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ABSTRACT 
 
In recent years there has been a significant growth of investment products aimed at 
attracting investors who are worried about the downside potential of the financial 
markets. This paper introduces a dynamic stochastic optimization model for the design of 
such products. An optimal dynamic portfolio allocation strategy combined with risk 
management allows us to provide the best possible portfolio returns that fit clients’ risk 
aversion. The pricing of the minimum guarantee as well as the valuation of a portfolio of 
bonds are based on a three-factor term structure model. The implementation of our 
investment strategy is illustrated on real market data and back-tested through a period of 
the last five years. 
 

Keywords:  Dynamic Stochastic Programming; Asset  & Liability Management; 
Guaranteed Returns; Backtests 
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1. Introduction 

 

In recent years there has been a significant growth of investment products aimed at 

attracting investors who are worried about the downside potential of the financial 

markets. There are several different guarantees available in the market. The one most 

commonly used is the nominal guarantee in which a fixed percentage of the initial wealth 

is guaranteed at a specified date in the future. There also exist funds with a ‘real’ or 

flexible guarantee linked to an inflation index or some other capital market index. 

Sometimes the guarantee of a minimum rate of return is even set in relation to the 

performance of other funds.  

 

Life insurance companies often include guarantees in their products. These guarantees 

provide options to their policyholders which in some cases can be valuable. In the past 

these options have sometimes been viewed by insurers as having negligible value, as they 

were far out-of-the-money, and were not taken into account in pricing products. The 

pricing of option-embedded policies for early products with guarantees was addressed in 

the papers by Brennan and Schwartz (1976) and Boyle and Schwartz (1977). They 

analysed unit-linked maturity guarantee policies, in which the interest accrued is linked 

directly and without lags to the return on some reference portfolio – the unit. 

Significant research has also been done into life insurance products where interest is 

credited to the policy periodically according to some mechanism which smoothes past 

returns on the life insurance company’s assets – a participating policy. Grosen and 

Jørgensen (2000) decompose a typical participating policy into a risk-free bond element, 

a bonus option and a surrender option. However, a continuous-time frictionless economy 

with a perfect financial market is assumed in these papers. In Consiglio, Cocco and 

Zenios (2000), a scenario optimization asset and liability management model for multi-

period participating policies with guarantees is developed. Their model is evaluated in a 

single-period framework and there is no immediate straightforward extension of their 

model to a multi-stage framework. As this paper concentrates on long-term insurance 
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products, investment decisions should be evaluated with regard to more appropriate 

temporal issues than static risk-reward trade-offs, as was advocated in the papers by 

Dempster et al. (2003) and Mulvey et al. (2003). Consiglio, Cocco and Zenios (2001) 

confirm that traditional Markowitz mean-variance optimization is inefficient in solving 

guarantee policies. Another stream of research into insurance products are guaranteed 

annuity options, where an insurer guarantees to convert a policyholder’s accumulated 

funds to a life annuity at a fixed rate when the policy matures. The pricing and risk 

management of these products is described in Boyle and Hardy (2003) and Wilkie, 

Waters and Yang (2003). 

 

All the papers cited concentrate on the pricing of the option liability created by 

introducing insurance products with guarantees. In this paper however, rather than 

concentrating on the pricing of these products, we focus on optimal strategic asset 

allocation for the insurance company once the guaranteed return products have been 

issued. The asset and liability sides of the problem are priced in a consistent manner by 

allowing a multistage stochastic programme to be applied to allow for temporal 

adjustments to the portfolio mix. Insurance products have become increasingly more 

innovative in order to face competitive pressures and over recent years the focus has 

shifted from static models to stochastic models (Vanderhoof and Altman (1998), Babbel 

and Merrill (1999) and Embrechts (2000)). Other examples of the use of dynamic 

portfolio optimization models for asset and liability management for insurance companies 

are given by the Yasuda-Kasai model in Cariño and Ziemba (1998), the Towers Perrin 

model by Mulvey and Thorlacius (1998) and the CALM model of Consigli and Dempster 

(1998). These models have been successfully used in a practical setting but their 

application does not cover policies with guarantees. One way in which the guarantee can 

be achieved is by investing in zero-coupon Treasury bonds with maturity equal to the 

time horizon of the product in question. However using this option will forego all upside 

potential provided by an equity component of the fund’s portfolio over the contract 

horizon. Even though the aim is to protect the investor from the downside, a reasonable 

expectation of higher than guaranteed returns must remain.  
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This paper reports on results of research with Pioneer Investments and concentrates on 

the design of the fund with dynamic portfolio and liability management. In this paper we 

will consider long-term nominal minimum guaranteed return plans with a fixed time 

horizon. As such these are closed end funds -- after the initial contribution there is no 

possibility of making any contributions during the lifetime of the product. Our main focus 

will be on optimal portfolio allocation subject to risk attitude and monitoring. This 

requires long-term forecasting of all investment class returns and dealing with a 

stochastic liability in the form of the current market value of the guarantee. Dynamic 

stochastic programming is the technique of choice to solve this kind of problem. Such a 

model will automatically hedge current portfolio allocations against the future 

uncertainties in asset returns and liabilities over a long horizon (Dempster et al., 2003). A 

practical method must have the flexibility to take into account multiple time periods, 

portfolio constraints such as the prohibition of short selling, and varying degrees of risk 

aversion in the portfolio allocation. In addition, it should be based on a realistic 

representation of the dynamics of the relevant asset prices. All these factors have been 

carefully addressed here and are explained further in the sequel. 

