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Abstract

In our previous work we have developed a model to investigate capacity re-
quirements and routing strategies for a network carrying hypothetical Asynchronous
Transfer Mode (ATM) traffic. Our approach involves a hierarchy of design objectives
associated with the respective network layers which constitutes a set of models —
an Integrated Modelling System — with common data, ‘solvers’ and graphical user
interface (GUI) operating under interactive control of the network planner. The sys-
tem is used in the first instance for dimensioning link capacities which are optimally
determined at the ATM layer by the Path and Capacity Allocation Model (PCA).
Dimensioning at the optical transmission layer is based on a heuristic with solu-
tions incorporated into the 2-level planning model solved by an LP or mixed integer
programming solver.

The investigation of different network architectures, bounds on maximal link ca-
pacities, different forms of the objective function, and relations between cost and
revenue coefficients are all accomplished using a modelling language (MODLER,
AIMMS or XPRESS-MP) and an integration component which provides model man-
agement facilities. A set of user interface components have been implemented in
the Java programming language, which allow visualization of solutions as they are
calculated and interaction with the modelling process.

Our system may serve both as a network planning tool at the strategic level, and
as a dynamic routing system at the operational level of management.

Introduction

Our work on an Integrated Network Design System (INDS) for multimedia high speed
communication networks reflects the interests of British Telecom, who sponsored this work
initially. Our present understanding of current requirements for the system architecture



have grown through the company’s position in global telecommunications. The principal
tasks of the network design system developed are:

e capacity allocation for shared resources — different types of digital switches and com-
munication links

e ‘call’ routing over an existing topology whose connectivity is enhanced through the
concept of virtual connections.

Here the term call means a predefined mixture of multimedia traffic under the Asyn-
chronous Transfer Mode (ATM) protocols. In our model three service classes of constant
bit rate (CBR) sources — telephony, N-ISDN video and TV — and three service classes of
variable bit rate (VBR) source — VBR video retrieval, Ethernet and high speed LAN — are
multiplexed on wvirtual paths (VPs) or virtual circuits (VCs) at the so called transport layer.
The underlying physical transmission network layer is based on the Synchronous Digital
Hierarchy (SDH) protocols with a standard transport rate of 155Mb/s frames (STM-1)
and their multiples (STM-N). Details about these transmission formats can be found in
[17] and in previous publications related to this project [3, 4].

Here we would like to discuss our approach to the INDS system architecture which has
been shaped by rapid technological developments and the competitiveness of the telecom-
munications industry. Debate is still going on between established telephone network
operators offering all kinds of services and computer network (Internet) service providers
claiming that they can handle any type of communication media. As a result, planning
for future communications networks has become increasingly complex and weakly defined.
In this project our problem formulations were often revised. Initially this was frustrating,
but now this feature has finally been formalised as a principal property of our decision
support system. Planning for multimedia networks involves problems with uncertainties of
different natures: one is related to the natural stochasticity of traffic sources and the other
— as noted — concerns modelling uncertainty reflecting technical implementations and man-
agement strategies translated into different network model formulations. Once modelling
uncertainty is introduced, significant problems regarding capital investment decisions must
be investigated. To handle both kinds of uncertainty we have developed a system consist-
ing of a set of network models and a set of procedures for capacity allocation and routing
with random demands. Our system may thus serve both as a network planning tool at the
strategic level and as a dynamic routing system at the operational level of management.

The modelling is reviewed in Section 1 in order to demonstrate the need for easy
reformulation of the initial problem using a modelling language [7]. Our approach involves
a hierarchy of design objectives associated with respective network layers which constitutes
a set of models with common data. In section 2 we present a current version of the
Integrated Network Design System with common data, solvers and graphical user interface
(GUI) evolving as a result of comparison and trials of different LP solvers, modelling
languages and visualisation tools. The choices for modelling languages and solvers has
been dictated by their availability in our environment and our established academic and



business connections with their authors and does not indicate any specific preference in use.
In the conclusion, we summarise our approaches and suggest the continuing development
of an open system integrated through a flexible GUI.

1 Modelling

1.1 Review of PCA formulations

The Path and Capacity Allocation (PCA) [15] model serves as a principle component of
INDS. Its formulation is generic and allows one to deal with a variety of practical require-
ments.
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In the stochastic PCA model Grade of Service (GoS) requirements are translated into
chance-constraints in which D,, is a suitable effective bandwidth for multimedia calls be-
tween origin-destination (O-D) node pair w € W, C,, is the link-capacity which guarantees
the agreed GoS between user and network operator and C4 is the bound on mazimum
link capacity. Here b, is the cost of capacity provisioning and r,, is the unit revenue of the
traffic flows f,,p € P,,w € W.

