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1. Introduction

Corporate sponsored defined benefit (DB) pension
schemes have recently found themselves in hot water.
Accounting practices that led to over-exposure to equity
markets, increases in longevity of the scheme participants
and low interest rates have all contributed to the majority
of schemes in the EU and the UK finding themselves
underfunded. In essence, a DB scheme promises to pay
its participants an annuity at retirement that gives them a
pension equal to a proportion of their final salary
(the proportion depending on the number of years of
service). Therefore the responsibility to meet these
promises (liabilities) rests firmly with the scheme’s
trustees and ultimately with the corporate sponsor.

The management of these corporate schemes was
greatly affected in the past by quarterly earnings reports
which directly impacted stock prices in the quest for
‘shareholder value’. Consequently DB scheme sponsors
resorted to a management style that was able to keep
the liabilities, if not off the balance sheet, then at least
to a minimum. One sanctioned tactic that achieved these
aims was the ability to discount liabilities by the expected
return of the constituent asset classes of the fund. In other
words, by holding a large part of the fund in equities, the
liabilities could be discounted away at over 10% p.a.

The recent performance of the equity markets and the
perception of equity as a long-horizon asset class assisted
in justifying this asset-mix in the eyes of the scheme’s
trustees. However, with the collapse of the equity-market
bubble in 2001, many funds found their schemes grossly
underfunded and were forced to crystallize their losses
by panicked trustees. Consequent tightening of
the regulations has made the situation even worse
(e.g. all discounting must be done by the much lower
AA credit quality bond yield rates in the UK FRS17
standard).

As a result many DB schemes have closed and are now
being replaced with defined contribution (DC) schemes.y
In this world of corporate sponsored DC pension schemes
the liability is separated from the sponsor and the market
risk is placed on the shoulders of the participants.
The scheme is likely to be overseen by an investment
consultant and if the scheme invests in funds that perform
badly over time a decision may be made by the consultant
to move the capital to another fund. However, any losses
to the fund will be borne by the participants in the scheme
and not by the corporate sponsor.

Since at retirement date scheme participants will wish
to either purchase an annuity or invest their fund payout
in a self-managed portfolio, an obvious need arises in the
market place for real return guaranteed schemes which
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yDC pension scheme participants typically make a lump sum initial payment and regular contributions to the pension fund which
are employer matched.
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are similar to those often found in life insurance policies.
These guarantees will typically involve inflation protec-
tion plus some element of capital growth, for example,
inflation rate plus 1% per annum. From the DC fund
manager’s viewpoint provision of the relevant guarantee
requires very tight risk, control, as the recent difficulties at
Equitable Life so graphically illustrate.

The question addressed in this article is how consul-
tants or DC fund-managers can come to a sensible
definition of an easily understandable liability-related
benchmark against which the overall fund performance
for a DC scheme can be measured. Performance of both
fund and benchmark must be expressed to fund partici-
pants in easy-to-understand concepts such as probability
of achieving some target wealth level above the scheme
guarantee – a measure easily derived from the solutions of
the models discussed in this article.

2. Current market practice

Currently, DC pension funds are market-benchmarked
against either a fixed-mix of defined asset classes (total
return bond and equity indices) or against some average
performance of their peers. The benchmark is not defined
in terms of the pension liability and investment is not
liability-driven. The standard definitions of investment
risk—standard deviation, semi-variance and downside
risk—do not convey information regarding the prob-
ability of missing the scheme participants’ investment
goals and obligations.

For example, the macro-asset benchmark may be
defined as 20% of certain equity indices and 80% of
particular bond indices, but may not reflect the risk that
the scheme participants are willing to take in order to
attain a specific substitution rate between their final
salary and pension income (pension earnings/final salary).

3. Optimal benchmark definition for DC funds

In line with current market practice, we wish to find a
definition of a fixed asset mix benchmark similar to that
given in the example above but with an asset mix that
optimizes returns against user-defined risk preferences.
Specifically, for participants that are willing to take a
certain amount of risk in order to aim for a given
substitution rate between final salary and pension, we
should be able to ‘tune’ the asset mix in an optimal way
to reflect the participants desire to reach this substitution
rate. The risk could then be defined as the probability
of not reaching that substitution rate.

In contrast to dynamic multi-stage portfolio optimiza-
tion, where the asset-mix is changed dynamically over
time to reflect changing attitudes to risk as well as market
performance (dynamic utility), a fixed-mix rebalance
strategy benchmark in some sense reflects an average of
this dynamic utility over the fund horizon. For such a
strategy the realized portfolio at each decision stage
is rebalanced back to a fixed set of portfolio weights.

In practice for DC pension schemes we want the returns
to be in line with salary inflation in the sense that the
required substitution rate is reached with a given prob-
ability. The solution to this problem will entail solving
a fixed-mix dynamic stochastic programme that reflects
the long run utility of the scheme participants.