 

The paper is organized as follows. In Section 2 we explain the structure of the fund, 

define stochastic guarantees and give the strategy for portfolio re-balancing. In Section 3 

we describe the stochastic optimization framework, which includes the problem set up, 

model constraints and possible objective functions. Section 4 then briefly presents a 

three-factor term structure model detailed elsewhere (Dempster et al., 2004) for pricing 

the bond components of the portfolio and the liability side of the fund. Section 5 presents 

several historical backtests to show how the framework would have performed had it 

been implemented in practice over the period 1999 - 2004, paying particular attention to 

the effects of using different objective functions and varying tree structures. Section 6 

concludes.  
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2. Management of a Closed End Guaranteed Return Fund  

 

In Japan, Nissan Mutual Life failed on a $2.56 billion liability arising from a 4.7% 

guaranteed investment in 1997. In Europe, the EU authorities have now responded to the 

threat of insolvency from return guarantees. More specifically, Article 18 of the Third EU 

Life Insurance Directive, which became effective as of 10 November 1992, requires that 

interest rate guarantees do not exceed 60% of the rate of return on government debt (of 

unspecified maturity). In response to market pressures and regulatory conditions, insurers 

currently offer more conservative guaranteed returns. However, policyholders are 

compensated by participating in the fund’s profits, receiving a bonus whenever the return 

of the fund’s portfolio exceeds the guarantee. 

 

In this paper we will concentrate on a closed end guaranteed return fund in which after 

the initial cash outlay no contributions will be allowed. The time horizon of the fund 

involved will be five years, and even though capital guarantees and 1% guarantees are 

very common nowadays we will investigate the more taxing 2% guarantee. The focus lies 

in combining strategic asset allocation together with the risk management of the fund. So 

for simulation purposes, we calibrated a three-factor term structure model with a closed 

form solution for the yields (see Medova et al., 2004), to price individual bonds and the 

liability. This guarantee liability, later referred to as the barrier, consists of the final 

guarantee multiplied by the price of a zero-coupon bond paying one at expiration and 

with maturity equal to the remaining life of the fund. This is the minimum value for 

which we can be absolutely certain to attain the guarantee. Due to this formulation both 

asset values and liabilities are priced in a consistent way across all future scenarios. 

  

We have ignored service and management fees for simplicity although the liability model 

could easily be extended to include these and other fees. Similarly, no transaction costs 

have been included as the fund trades internally. However proportional transaction costs 

can be included into the model without significant alterations (Dempster et al., 2003). 
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Solving a chance-constrained stochastic programme in which the probability of the 

portfolio’s wealth falling below the barrier is restricted to a small percentage might 

render the problem non-convex (see Prékopa, 1980). We therefore adopted an approach 

in which the risk-return trade-off is incorporated into the objective function. Defining 

shortfall as the amount by which the portfolio’s wealth falls below the barrier, the risk of 

the policy is quantified in two ways. In the first approach we consider the average 

shortfall over time for each scenario and then take the expectation over all scenarios (the 

expected average shortfall approach). In the second case we look at the maximum 

shortfall over time for each scenario and then as before take the expectation over all 

scenarios (the expected maximum shortfall approach). A scaling factor which can be 

interpreted as a measure of risk aversion links the portfolio wealth and the shortfall/risk 

factor for the guarantee in the objective function.  

 

To test the potential of the model, we applied a five-year backtest to the period 1999-

2004, a period in which the Eurostoxx 50 index lost 24%. We will allow rebalancing on 

an annual basis. However as the risk should be monitored on a more frequent basis, we 

developed a model in which risk management is applied on a monthly basis -- the data 

frequency. The exact specification is given in Section 3.3.  

 

 

3. Stochastic Optimization Framework 

 

In this section we describe a general framework for solving minimum guaranteed return 

funds using stochastic optimization. We consider both risk management and strategic 

asset allocation concerned with the allocation across broad asset classes. Given this set of 

assets, a fixed planning horizon and a set of decision times, the objective is to find a 

trading strategy that maximizes the risk adjusted wealth accumulation process subject to 

the constraints.  
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3.1 Set up 

 

We look at alternative formulations to optimally allocate assets for a minimum 

guaranteed return fund involving respectively expected average and maximum shortfalls.  

The two models will be applied to eight different assets: coupon-bearing Treasury bonds 

with maturity equal to 1, 2, 3, 4, 5, 10 and 30 years and an equity index. All assets are 

denominated in Euros. 