In principle our deterministic PCA is a compact arc-path form multicommodity flow
problem (MFP) in real variables [13]. The given reliability requirement for the network
states that each pair w € W has a number of node/link disjoint paths p € P specified by
the network operator. As the problem of finding these paths in a given network is compu-
tationally exponential, we precompute the required fixed number of paths to generate data
matrices P, and (),. The probabilistic calculations of the multilayer effective bandwidths
are also performed separately by a specially designed algorithm described in [15]. As a



significant amount of research is devoted to this topic with different views on the best
implementation, the INDS system allows a choice for these calculations.

Although the reliability requirements introduce additional computational efforts, they
simplify the resulting MFP by significantly reducing its size. National backbone telecom-
munications networks under consideration have less than 100 nodes with nearly sparse O-D
demand specifications. This makes the solution time for practical problems very reason-
able. The CPU times for the revenue maximization stage are shown in table 1, times are
similar for minimization of the upper bound on flows.

PCA+switch revenue maximization with effective bandwidth calculation

Network Problem Solution time (seconds)
Name BT | Rows 635 | Effective b/w (caching) 5.23
Nodes 31 | Columns 1376 | Matrix generation 23.68
Links 70 | non-zeros 9954 | LP Solution time 0.75
OD-Pairs 216 | density 1.14%

Table 1: CPU times for IBM RS6000/590 running Dash Associates’ XPRESS-MP under
AIX 4.2. Matrix generation was performed by a non-optimized development version of
mp-model.

Routing of the traffic over a network with unlimited capacity, i.e. over the shortest
path between O-D nodes, can be considered as the first stage of network resource mod-
elling. By examining the solution set C,, the links of highest aggregated loads — bottleneck
transmission links — can be identified. First stage routing solutions lead to highly uneven
network link load distributions. As a policy, the network operator tries to ‘spread’ traffic
across the network. We enforce this policy by a constraint on maximum link capacity C'4.
A value for C'y is obtained using the bottleneck model.

At the next stage the value of maximum link capacity for given demand is fixed. The
model will produce optimal traffic routings by splitting OD demand over all available paths
with the most stringent constraints on maximum capacity installed and can be viewed as
the final step in network optimization and traffic balancing — the PCA+bottleneck model.

Further analysis requires a more specific description of the network involving decisions
about switching and buffering resources. The optimal node capacity can be chosen accord-
ing to the optimal flow passing through the node, but current views on the switch size must
be adjusted to future traffic expansion. At the SDH layer the network performs at much
higher transmission rates. Translation of the VPI and VCI addresses is done according
to the standards of the layer involved at the corresponding ATM or SDH switch. At the
SDH layer the required ATM link capacities must be converted to SDH standards — i.e.
STM-1, STM-4 or STM-16 — and these standards dictate integrality constraints on link
capacity. In addition, the cost of switching equipment is highly nonlinear as it is decreas-
ing in successive multiples for larger switch sizes and increasing levels of simplification.
The corresponding PCA+ models are written in the system as mized integer programming
problems and are the topic of current research.
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1.2 Hierarchy of design

The hierarchical design process is summarized below:

e Uncapacitated PCA
Shortest path routing;
Identification of heavily loaded links

e Bottleneck PCA

Minimization of the bound on bottleneck links

e PCA + bottleneck

Optimal routing over network with most stringent capacity constraints.

As we discussed earlier, the requirements for future networks are often redefined. For
example, for each OD demand the overall traffic may be divided over two virtual paths,
one for CBR sources — telephony, N-ISDN video and TV, and another for VBR sources
— VBR video retrieval, Ethernet and high speed LAN. Each class may have a different
procedure for the calculation of bandwidth requirements for different types of traffic.

In the case of the resource allocation for switches, the switched version of the PCA
model (i.e. PCA+) must be used in a similar manner.

2 Software design

Our starting point for the INDS system was an all UNIX solution and is summarized in
figure 1. We used both MODLER [10] and XPRESS-MP [2] modelling language for the
modelling process, and found that there is little difference in the way that linear problems
are formulated in these languages. MODLER, when used with ANALYZE [9] proved to
be invaluable in the initial stages of the modelling process for the purposes of checking the
correctness of the LP formulation. However, the commercial XPRESS outdid MODLER in
speed, data handling flexibility and its ability to handle mixed integer problems which are
the subject of our current research. There were several problems with the UNIX approach:

e The user was required to have a good working knowledge of UNIX, and an in-depth
knowledge of the peculiarities of each modelling and solving environment employed,
as well as a thorough knowledge of the problem formulation in order to use the
system.

e As can be seen from the diagram, a dozen files can easily be involved in a single
problem formulation. If small changes are made by the user (for instance, an adjust-
ment of one OD-pair demand), either the number of files quickly explodes beyond
management, or intermediate results are lost.



e There are no visualization facilities. It can be difficult to get an intuitive idea of
what is going on from numerical tables of model results. For example, basic ‘sanity
checks’, such as checking that there are no unconnected nodes, and checking that
paths extend from their origin to their destination can be difficult and tedious.