In general multi-period dynamic stochastic optimization
will be more appropriate for long-term investors. Single-
period models construct optimal portfolios that remain
unchanged over the planning horizon while fixed mix
rebalance strategies fail to consider possible investment
opportunities that might arise due to market conditions
over the course of the investment horizon. Dynamic
stochastic programmes on the other hand capture
optimally an investment policy in the face of the uncer-
tainty about the future given by a set of scenarios.

Cariñno and Turner (1998) compare a multi-period
stochastic programming approach to a fixed-mix strategy
employing traditional mean-variance efficient portfolios.
Taking a portfolio from the mean-variance efficient
frontier, it is assumed that the allocations are rebalanced
back to that mix at each decision stage. They also high-
light the inability of the mean-variance optimization to
deal with derivatives such as options due to the skewness
of the resulting return distributions not being taken
into account. The objective function of the stochastic
programme is given by maximizing expected wealth less
a measure of risk given by a convex cost function. The
stochastic programming approach was found to dominate
fixed-mix in the sense that for any given fixed-mix
rebalance strategy, there is a strategy that has either the
same expected wealth and lower shortfall cost, or the
same shortfall cost and higher expected wealth. Similar
results were found by Hicks-Pedrón (1998) who also
showed the superiority in terms of final Sharpe ratio of
both methods to the constant proportion portfolio insur-
ance (CPPI) strategy over long horizons.

Fleten et al. (2002) compare the performance of four-
stage stochastic models to fixed-mix strategies of in- and
out-of-sample, using a set of 200 flat scenarios to obtain
the out-of-sample results. They show that the dynamic
stochastic programming solutions dominate the fixed-
mix solutions both in- and out-of-sample, although to a
lesser extent out-of-sample. This is due to the ability of
the stochastic programming model to adapt to the infor-
mation in the scenario tree in-sample, although they do
allow the fixed-mix solution to change every year once
new information has become available, making this sub-
optimal strategy inherently more dynamic.

Mulvey et al. (2003) compare buy-and-hold portfolios

to fixed-mix portfolios over a ten-year period, showing

that in terms of expected return versus return standard

deviation, the fixed-mix strategy generates a superior

efficient frontier, where the excess returns are due to port-

folio rebalancing. Dempster, Evstigneev and Schenk-

Hoppé (2007a) discuss the theoretical cause of this effect

(and the historical development of its understanding)

under the very general assumption of stationary ergodic

returns. A similar result was found in Mulvey et al. (2004)

with respect to including alternative investments into
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the portfolio. In particular they looked at the use of the
Mt. Lucas Management index in multi-period fixed-mix
strategies. A multi-period optimization will not only
identify these gains but also take advantage of volatility
by suggesting solutions that are optimal in alternative
market scenarios. In Mulvey et al. (2007) the positive
long term performance effects of new asset classes, lever-
age and various overlay strategies are demonstrated for
both fixed-mix and dynamically optimized strategies.

4. Fund model

The dynamic optimal portfolio construction problem for
a DC fund with a performance guarantee is modelled here
at the strategic level with annual rebalancing. The
objective is to maximize the expected sum of accumulated
wealth while keeping the expected maximum shortfall of
the portfolio relative to the guarantee over the 5 year
planning horizon as small as possible. A complete
description of the dynamic stochastic programming model
can be found in Dempster et al. (2006). In the fixed-mix
model the portfolio is rebalanced to fixed proportions at
all future decision nodes, but not at the intermediate time
stages used for shortfall checking.

This results in annual rebalancing while keeping the
risk management function monthly, leading to the objec-
tive function for both problems as
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. p(!) denotes the probability of scenario ! in �—here
pð!Þ :¼ 1=N with N scenarios,

. Wtð!Þ denotes the portfolio wealth at time t 2 T total

in scenario !,
. htð!Þ denotes the shortfall relative to the barrier at
time t in scenario !.

For the nominal or fixed guarantee, the barrier at time t
in scenario !, below which the fund will be unable to meet
the guarantee, is given by

LF
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where

. G denotes the annual nominal guarantee

. Ztð!Þ denotes the zero-coupon Treasury bond price
at time t in scenario !.

For simplicity we model closed-end funds here, but see
Dempster et al. (2006, 2007) and Rietbergen (2005) for

the treatment of contributions. We employ a five-period
(stage) model with a total of 8192 scenarios to obtain the
solutions for the dynamic optimization and fixed mix
approaches.y

For this article five different experiments were run on
a five-year closed-end fund with a minimum nominal
guarantee of 2% and an initial wealth of 100 using a
512.2.2.2.2 tree.z (See Dempster et al. (2006, 2007) for
more details on this problem.) The parameter of risk
aversion � is set to 0.99 and the parameter values used
were estimated over the period June 1997–December
2002. The Pioneer CASM simulator was used to generate
the problem data at monthly intervals.