 

Stages: 
 
s=1                                                                                                                                                        s=2 
 

 
 
t=0    t=1/12   t=2/12   t=3/12  t=4/12    t=5/12    t=1/2    t=7/12   t=8/12   t=9/12   t=10/12  t=11/12   t=1    t=13/12  t=14/12  t=15/12 

 
Time 
 

Figure 1: Time and Stage Setting 

 

We consider a discrete time and space setting. The time interval considered is given by 

1 2
0, , ,...,

12 12
T� �

� �
� �

, where the times indexed by 0,1,..., 1t T= −  correspond to the decision 

times at which the fund will trade to rebalance its portfolio and T  is the planning horizon 

at which no further decision is made and the guarantee will be paid out. In this paper we 

use a five-year horizon ( 5)T =  for illustration. 

 

Uncertainty is represented by a scenario tree Ω , in which each data path through the tree 

corresponds to a scenario ω  in Ω  and each node in the tree corresponds to a time along 

one or more scenarios. An example scenario tree schema is given in Figure 2. The 

probability ( )p ω  of scenario ω  in Ω  is the reciprocal of the total number of scenarios 

as these data paths are generated by Monte Carlo simulation, i.e. each scenario is equally 

likely. 
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To represent the scenario tree structure, we use a treestring which is a string of integers 

specifying for each stage s the number of branches for each node in that stage. This 

specification gives rise to balanced scenario trees, in which each subtree in the same 

period has the same number of branches. The balanced scenario tree of Figure 2 can be 

described by the treestring 3.3, giving a total of 3 3 9⋅ =  scenarios. 

 

s=1 s=2 s=3

t=0 t=1 t=2t=1/2 t=3/2t=1/4 t=3/4 t=5/4 t=7/4

 

Figure 2: Graphical Representation of Scenarios 

 

  

Table 1 defines the variables and parameters of our stochastic programming problem. 

Throughout the paper we will use boldface to denote random entities. 

 

 

Time Sets 

{ }total 1
0, , ...,

12
T T=  set of all times considered in the stochastic programme 

{ }0,1, ..., 1dT T= −  set of decision times 
total \i dT T T=  set of intermediate times 

{ }1 3 1
, , ...,

2 2 2
cT T= −  times when a coupon is paid out in between decision times 
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Instruments 

( )t
S ω  Dow Jones Eurostoxx 50 index level  at time t in scenario ω  

( )T

t
B ω  EU Treasury bond with maturity T at time t in scenario ω  

( )
T

B

t
δ ω  coupon rate of EU Treasury bond with maturity T at time t in scenario ω  

T
BF  face value of  EU Treasury bond with maturity  T  at time t 

( )t
Z ω  EU zero-coupon Treasury bond price at time t in scenario ω  

 

Risk Management Barrier 

( ),t T
y ω  EU zero-coupon Treasury yield with maturity T  at time t in scenario ω  

G annual guaranteed return 
( )t

L ω  barrier at time t in scenario ω  
              

Portfolio Evolution 

A  set of all assets 
( ) ( ), ,

/buy sell

t a t a
P Pω ω  buy/sell price of asset a A∈  at time t in scenario ω  

( ),t a
x ω  quantity held of asset a A∈  between time t and 1 12t +  in scenario ω  

( ) ( ), ,
/

t a t a
x xω ω+ −  quantity bought/sold of assets a A∈  at time t in scenario ω  

( )t
W ω  portfolio wealth at time totalt T∈  in scenario ω  

( ) ( ) ( )( ): max 0,
t t t

h L Wω ω ω= −  shortfall at time t in scenario ω  
  

Table 1: Variables and Parameteres of the Model 

 

 

3.2 Model constraints 

 

The constraints considered for the minimum guaranteed return problem are: 

 

• cash balance constraints. These constraints ensure that the net cash flow at each 

decision time and at each scenario is equal to zero 

 

 ( ) ( ) ( )buy
0, 0, 0a a

a A

P x Wω ω ω ω+

∈

= ∈Ω�  (1) 
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( ) ( ) ( )

{ }
( ) ( ) ( )

{ }

sell buy
1 , , , , ,

\

1
2

\ 0 .

a a
t t a t a t a t a t a

a A S a A a A

d

F x P x P x

t T

δ ω ω ω ω ω ω

ω

− − +
−

∈ ∈ ∈

+ =

∈Ω ∈

� � �
 (2) 

 

In (2) the left hand side represents the cash freed up to be reinvested at time { }\ 0dt T∈  

and consists of two distinct components. The first term represents the coupons received 

on the coupon-bearing Treasury bonds held between times 1t −  and t , the second term 

represents the cash obtained from selling part of the portfolio. This must equal the value 

of the new assets bought (in the absence of transaction costs), which is given by the right 

hand side of (2). 

 

• short sale constraints. In our model we assume we will not be able to short any 

stocks or bonds 

 

 ( ) { }total
, 0 \t ax a A t T Tω ω≥ ∈ ∈Ω ∈     (3) 

 

 ( ) { }total
, 0 \t ax a A t T Tω ω+ ≥ ∈ ∈Ω ∈  (4) 

 

 ( ) { }total
, 0 \ 0 .t ax a A t Tω ω− ≥ ∈ ∈Ω ∈  (5) 

 

 

• wealth constraint. This constraint determines the portfolio wealth at each point in 

time  

             

 ( ) ( ) ( ) { }buy total
, , \t t a t a

a A

W P x t T Tω ω ω ω
∈

= ∈Ω ∈�         (6) 

 

 ( ) ( ) ( ) ( ) ( )
{ }

sell
, 1 1 1

, ,\12 12

1
.

