This is an approximation to the
objective (1).

Since the set S is quite small, this problem can be solved exactly using linear programming.

If J(s,h) denotes the value of problem (8) when the initial market state is s and our initial
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currency is h, we can solve the problem above by solving the linear programme:

min Z J(s,h)

ICr) s€8,he{0,1}

subject to for all s € S and h,k € {0,1}

J(S,h) > R(Sa k) + ‘k - h‘| log(l - C) +7 Z P(k)((sah)a (Slahl))J(sl,hl)'
s'eS,nef0,1}
The optimal action in state (s,h) is any k maximizing the right-hand side of the above

inequality and is found for each in-sample period using the CPLEX commercial LP solver.

8.2 A simple heuristic

One objection to the method of the previous section is that when transaction costs are large
the solution obtained above may perform badly in-sample; indeed, it may even lose money
when the trivial strategy ‘always hold dollars’ gets a higher return, namely 0. As an alterna-

tive, we consider a heuristic defined in terms of three parameters (b, z, £):

buy pounds when E (log (F1.¢/F1)s1 =5) >b (9)

sell pounds when E(log (F11¢/F1)|s1 =s) <. (10)

The expected value in (9) and (10) is just the ezpected return available if we held pounds for
the next ¢ days given that the current market state is s. Since we do not have a stochastic
process model for FX rate movements, this expectation must also be estimated from the

in-sample data (assuming the ergodic theorem holds) as

1 F,
E(log (F11¢/F1)s1 = 8) = 4] Zlog <_}t;;£> ’
tey

where Y is the set {t: 1 <t <T —¥{,s; = s}.

For a several classes of stochastic process models for FX dynamics, the optimal strategy
for both very low and very high transaction costs has the form of (9) and (10), making it a
plausible heuristic in general.

The optimisation of the three parameters of the heuristic is a non-convex multiextremal

problem and for each in-sample period is solved by an appropriate genetic algorithm.
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9 Numerical experiments

The results reported below were obtained by applying the approaches described above to the
GBP:USD exchange rate data from January 1994 until January 1998 using a moving window
of 1 year for training (fitting) followed by 1 month out-of-sample testing.

The cumulative (without reinvestment) returns over the period are shown in odd-numbered
Figures 3 through 9 for selected in-sample (fitting) cases and evenly-numbered Figures 4
through 10 for corresponding out-of-sample (testing) cases. The annualised average monthly

returns are shown in Table 1 for the various approaches in the out-of-sample case.

Table 1: Qut-of-sample average annual returns

‘ Slippage H 0 bp ‘ 1 bp ‘ 4 bp ‘ 8 bp ‘ 10 bp ‘
RL 93.8 16.3 -1.55 1.64 1.45
GA 94.5 21.6 1.67 1.17 1.71
LP 96.8 15.9 -1.76 0.53 0.432
Heuristic || 96.3 8.56 -5.03 -4.89 -5.63

In-sample fitting performance has been shown for completeness to demonstrate the learn-
ing ability of the various approaches. It is clear that on the in-sample data set, the simple
heuristic approach consistently outperforms all the other methods except in the no slippage
case, when all methods were able to fit the data to essentially the same degree. The out-of-
sample test results demonstrate, however, that the heuristic approach was in fact significantly
overfitting the data.

For the out-of-sample back-tests, we note that the genetic algorithm and reinforcement
learning approaches tended to outperform the others at lower slippage values. In order to gain
further insight into the overall best performing GA, a plot of how often it inferred rules using
each indicator was generated for each slippage value and is shown in Figure 11. Figure 12
shows the frequencies that the GA employed specific indicators over the entire 4 year data
period, aggregated for all slippage values and into quarters, with considerable variability in
the patterns evident. The GA’s reduction in trading frequency with decreasing transaction
costs is demonstrated dramatically in Figure 13. Similar results apply to the other methods
with the exception of the heuristic, whose high trading frequency at realistic transaction costs
leads to its poor performance in out-of-sample back-tests. Data on the dealing frequency of

all the different approaches is given in Table 2 in order to shed light on the risk profiles of
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Figure 11: Indicators used by the genetic algorithm by slippage

the different methods. These results are discussed further in the final Section 10.