In parallel, we also worked with Paragon Decision Technologies to produce a version
that used the AIMMS environment [1], which consists of an integrated modelling language,
solver and graphical user interface design system that runs under Microsoft Windows (see
figure 2). AIMMS provides a user friendly environment in which both to do the modelling,
and to design the user interface. However, this integration and ease of use came at a cost —
we found it difficult to integrate AIMMS with custom software which would be necessary in
the final system. For example, the effective bandwidth algorithm was placed in a Windows
DLL with a proprietary interface — to which we had no access — so it was impossible
to modify. The current (beta-test) AIMMS presentation facilities lack visualization tools
that are specific to viewing network topologies, and we had no way of adding them. Later
versions of AIMMS may address some of these limitations.

The Model Manager

At first, we partially solved the model management problem by automating the process
shown in figure 1, and by endowing the management software with sufficient intelligence
to notice changes between calculations, and recalculate only where necessary. To use the
above example of a user changing one OD-pair demand, the model manager notices that
it is unnecessary to recalculate shortest paths, and only one effective bandwidth need be
calculated. If, as is likely, the demand has been changed to be the same as another demand
for which the effective bandwidth has already been calculated, the data for that calculation
is reused. ! The model manager can also observe that the structure of the problem will
not have changed, and that by identifying the constraint coefficients and RHS values that
have changed (in this example there would be one RHS value), the change can be made
to a copy of the matrix stored in memory from the previous run. This saves an expensive
run through the model generation stage.

Figure 3 shows the model manager. The modelling process can be controlled by com-
municating with the manager by one of three interfaces. The command line interface is
designed for non-interactive use, and allows the user to specify the problem and let it run.
The Network Dimensioning Protocol (NDP) can be used to control the model manager by
either direct interaction from the console by the user, or by communicating with another
program (possibly on another machine) using the TCP/IP 2 interface. In this case the

'For the problem shown in table 1, although there are 216 OD-pairs, there are only 75 different values
for bandwidth requirement, so this caching of expensive effective bandwidth calculations is also a saving
while calculating the entire network.

2TCP — Transmission control protocol. This protocol is used to establish a two way connection oriented
communications channel between two programs, possibly running on different machines. IP — Internet
protocol. This is the protocol that defines how the TCP packets find their way between the machines.
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Figure 1: Initial design of INDS. The network topology and demand information is sub-
mitted to SHPTH40 where up to 3 shortest paths between each OD-pair are generated,
and arc-path, node-path and OD-pair-path incidence matrices are generated for use in the
PCA model. PREPET41 calculates the effective bandwidth for each OD-pair, based on the
contents of a ‘mixfile’ which describes the probabilistic behaviour of each traffic type. It
then outputs a data file suitable for use by a modelling language (in this example MODLER
is used). The modelling language creates a matrix which is the input to a simplex-based
solver. The solution is then post-processed into a human readable format, making use of
previously generated path data.
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Figure 2: INDS AIMMS Control Panel. The user can specify the model using the selection
boxes after supplying appropriate input files.
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model manager is effectively an internet server for network modelling, and the programs
that connect to it are clients. Most often (and in our case) these clients would provide
the user interface to the model. We considered separating the model manager from the
user interface in this way to be necessary because of their contrasting requirements. Many
modelling problems require state-of-the-art hardware to run, and often use legacy mathe-
matical code. Mostly this means a UNIX/FORTRAN/C environment, whereas graphical
user interfaces do not place much computational demand on their host, and are much easier
to write in a high level language. Users have different preferences about what environment
they work in, so the user interface should be easily portable between those environments.
The ubiquity of the Internet and the TCP/IP protocol ensures that it is rarely difficult to
connect the model manager and user interface together.

NDP is a simple command language that allows commands such as SET DEMAND ATM
44 323.5 or SHOW TOPO ATM to control the actions of the manager and to read model data.
One of the special features of NDP is that it allows the setting up of observables. These
are model data which we wish to see every time they are changed, for example during the
calculation of a solution. This makes the manager and its clients more complicated, as
the manager has to keep track of observables while it is doing calculations, and the clients
have to deal with unexpected observations while they are possibly doing other things, but
this approach allows a high degree of interactivity between the model manager, the user
interface and the user. The console interface is provided only to let the user debug the
protocol by ‘pretending’ to be a client; so as to keep both clients and the server simple
user friendliness is kept to a minimum.