2
a a

T T a T
T a T aa A a A S

W P x F xω ω ω δ ω ω ω−− −∈ ∈
= + ∈Ω� �  (7) 
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As , ( )t ax ω  represents the quantity held in asset a A∈ after rebalancing, we must use the 

buy price. If transaction costs were included two wealth variables would be defined; one 

before and one after rebalancing once the transaction costs have been incurred.   

 

• accounting balance constraints. These constraints give the quantity invested in 

each asset at each time and for each scenario 

  

 ( ) ( )0, 0,a ax x a Aω ω ω+= ∈ ∈Ω  (8) 

 

 ( ) ( ) ( ) ( ) { }total
, 1 , ,

,
12

\ 0 .t a t a t a
t a

x x x x a A t Tω ω ω ω ω+ −

−
= + − ∈ ∈Ω ∈  (9) 

The total quantity invested in asset a A∈  between time t and 
1

12
t +  is equal to the 

total quantity invested in asset a A∈  between time 
1

12
t −  and t plus the quantity of 

asset a A∈  bought at time t minus the quantity of asset a A∈ sold at time t. 

 

• information constraints. These constraints ensure that the portfolio allocation can 

not be changed from one decision time to the next 

 

 ( ) ( ), , 0 \ .i c
t a t ax x a A t T Tω ω ω+ −= = ∈ ∈Ω ∈  (10) 

 

• coupon re-investment constraints. We assume that the coupon paid each six 

months will be reinvested in the same coupon-bearing Treasury bond  
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( )
( ) ( )

( ) ( )

( ) ( )

{ }

1
,

12
, ,buy

,

, ,

1
2

0

0

\ .

a a
t

t a

t a t a
t a

t S t S

c

F x
x x

P

x x

a A S t T

δ ω ω
ω ω

ω

ω ω

ω

−
+ −

+ −

= =

= =

∈ ∈Ω ∈

                 (11) 

 

Note that , ( )t ax ω+  is not a decision variable here as it is fixed once the portfolio 

rebalancing decisions have been made at the previous decision time so that the 

information constraints are not violated. 

 

• annual roll-over constraint. This constraint ensures that at each decision time all 

the coupon-bearing Treasury bond holdings are sold 

 

 ( ) ( ) { } { }, 1
,

12

\ \ 0 .d
t a

t a
x x a A S t Tω ω ω−

−
= ∈ ∈Ω ∈  (12) 

 

• barrier constraints.  These constraints determine the shortfall of the portfolio at 

each time and scenario as defined in Table 1 

 

 ( ) ( ) ( ) total
t t th W L t Tω ω ω ω+ ≥ ∈Ω ∈                   (13) 

 

 ( ) total0 .th t Tω ω≥ ∈Ω ∈                                       (14) 

 

As the objective of the stochastic programme will put a penalty on any shortfall, 

optimizing will ensure that ( )th ω  will be zero if possible and as small as possible 

otherwise.  

 

To obtain the maximum shortfall for each scenario, we need to add one of the following 

two constraints 
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 ( ) ( ) { }d
tH h t T Tω ω ω≥ ∈Ω ∈ ∪  (15) 

 
 

 ( ) ( ) total.tH h t Tω ω ω≥ ∈Ω ∈  (16) 

 

Constraint (15) must be added if the maximum shortfall is taken into account on a yearly 

basis, while (16) considers maximum shortfall on a monthly basis. 

 

 

3.3 Objective functions: expected average and expected maximum 

shortfall 

 

Starting with an initial wealth 0W  and a guarantee of %G  annually, we have the 

guarantee liability at the planning horizon given by 

 

 ( )0 1 .
T

W G+  (17) 

 

The price at time t in scenario ω  of the zero-coupon bond (which pays 1 at time T) is  

 

 ( ) ( ), ( ).t T ty T t
tZ e ωω −− −=  (18) 

 
Therefore, investing the amount given by (19) in these zero-coupon bonds will exactly 

give the guarantee at time T since irrespective of price fluctuations ( ) 1TZ ω =   and hence 

0( ) (1 )T
TL W Gω = +  for all ω ∈Ω . Thus the barrier for the minimum guaranteed return 

fund 

 

 ( ) ( ) ( ) ( )
( )( )

0
0

,

1
1

1

T
T

t t T t

t T t

W G
L W G Z

y
ω ω

ω
−

−

+
= + =

+
 (19) 
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serves as a lower boundary. 

 

For a minimum guaranteed return fund the objective of the fund manager is twofold; 

firstly to manage the investment strategies of the fund and secondly to take into account 

the guarantees given to all investors. Investment strategies must ensure that the guarantee 

for all participants of the fund is met with a high probability. Thus we might add a 

constraint limiting the probability of falling below the barrier in a VaR-type minimum 

guarantee constraint, i.e. 