Table 2: Out-of-sample average monthly dealing frequency

‘ Slippage H 0 bp ‘ 1 bp ‘ 4 bp ‘ 8 bp ‘ 10 bp ‘
RL 851 220 20.5 0.980 0.604
GA 759 254 0.688 0.688 0.667
LP 852 218 20.5 1.06 0.792
Heuristic || 846 123 15.0 7.85 7.44

In order to evaluate the relative risk-adjusted performance of the trading models further,
we now define several risk measures found in the financial literature. A risk-adjusted measure

commonly used to evaluate portfolio models is the Sharpe ratio, defined as

Sharpe Ratio := B lmonin (11)

O Rumonth
The Sharpe ratio evaluations of our trading models, as shown in Table 3 demonstrate that on
the dataset used we are able to gain significant risk-adjusted returns up to a slippage value
of 1 bp. However the Sharpe ratio is numerically unstable for small variances of returns and
cannot consider the clustering of profit and loss trades [13, 18]. Furthermore the Sharpe ratio
penalizes strategies for upside volatility and its lack of dependence means that a strategy can

appear to be successful but in fact suffers from significant drawdown [6]. Mazimum drawdown
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Dr over a certain period of length 7' = t; — #( is defined as
DT = maX(Rta - Rtb‘to < ta < tb < tl), (12)

where R;, and Ry, are the total returns of the periods from ¢y to ¢, and t;, as defined by (7)
respectively. In our case T' was defined as on a monthly basis and the mean over the out-
of-sample back-test period is reported in Table 4. We therefore also quote the Stirling ratio,
defined as
Stirling Ratio := M, (13)
Dmonth

which is the average monthly return divided by the maximum drawdown within that month.

This value averaged over the 48 monthly back-test periods is reported in Table 5.

Table 3: Out-of-sample Sharpe ratios

‘ Slippage H 0 bp ‘ 1 bp ‘ 4 bp ‘ 8 bp 10 bp
RL 2.10 0.682 -0.00711 0.885 0.0874
GA 2.18 0.732 0.0758 0.05631 0.785
LP 2.23 0.663 -0.0783 0.249 0.0202
Heuristic || 2.22 0.397 -0.261 -0.279 -0.290
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Table 4: Out-of-sample drawdowns

‘ Slippage H 0 bp ‘ 1 bp ‘ 4 bp ‘ 8 bp ‘ 10 bp ‘
RL 1.38 1.71 2.25 1.29 0.932
GA 1.45 1.67 1.96 1.94 1.88
LP 1.36 1.72 2.28 1.91 1.89
Heuristic || 1.36 1.90 2.03 1.91 2.16

The current RL implementation requires about eight minutes CPU time on a 650MHz
Athlon per single training optimisation. The GA is implemented in the interpreted language
Scheme, but evaluation is parallelised over multiple similar CPUs. It also takes about eight
minutes CPU time per optimisation on a single machine. The Markov chain and heuristic

approaches execute in four seconds and approximately four minutes respectively.

10 Discussion and Conclusions

In this paper we have developed three trading strategies based on computational learning
techniques and one simple heuristic based on trading thresholds over a fixed horizon. The
strategies based on the genetic (programming) algorithm (GA) and reinforcement (Q-) learn-

ing train at 15 minute intervals on the buy-sell signals from eight popular technical trading
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‘ Slippage H 0 bp ‘ 1 bp ‘ 4 bp ‘ 8 bp ‘ 10 bp
RL 5.44 1.31 0.115 0.236 0.209
GA 5.08 1.72 0.246 0.225 0.239
LP 5.54 1.31 0.121 0.175 0.184
Heuristic || 5.45 0.883 0.0375 -0.0152 -0.0457
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indicators — some of which require a number of previous observations — and current posi-
tions over a one year period of GBP:USD FX data, while the Markov chain strategy use the
entire set of training data to estimate the relative transition frequencies of the few hundred
signal states that occur with a given year. Each of the four trading strategies is then eval-
uated out-of-sample at 15 minute intervals on the next month of indicator signals and this
back-testing process is then rolled forward a month and repeated for a total of 48 months.