The five experiments run were as follows.

. Experiment 1: No fixed-mix constraints. Objective
function: fund wealth less expected maximum short-
fall with monthly checking.

. Experiment 2: Arbitrary fixed-mix: 30% equity and
10% in each of the bonds.

. Experiment 3: The fixed-mix is set equal to the root
node decision of Experiment 1.

. Experiment 4: The fixed-mix is set equal to the root
node decision of Experiment 1 but only applied after
the first stage. The root node decision is optimized.

. Experiment5: The fixed-mix is determined optimally.

Experiments 2–4 with fixed-mixed constraints are ‘fixed
fixed-mix’ problems in which the fixed-mix is specified in
advance in order to keep the optimization problem con-
vex. Finally Experiment 5 uses fixed-mix constraints with-
out fixing them in advance. This renders the optimization
problem non-convex so that a global optimization tech-
nique needs to be used. In preliminary experiments we
found that although the resulting unconstrained problems
are multi-extremal they are ‘‘near-convex’’ and can be
globally optimized by a search routine followed by a
local convex optimizer. For this purpose we used
Powell’s (1964) algorithm followed by the SNOPT solver.
Function evaluations involving all fixed-mix rebalances
were evaluated by linear programming using CPLEX.
This method is described in detail in Scott (2002).

As the fixed-mix policy remains the same at all reba-
lances, theoretically there is no reason to have a scenario
tree which branches more than once at the beginning of the
first year. A simple fan tree structure would be perfectly
adequate as the fixed-mix approach is unable to exploit the
perfect foresight implied after the first stage in this tree.
However for comparison reasons we use the same tree for
both the dynamic stochastic programme (Experiment 1)
and the fixed-mix approach (Experiments 2–5).

5. Nominal guarantee results

Table 1 shows the expected terminal wealth and expected
maximum shortfall for the five experiments.

yIn practice 10 and 15 year horizons have also been employed.
zAssets employed are Eurobonds of 1, 2, 3, 4, 5, 10 and 30 year maturities and equity represented by the Eurostock 50 index.
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As expected, Experiment 1 with no fixed-mix con-
straints results in the highest expected terminal wealth
and lowest expected maximum shortfall. Whereas
Experiments 2 and 3 underperform, Experiment 3 in
which the initial root node solution of Experiment 1 is
used as the fixed-mix is a significant improvement on

Experiment 2 (arbitrary fixed-mix) and might serve as
an appropriate benchmark. Experiment 4 resulted in a
comparable expected terminal wealth to Experiment 3,
but the expected maximum shortfall is now an order
of magnitude smaller. Finally in Experiment 5 global
optimization was used which correctly resulted in an
improvement relative to Experiment 3 in both the
expected terminal wealth and the expected maximum
shortfall.

Table 2 shows the optimal root node decisions for
all five experiments. With the equity market performing
badly and declining interest rates over the 1997–2002
period, we see a heavy reliance on bonds in all portfolios.

Figures 1 and 2 show the efficient frontiers for the
dynamic stochastic programme and the fixed-mix solu-
tion, where the risk measure is given by expected
maximum shortfall. Figure 1 shows that the dynamic
stochastic programme generates a much bigger range of
possible risk return trade-offs and even if we limit the
range of risk parameters to that given for the fixed-mix
experiments as in figure 2, we see that the DSP problems
clearly outperform the fixed-mix problems.

We also considered the distribution of the terminal
wealth as shown in figures 3 and 4. From figure 3 we
observe a highly skewed terminal wealth distribution for
Experiment 1 with most of the weight just above the
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Figure 1. Efficient frontier for the nominal guarantee.
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Figure 2. Efficient frontier for the nominal guarantee.
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Figure 4. Terminal wealth distribution for the optimal
fixed-mix policy of Experiment 5.

Table 2. Root node solutions for the nominal guarantee.

1y 2y 3y 4y 5y 10y 30y Stock

Exp 1 0 0 0.97 0 0 0 0.02 0.01
Exp 2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.30

Exp 3 0 0 0.97 0 0 0 0.02 0.01

Exp 4 0 0 0.06 0.94 0 0 0 0
Exp 5 0 0 0.96 0.04 0 0 0 0
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Figure 3. Terminal wealth distribution for optimal dynamic
stochastic policy of Experiment 1.

Table 1. Expected terminal wealth and maximum shortfall for
the nominal guarantee.