 

 ( )( )total
max 0t
t T

P h α
∈

> ≤�  (20) 

 
for α  small. However, such scenario-based probabilistic constraints are extremely 

difficult to implement and tune to historical data and may give rise to non-convexities. 

We therefore use two convex alternatives in which the risk of falling below the barrier is 

traded off against return in the form of the expected wealth at each decision point. 

 

Firstly, we will consider the expected average shortfall (EAS) model, in which the 

objective function is given by: 

 

 
( ) ( ) ( )

{ }

( ) ( ) ( ) ( )
{ }{ }

( ) ( ) ( )
{ }

( ) ( ) ( )
{ }

( ) ( )
{ }{ }

, , ,

, , ,

, , :
, ,

, , :
, ,

1max

1max

dt a t a t a
d

d dt a t a t a
d

t
t d

x x x t T T
a A t T T

t
t d

x x x t T T t T T
a A t T T

h
p W

T T

h
p W p

T T

ω ω ω ω
ω

ω ω ω ω ω
ω

ω
ω β ω β

ω
β ω ω β ω

+ −

+ −

� �� � ∈Ω ∈ ∪� �∈ ∈Ω ∈ ∪� �� �

� �� � ∈Ω ∈Ω∈ ∪ ∈ ∪� �∈ ∈Ω ∈ ∪� �� �

� �	 
� �� �− − =� �
� �∪� �
 �� �

� 	 
	 

� �− −� �� � � � �∪
 � 
 �

� �

� � � �
�� �
�

� �� �

(21) 
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In this case we maximize the expected sum of wealth over time while penalizing each 

time the wealth falls below the barrier. For each scenarioω ∈Ω , we can calculate the 

average shortfall and then take expectations over all scenarios. 

 

In this case only shortfalls at decision times are taken into account and any serious loss in 

portfolio wealth in between decision times is ignored. However the position of the 

portfolio’s wealth relative to the fund’s barrier is significant on a continuous basis from 

the fund manager’s perspective and serious or repeated drops below this barrier might 

force the purchase of expensive insurance. To capture this feature specific to minimum 

guaranteed return funds, we also consider an objective function in which the shortfall of 

the portfolio is considered on a monthly basis.  

 

For the expected average shortfall with monthly checking (EAS MC) model, the objective 

function is given by 

 

 
( ) ( ) ( )

{ }

( ) ( ) ( )
{ }

( ) ( )
total, , ,

total
, , :

, ,

1max
dt a t a t a

d

t
t

x x x t T T t T
a A t T T

h
p W p

Tω ω ω ω ω
ω

ω
β ω ω β ω

+ −� �� � ∈Ω ∈Ω∈ ∪ ∈� �∈ ∈Ω ∈ ∪� �� �

� �	 
	 
� �� �− −� �� �� � � �� �
 � 
 �� �
� � � �  (22) 

 
 

Note that although we still only rebalance once a year but shortfall is now being 

measured in the objective on a monthly basis the annual decisions must also take into 

account the possible effects they will have on monthly shortfall. 
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The value of 0 1β≤ ≤  can be chosen freely and sets the level of risk aversion. The 

higher the value of β , the higher the importance given to shortfall and the less to the 

expected sum of wealth and hence the more risk-averse will be the optimal portfolio 

allocation. The two extreme cases are represented by 0β = , corresponding to the 

‘unconstrained’ situation, which is indifferent to the probability of falling below the 

barrier, and 1β = , corresponding to the situation in which only the shortfall is penalized 

and the expected sum of wealth is ignored. 

 

In general short-horizon funds are likely to attract more risk-averse participants than 

long-horizon funds, whose participants can afford to tolerate more risk in the short run. 

This natural division between short and long-horizon funds is automatically incorporated 

in the problem set up, as the barrier will initially be lower for long-term funds than for 

short-term funds. This feature of the model is demonstrated in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Barrier for one-year and five-year 2% guaranteed fund 
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( ) ( ) ( )

{ }

( ) ( ) ( )
{ }

( ) ( )
, , ,, , :

, ,

1max
dt a t a t a

d

t
x x x t T T
a A t T T

p W p H
ω ω ω ω ω
ω

β ω ω β ω ω
+ −� �� � ∈Ω ∈Ω∈ ∪� �∈ ∈Ω ∈ ∪� �� �

� �	 
 	 
� �− −� �� �� �� � 
 �� �
 �� �
� � �  (23) 

 

 using constraint (15) to define ( )H ω . 

 

For the expected maximum shortfall with monthly checking  (EMS MC) model, the 

objective function remains the same but ( )H ω  is now defined by (16). In this model we 

penalize the expected maximum shortfall over time along scenarios which ensures that 

for each scenario ω ∈Ω , ( )H ω  is as small as possible. Combining this with the 

constraints (15) or (16) ensures that ( )H ω  is equal to the maximum shortfall for scenario 

ω. 

 

The EMS model focusses on limiting the maximum shortfall and therefore does not 

penalize portfolio wealth falling just slightly below the barrier several times. The EAS 

model on the other hand, incurs a penalty every time the portfolio’s wealth falls below 

the barrier, but does not differentiate between a substantial shortfall at one point in time 

and a series of small shortfalls over time. So one model limits wealth from falling below 

the barrier substantially and the other limits the number of times it does so. 