It is evident that in-sample, all approaches were able to infer successful trading strategies
and also notable that the genetic algorithm consistently underperforms the other methods
in-sample. This is undoubtably due to the constraint imposed on the complexity of the rules
which was specifically imposed to avoid overfitting. In contrast, the non-GA approaches — in
particular the trading threshold heuristic — may end up exploiting noise in the in-sample data
set. At zero-slippage however we find that all approaches are able to infer similar strategies
and perform similarly out-of-sample. There is evidence that the non-GA approaches do in
fact overfit as the GA outperforms the other methods with non-zero transaction costs in the
out-of-sample cases up to 8 bp slippage.

The fact that the techniques investigated here return positive results both in-sample and
in out-of-sample back-tests implies that there is useful information in technical indicators that
can be exploited. This is consistent with the tenets of technical analysis and contradictory
to the Efficient Market Hypothesis. Furthermore, the GA’s relatively good out-of-sample
performance demonstrates that using a combination of technical indicators leads to better
performance than using the individual indicators themselves. In fact, Dempster and Jones
[15, 14] demonstrate that with a few exceptions these indicators are largely unprofitable on the
same data when considered in isolation. Figures 11 and 12 demonstrate that some indicators
also convey more information than others depending on the slippage value and the market
state. We note that the Relative Strength Index (Buy/Sell) indicators are not used at zero

transaction costs but as the slippage is increased, the GA tends to favour them. Indicators
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such as Price Channel Breakout, Stochastics and Moving Average Crossover (buy) are very
important at zero slippage, but the GA appears to disregard the information provided by
them at higher slippage values. At zero slippage the GA is able to infer successful strategies
without using the current position. However at higher transaction costs, knowing the current
position becomes very important. This lends credence to the argument that this extra position
information tends to favour the RL and GA approaches, since the Markov chain approach
and the heuristic did not have this information available to them.

The RL approach, the Markov chain and the heuristic all exploit the fact that of the
216 market possible states only a few hundred actually occur in the in-sample period. This
number is small enough that each state may be considered individually when deciding a
strategy. However, there are two problems with such a rule when it is back-tested out-of-
sample.

Firstly, we may encounter a state in the out-of-sample data which was not present in the
in-sample data. In that case some arbitrary action must be made and both the RL and the
Markov chain method choose to hold their current position. This may be a disadvantage if
many new states are encountered and it also ignores the fact that some new states may be
very similar to states which were present in the in-sample period. The genetic algorithm on
the other hand generates a trading rule whose structure tends to take the same actions in
similar states.

Secondly, there is a severe danger that these approaches may learn to well (overfit) the
specific in-sample data; in other words the in-sample problem they attempt to solve is too
specific. Indeed the simple heuristic method demonstrates this quite clearly: it achieves excel-
lent in-sample performance but is mediocre out-of-sample and terrible at realistic transaction
costs. The limit on the complexity of the GA is an artificial constraint which reduces the
opportunity for the GA to overfit while not prohibiting simple trading rules. This limit
effectively forces the GA to work with generalised (classes of specific) states.

The natural way forward is therefore to improve the current reinforcement learning ap-
proach by forcing state generalization, and also by improving its convergence properties. An-
other current avenue of research is to find constraints for the in-sample optimization problem
which force state generalization (such as the rule-complexity constraint in the GA approach),
but for which a heuristic similar to that of Section 8.2 can be applied.

As we have shown that some form of generalization has in fact lead to an improvement

in results, a further avenue that can be explored involves the incorporation of generalization
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methods into the broad RL approach. Neuro-dynamic programming (NDP) [24] attempts to

combine neural networks with the central ideas of dynamic programming in order to address

this. NDPs employ parametric representations of the value function (such as artificial neural

networks) to overcome the curse of dimensionality. The free parameters are tuned using

regression or stochastic approximation methods used in combination with classical dynamic

programming methods. Further, Wilson’s X-classifier system [30] attempts to merge ideas

from reinforcement learning with those from the Classifier System community in order to

incorporate generalization into a @-Learning-like framework. We also intend to investigate

this approach in the present context in the future.
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