Expected terminal
wealth

Expected maximum
shortfall

Experiment 1 126.86 8.47 E-08
Experiment 2 105.58 14.43
Experiment 3 120.69 0.133
Experiment 4 119.11 0.014
Experiment 5 122.38 0.122
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guaranteed wealth of 110.408. The effect of dynamic
allocation is to alter the overall probability distribution
of the final wealth. Cariño and Turner (1998) also note
this result in their experiments. For Experiments 2 and 3
in which there is no direct penalty in the optimization
problem for shortfall, we see the more traditional bell-
shaped distribution. Using the initial root node solution
of Experiment 1 as the fixed-mix portfolio results in a
distribution with a higher mean and lower standard
deviation (the standard deviation drops from 20.51 to
6.43). In Experiment 4 we see an increase again in the
probability of the terminal wealth ending up just above
the minimum guarantee of 110 as the optimization pro-
blem has flexibility at the initial stage. The standard
deviation is further reduced in this experiment to 4.04.
The mean and standard deviation of Experiment 5 is
comparable to that of Experiment 3, which is as
expected since the portfolio allocations of the two
experiments are closely related.

6. Inflation-linked guarantee results

In the case of an inflation-indexed guarantee the final
guarantee at time T is given by

W0
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s ð!Þ

� �
, ð3Þ

where iðmÞ
s ð!Þ represents the monthly inflation rate at time s

in scenario !.
However, unlike the nominal guarantee, at time t < T

the final inflation-linked guarantee is still unknown.
We propose to approximate the final guarantee by using
the inflation rates which are known at time t, combined
with the expected inflation at time t for the period
½tþ ð1=12Þ,T �.
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In general the expected terminal wealth is higher for the
inflation-linked barrier, but we also see an increase in
the expected maximum shortfall (see table 3). This reflects
the increased uncertainty related to the inflation-linked
guarantee which also forces us to increase the exposure
to more risky assets. With an inflation-linked guarantee
the final guarantee is only known for certain at the end
of the investment horizon. Relative to the nominal guar-
antee results of table 2, table 4 shows that the initial
portfolio allocations for the inflation-linked guarantee
are more focused on long-term bonds.

As in figure 3, figure 5 shows that there is a noticeable
pattern of asymmetry in the final wealth outcomes for

Table 4. Root node solution for the inflation-linked guarantee.

1y 2y 3y 4y 5y 10y 30y Stock

Exp 1 0 0 0 0 0.77 0.23 0 0
Exp 2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.30

Exp 3 0 0 0 0 0.77 0.23 0 0
Exp 4 0 0 0 0 0.88 0.12 0 0
Exp 5 0 0 0 0 0.94 0.06 0 0

Table 3. Expected terminal wealth and maximum shortfall
for the inflation-linked guarantee.

Expected terminal
wealth

Expected maximum
shortfall

Experiment 1 129.88 0.780
Experiment 2 122.81 13.60
Experiment 3 129.34 1.580
Experiment 4 129.54 1.563
Experiment 5 128.23 1.456
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Figure 6. Terminal wealth distribution for Experiment 5 for
the inflation-linked guarantee.
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the dynamic stochastic programme of Experiment 1.
However the skewness is not so marked. This is due to
the fact that for the inflation-linked guarantee problems
inflation rates differ on each scenario and the final
guarantee is scenario dependent which results in a differ-
ent value of the barrier being pursued along each
scenario. This symmetrizing effect is even more marked
for the inflation-linked guarantee as shown in figure 6
(cf. figure 4).

Figure 7 shows for the inflation-linked guarantee
problem similar out-performance of DSP relative to the
optimal fixed-mix policy as in figure 2.

7. Conclusion

In this article we have compared the performance of two
alternative versions of a dynamic portfolio management
model for a DC pension scheme which accounts for
the liabilities arising from a guaranteed fund return.
The results show that a fixed-mixed rebalance policy can
be used as a benchmark for the dynamic stochastic
programming optimal solution with less complexity
and lower computational cost. Whereas the risk-return
trade-off for a fixed-mix portfolio rebalancing strategy is
constant over the planning horizon, for the dynamic
stochastic programming solutions portfolio allocations
shift to less volatile assets as the excess over the liability
barrier is reduced. The resulting guarantee shortfall risk
for the easy-to-explain fixed-mix portfolio rebalancing
strategy is therefore higher and its portfolio returns
are lower than those of the dynamic optimal policy.
On a percentage basis however these differences are
sufficiently small to be able to use the easier-to-compute
fixed-mix results as a conservative performance
benchmark for both in-sample (model) and actual out-

of-sample fund performance. For out-of-sample
historical backtests of optimal dynamic stochastic
programming solutions for these and related problems
the reader is referred to Dempster et al. (2006, 2007b).
Perhaps the easiest way to explain both benchmark and
actual fund performances to DC pension scheme parti-
cipants is to give probabilities of achieving (expected)
guaranteed payouts and more. These are easily estimated
a priori by scenario counts in both models considered in
this paper for fund design and risk management. It is of
course also possible to link final fund payouts to annuity
costs and substitution rates with the corresponding
probability estimates.
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Figure 7. Efficient frontier for the inflation-linked guarantee.
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