 

 

4. Asset Return Models 

 

For minimum guaranteed return funds we must deal with a long-term liability and 

Treasury bonds of varying maturities and therefore must capture the dynamics of the 

whole term structure. For this we will use a Gaussian economic factor model (EFM) 

whose evolution, under the real world measure is determined by the stochastic 

differential equations 
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 ( ) R
t t t t R R R td k X Y R dt dγ σ σ= + − + +R W  (24)  

 ( ) X
t X X t X X X td X dt dµ λ γ σ σ= − + +X W  (25) 

 ( ) ,Y
t Y Y t Y Y Y td Y dt dµ λ γ σ σ= − + +Y W  (26) 

 

where the Wiener process increment dW  terms are correlated. The three unobservable 

Gaussian factors R, X and Y represent respectively a short rate, a long rate and the slope 

between an instantaneous short rate and the long rate. The short rate factor is mean 

reverting at rate k and the drifts of all three factors contain a market price of risk γ  in 

volatility units. The 14 parameters of the factor dynamics are estimated by a generalized 

process form of the EM algorithm (Dempster et al., 1977) in which Kalman filtering of 

factor evolution is alternated with maximum likelihood parameter estimation until 

convergence. For a complete description of the model, derivation of the yields, 

calibration of the model parameters and its simulation possibilities, see Medova et al. 

(2004) and Villaverde (2003). A typical yield curve simulation is shown in Figure 4. 

 

The stock index price process S  is assumed to follow a geometric Brownian motion, i.e. 

 

 St
S S t

t

d
dt dµ σ= +S W

S
 (27) 

 
where S

tdW  is correlated with the tdW  terms driving the three term structure factors. 

 

As sufficient historical data on Euro coupon-bearing bonds is difficult to obtain, we use 

the zero-coupon yield curve to construct the relevant bonds. Coupons on newly-issued 

bonds are closely related to the corresponding spot rate at the time, so we will use the 

current zero yield with maturity T as a proxy for the coupon rate of a coupon-bearing 

bond with maturity T, i.e. the coupon rate ( )10

2
Bδ ω on a newly issued 10-year Treasury 

bond at time 2t =  will be set equal to the projected 10-year spot rate ( )2,10y ω  at time 

2t = . 
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Generally 

 

 ( ) ( ),:
TB

t t Tyδ ω ω=                          dt T∈     ω ∈Ω  (28) 

 ( ) ( ) ( ):
T TB

t tδ ω δ ω
����

=                          it T∈     ,ω ∈Ω  (29) 

  

where .���� denotes the integral part. This ensures that as the yield curve falls, coupons on 

newly-issued bonds will go down correspondingly and each coupon cash flow will be 

discounted at the appropriate zero yield. 

 

Bonds are assumed to pay coupons semi-annually and to be rolled over on an annual 

basis so that a coupon will be received after six months and again after a year just before 

selling the bond. This forces us to distinguish between the price at which we will sell the 

bond at decision times and the price for which we buy the new bond.  

 

Let sell
, Tt B

P  denote the selling price of the bond TB  of maturity T at time t, assuming two 

coupons have now been paid out and the time to maturity is equal to 1T − , and let buy
, Tt B

P  

denote the buying price of a newly issued coupon-bearing Treasury bond with maturity T. 

 

The ‘buy’ bond price at time t is given by 

 

 

( ) ( ) ( ) ( ) ( ) ( ), ,

2 21
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2 2 2
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ω

+ − −����
− + − − −����
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= +

∈Ω ∈

�

 (30) 

 

where the principal of the bond is discounted in the first term and the stream of coupon 

payments in the second. At decision times the ‘sell’ bond price is given by 
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( ) ( ) ( ) ( ) ( ) ( )

{ }{ } { }

,, 11 1

1
,1,..., 1

2

2
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T

T T
t s tt T
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s t yT y tT B B
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s T

d

B F e F e

t T T

ω δ ω
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−− − −− − −

= −
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∈Ω ∈ ∪
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 (31) 

 

Note that the coupon rate ( )1

TB
tδ ω−  is in (31) as this is the rate of the bond sold at time t 

the coupon rate is reset for the newly issued Treasury bonds. We also assume that the 

coupon that is being paid out after six months will be reinvested in the same coupon-

bearing Treasury bond. This gives the following adjustment to the amount held in bond 
TB  at time t 

 

 ( ) ( )
( ) ( )1

,
12

1 buy, ,
12 ,

1
2

T T

T

T T
T

B B
t

t B

t B t B
t B

F x
x x

P

δ ω ω
ω ω

−

−
= +         ct T∈   .ω ∈Ω  (32) 

 

 

 

5. Historical Backtest 

 

We will look at an historical backtest in which statistical models are fitted to market data 

up to an initial model decision time t and scenario trees are generated from t to some 

chosen horizon t T+ . The optimal first stage/root node decisions are then implemented 

at time t and to generate the historical portfolio returns with these decisions at time 1t + . 