The User Interface

Although the model generalizes well over different network management tasks, user inter-
face requirements will differ considerably when targetted at different end users — consider
the differences in interface requirements between an automatic dynamic router, a strategic
planner who has to present to management, and the analyst/developer who requires com-
plete flexibility. Because of this ambiguity of user requirements, we nominated ourselves
(the analyst/developer) as our own targetted end user.

Our primary needs for a user interface were that the mechanics of model management
became as transparent as possible when we were interested in the mathematical properties
of the model, but that intermediate results of the modelling process were accessible. We
had strong motivation to create a graphical user interface, as although current command-
line based tools provide a rich and comprehensive modelling environment they have a steep
learning curve. We were also interested in visualization techniques which would aid our
understanding of the problem and its solutions.

Our requirements of portability and maintainability led us to choose Java [8] as our
user interface implementation language. The user interface was implemented as a set of
components connected by an ObserverSocket/Observer architecture. Any object in the sys-
tem which changes can send a message to its ObserverSocket, and any Observers listening
on that socket are made aware of the change. This enhances componentization of the user
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interface, as objects do not have to know about the things they affect. Figure 4 shows
how the ‘Network’ object (which contains the network topology and dimensions) is kept
up-to-date by observing the NDP Client, and the various specialized user interface objects
observe the ‘network’ object to provide visualization. The NDP client observes the model
viewer, which is where the user controls the model, and communicates appropriately with
the model manager.
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Figure 5: Going clockwise from the top left, this screenshot shows the ‘fisheye’ viewer, the
model control window, the switch viewer showing details of the switch that is selected in
the fisheye view, the fisheye control window, a dump of the communication between client
and server, the path viewer showing all paths out of the Nottingham switch (NT/B) and
a window showing the current costs and revenues.

Figure 5 shows the user interface components running in a UNIX environment. Because
the code is written in Java, the client runs without change on Unix and Windows platforms.
It is a matter of preference whether the user interface components adopt the ‘look and feel’
of the window system they are running on, or maintain a system independent style. We
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adopted the latter option, and used the BISS-AWT toolkit [16] in the construction of the
interface as it offered a more mature development environment than the standard Java
user interface toolkit alone at the time. Later versions of Java and commercial ‘visual’ de-
velopment environments now make user interface programming in Java as straightforward
and as powerful as in environments such as Visual Basic or Delphi.

4i Fisheye Browser | == JiX

Figure 6: The fisheye viewer showing the user looking at the London area with only major
connections shown, while in figure 5 the entire network is shown. This component observes
the ‘network’ component, so as the dimensions of the network change during the course of
solution the display is updated.

The fisheye component is an implementation of the ideas presented in [18]. It uses
a topology preserving transform which simulates the effect of a ‘fisheye’ camera lens, in
which objects near the focal point are scaled up and objects further away reduced, so that
the user can see local detail of the network while keeping global context. All objects on
the view are given a ‘visual worthiness’ value between 0 and 1 based on their distance from
the focus and an a prior: importance such as capacity. Choosing a cutoff point using the
fisheye control, objects of lower importance can be removed from the view to reduce clutter
(see figure 6). See [14] for a good survey of network visualization techniques.
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In our current research on integrality constraints on links and switch capacity, as inter-
mediate solutions are produced (for example during branch-and-bound search) they update
the capacities on the fisheye view, so an intuitive idea of how the search space is being
explored can be gained. By using concurrent ‘threads’ of execution, the program enables
the user to manipulate the view while it is being updated by the solver.

3 Conclusion

The focus of this paper has been the issues surrounding implementation of the Integrated
Network Design System in which stochastic calculations are combined with modern math-
ematical programming tools. The advantages of using a modelling language have been
established for a long time [5, 11] in a variety of applications. In spite of this fact such
tools are rarely applied in the telecommunications industry.

Our current system demonstrates the importance of introducing optimization modelling
tools to network design, interfaced using an effective and portable GUI. The complex issue
of integrating different network layers may be accomplished through a hierarchy of design
procedures and modifications of the basic underlying PCA model. Our current choice of
XPRESS-MP was motivated by our interest in solving hard mixed integer programming
formulations of the SDH dimensioning problem.

Future Goals

By keeping each of our user interface components self-contained, it is our intention that
future versions of the software will comform to one of the standard ‘component’ architecures
such as JavaBeans, Microsoft ActiveX or OpenDoc [12]. This will give us a toolkit of
components which can be easily integrated with third party products such as spreadsheets
or databases. We will also look at the possibility of using a relational database schema [6]
to formalize the storage of data connected with the model, as although our model manager
minimizes the amount of user interaction to manage one version of the model, multiple
variations of the model data still have to be managed manually.
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