Afterwards the whole procedure is rolled forward for T trading times.  

 

Our backtest will involve a telescoping horizon as depicted in Figure 4. 
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     5-year scenario tree 

 

                                         4-year scenario tree 

 

                                                                             3-year scenario tree 

 

                                                                                                                     2-year scenario tree 

 

                                                                                                                                                         1-year scenario tree 

 

Jan 1999                   Jan 2000     Jan 2001                         Jan 2002                      Jan 2003                Jan 2004 

 

Figure 4: Telescoping Horizon Backtest Schema 

 

At each decision time t, the parameters of the stochastic processes driving the stock 

return and the three factors of the term structure model are re-estimated and re-calibrated 

using historical data up to and including time t, and the initial values of the simulated 

scenarios are given by the actual historical values of the variables at these times. Re-

estimating and re-calibrating the simulator’s parameters at each successive initial 

decision time t captures information in the history of the variables up to that point.  

 

Although the optimal second and later stage decisions of a given problem may be of 

“what-if” interest, managers’ and decision makers’ focus is on the implementable first-

stage decisions which are hedged against the simulated future uncertainties. The reasons 

for implementing stochastic optimization in this way are twofold. Firstly, after one year 

has passed the actual values of the variables realized may not coincide with any of the 

values of the variables in the simulated scenarios. In this case the optimal investment 

policy would be undefined, as the model only has optimal decisions for the nodes on the 

simulated scenarios. Secondly, as one more year has passed new information has become 

available to re-estimate and re-calibrate the simulator’s parameters. Relying on the 

original optimal investment strategies will ignore this information.  

 

For the backtest, we will use three different tree structures with approximately the same 

number of data scenarios, but with an increasing initial branching factor, which defines 

the number of branches from the root node at stage one. We will start of by solving the 
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five-year problem using a 6.6.6.6.6 tree, which gives a total of 56 7776=  scenarios. The 

second option is to use 32.4.4.4.4 = 8192 scenarios and the third is the extreme case of 

512.2.2.2.2 = 8192 scenarios, thereby increasing the initial branching factor from 6 to 32 

and finally to 512. For the subsequent stages of the backtest we will adjust the branching 

factor in such a way that the total number of scenarios stays as close to the original 

number of scenarios as possible and such that the same ratio is maintained. This gives us 

the following tree structures, described in Table 2. 

 

Jan 1999 6.6.6.6.6 = 7776 32.4.4.4.4 = 8192 512.2.2.2.2 = 8192 

Jan 2000 9.9.9.9 = 6561 48.6.6.6 = 10368 512.2.2.2 = 4096 

Jan 2001 20.20.20 = 8000 80.10.10 = 8000 768.3.3 = 6912 

Jan 2002 88.88 = 7744 256.32 = 8192 1024.4 = 8192 

Jan 2003 7776 8192 8192 

 

Table 2: Tree Structure for Different Backtests 

 

 

5.1 Results 

 

Figures 5 to 10 plot the barrier, the portfolio performance of the annual and monthly 

checking methods, together with the models expectation one period ahead. Starting with 

an initial wealth 0W  equal to 100 and an annual guaranteed return G of 2% the barrier can 

be calculated using (19) for each month between January 1999 and January 2004 using 

the appropriate historical zero-yields. The barrier is independent of the choice of 

objective function or tree structure and therefore identical in all six figures. For January 

1999, three five-year monthly scenario trees were generated for each of the annual tree 

structures described in Table 2. For each scenario tree, the corresponding stochastic 

programme was solved for each of the four different objective functions presented in 

Section 3.3 and the first-stage decisions implemented. This gives us the fund’s portfolio 

strategy between January 1999 and January 2000, the next decision time. Starting from 
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the initial wealth of 100, historical returns for the various assets determine the wealth for 

the portfolio over the year 1999. For January 2000, having observed the price variation of 

the various assets in 1999, the stochastic processes driving the asset prices were re-

calibrated using all the data available up to January 2000 and three four-year scenario 

trees generated (as the time horizon of the fund has now gone down by one year). Using 

the portfolio’s wealth at January 2000 as an input variable, four stochastic programmes 

were again solved, one for each objective functions. Again the first-stage decisions were 

implemented and the same procedure is repeated for January 2001, January 2002 and 

finally January 2003 for three-, two- and one-year scenario trees respectively. Included in 

the figures are the one-year ahead in-sample expectations of the portfolio’s wealth. 

Implementing the first-stage decisions, the portfolio’s wealth is calculated for each 

scenario in the simulated tree one year later, after which an expectation over the scenarios 

is taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Expected Average Shortfall using 6.6.6.6.6 tree 
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Figure 6: Expected Maximum Shortfall using 6.6.6.6.6 tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Expected Average Shortfall using 32.4.4.4.4 tree 

Backtest 99-04: 6.6.6.6.6 = 7776 scenarios
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Figure 8: Expected Maximum Shortfall using 32.4.4.4.4 tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Expected Average Shortfall using 512.2.2.2.2 tree 

 

Backtest 99-04: 512.2.2.2.2 = 8192 scenarios
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Figure 10: Expected Maximum Shortfall using 512.2.2.2.2 tree 

 

First observe that the risk management monitoring incorporated into the model appears to 

work well. In all cases the only time portfolio wealth dips below the barrier, if at all, is on 

September 11 2001. The initial in-sample overestimation of the model is likely mainly 

due to the short time series for parameter estimation which leads to hugely inflated stock 

return expectations. However as time progresses and more data points to re-calibrate the 

model are obtained, the model expectation and real-life realization very closely 

approximate each other. For reference we have included the performance of the 

Eurostoxx 50 in Figure 11 to give an indication of how the stock market performed over 

the backtesting period. Even though this was a difficult period for the portfolio to 

perform well in, it leads to an excellent demonstration that the risk management 

incorporated into the model operates as required. It is in periods of economic downturn 

that one wants the model to survive. 
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Figure 11: Comparison of the Fund’s Portfolio to the Eurostoxx 50 

 

Tables 3 and 4 give the backtest portfolio allocations for the 32.4.4.4.4 tree using the 

maximum shortfall objectives. In both cases we can identify a tendency for the portfolio 

to move to the safer, shorter-term assets as time progresses. This feature is built into the 

model as shown in Figure 3. Furthermore, for the decisions to be made on January 2002 

and 2003, the portfolio wealth is significantly closer to the barrier for the EMS model 

than it is for the EMS MC model. This increased risk for the fund is taken into account by 

the model and results in an investment in safer short-term bonds. Whereas the EMS MC 

model invests mainly in bonds with a maturity in the range of three to five years, the 

EMS model stays in the one to three year range. As a result the portfolio’s wealth 

manages to stay above the barrier for both models. 
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 1y 2y 3y 4y 5y 10y 30y Stock 

Jan 99 0 0 0 0 0 0.23 0.45 0.32 

Jan 00 0 0 0 0 0 0 0.37 0.63 

Jan 01 0.04 0 0 0 0 0.39 0.53 0.40 

Jan 02 0.08 0.16 0.74 0 0 0 0 0.01 

Jan 03 0.92 0 0 0 0 0.07 0 0.01 
 

Table 3: Portfolio Allocation Expected Maximum Shortfall using 32.4.4.4.4 tree 

 

 1y 2y 3y 4y 5y 10y 30y Stock 

Jan 99 0 0 0 0 0.49 0.27 0 0.24 

Jan 00 0 0 0 0 0.25 0.38 0 0.36 

Jan 01 0 0 0 0 0.49 0.15 0 0.36 

Jan 02 0 0 0 0.47 0.44 0 0 0.10 

Jan 03 0 0 0.78 0.22 0 0 0 0.01 

 

Table 4: Portfolio Allocation Expected Maximum Shortfall with Monthly Checking 

using 32.4.4.4.4 tree 

 

From Figures 5 to 10 we can see that in all cases the method with monthly checking 

outperforms the equivalent method with just annual checks. However as the initial 

branching factor is increased, the models increasingly improve their performance. For the 

512.2.2.2.2 = 8196 scenario tree, all four objective functions give portfolio allocations 

which keep the portfolio wealth above the barrier at all times, but models with the 

monthly checking still outperform the others. The more important difference however 

seems to lie in the deviation of the expected in-sample portfolio wealth from the actual 

historical realization of the portfolio value. Table 5 displays this average annual deviation 

and shows clearly a reduction in this deviation for all four models as the initial branching 

factor is increased. The model which uses the expected maximum shortfall with monthly 

checking as its objective function significantly outperforms the other models. 
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 EAS EAS MC EMS EMS MC 

6.6.6.6.6 14.78 % 14.40 % 14.73 % 13.59 % 

32.4.4.4.4 11.58 % 11.33 % 11.46 % 8.17 % 

512.2.2.2.2 10.70 % 9.60 % 8.93 % 6.93 % 

 

Table 5: Average Annual Deviation 

 

Overall these backtests have shown that the stochastic optimization framework described 

in this paper carefully considers the liability risks created by the guarantee. The EMS MC 

model especially produced well-diversified portfolios that did not change drastically from 

one year to the next and resulted in a portfolio which, even in a period of economic 

downturn and uncertainty, remained above the barrier. 

 

 

 

6. Conclusions 

 

This paper considers the construction of investment products which give a minimum 

guaranteed return. We have concentrated on the design of the liability side of the product, 

paying particular attention to the pricing of bonds using a three-factor Gaussian term 

structure model which gives reliable results for both long-term and short-term yields. We 

constructed several objective functions for the dynamic stochastic optimization fund 

management model using expected average shortfall and expected maximum shortfall in 

order to combine risk management with strategic asset allocation. Finally we introduced 

the concept of monthly checking, which we showed improved the results considerably.  

 

In future research we intend to relax the assumption of a closed end fund, allowing for 

contributions throughout the lifetime of the product. A second extension is to look at 

inflation-linked barriers, as there has been an increased demand recently for such 
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products. We will also be investigating how to extend this model and use it as a building 

block for an open multi-link pension fund, in which we will deal with several unit links 

of varying risk aversion and apply risk management to each individual client’s portfolio.  
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