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Pricing Equity Default Swaps Using Structural Credit Model 
 

E A Medova & Robert G Smith 

 

Abstract: In early 2004, new equity-credit hybrid derivatives that offered a larger spread than 

vanilla credit default swaps were developed.  At the centre of this development was the 

equity default swap (EDS), which is the subject of this paper.  Structural credit models allow 

the simultaneous modelling of a firm’s credit quality and equity value, making them a natural 

framework to price equity-credit hybrid derivatives.  A closed-form expression for the spread 

of an equity default swap, which incorporates the legal risk of the derivative, is derived in 

terms of parameters of a general structural model.  A specific structural model, that 

developed by Leland & Toft, is calibrated by equity data and then used to investigate 

properties of the EDS spread.  It is seen that an equity default swap with a low trigger price 

can have a substantially greater annual spread than a credit default swap.  Also, it is shown 

that unless the dividend yield is very high, the EDS spread increases as a firm’s debt-equity 

ratio increases, assuming that the firm’s asset volatility is constant.  However, if there are two 

reference firms with different debt-equity ratios but the same equity volatility, it is shown that 

there is a complex relationship between EDS spreads.    

 

Keywords: equity-credit hybrid derivatives, equity default swaps, structural credit models. 



 2 

1. Introduction 
 

By the end of 2003, it was becoming increasingly difficult in many countries to structure 

investment-grade credit portfolios that had significant returns, e.g. Sawyer (2003) reports that 

the CJ50 Index, which tracks the spreads of the 50 most liquid five-year credit default swaps 

in Japan, fell from 80 basis points at the beginning of 2003 to only 30 basis points towards 

the end of 2003.  In response to this, new derivatives whose value depend on both the credit 

quality and the equity value of the reference firm were developed.  These equity-credit hybrid 

derivatives have a wider spread than the vanilla credit default swap; this allows institutions 

that can only deal in derivatives with investment-grade reference firms to trade products that 

have spreads similar in magnitude to those seen on credit default swaps with speculative-

grade reference firms.  At the centre of this new development in hybrid derivatives is the 

equity default swap (commonly abbreviated to EDS), which is the subject of this paper. 

 

The buyer of an equity default swap makes a series of payments until either a payoff event 

occurs or the derivative expires, while the seller makes a single payment if a payoff event 

occurs before the expiry of the EDS.  There are two possible payoff events in an equity 

default swap: a credit event on the reference bond (as in a credit default swap) or a fall in the 

price of a single share in the reference firm to a pre-defined level, which is often referred to 

as the trigger price.  The trigger price is usually set at significantly below the equity price1 at 

the start of the derivative, e.g. a trigger price of around 30% of the equity price at the 

beginning of the contract is relatively standard.  Therefore, equity default swaps provide 

protection against credit events and a large fall in the equity price of the reference firm.  As 

an example, some firms saw their equity price fall by more than 90% after the technology 

bubble of the late 1990s burst, but they did not default on any debt.  In this situation, a payoff 

event would have been triggered in an EDS (unless the trigger price was set extremely low), 

but not in a credit default swap. 

 

One approach to pricing equity-credit hybrid derivatives is to use a two-factor model, with 

one factor linked to the equity value of the reference firm and the other factor linked to the 

firm’s credit quality; these factors would clearly have to be correlated due to the links 

between credit risk and equity risk that are described, for instance, in Medova & Smith 

                                                
1 Throughout this paper, equity price refers to the price of a single share in a firm. 
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(2004).  However, this two factor approach can be simplified by using a structural credit 

model.  In the structural approach to credit modelling, the market value of a firm’s assets is 

usually modelled2 and default is assumed to have occurred on all of the reference firm’s 

outstanding debts when the process hits a default boundary.  As equity can be viewed as a 

call on the firm’s assets, there is a deterministic relation between the value of a firm’s assets 

and the value of the firm’s equity.  Therefore, structural models allow the simultaneous 

modelling of a firm’s credit quality and equity value.  As a result, equity-credit hybrid 

derivatives can be priced using a one-factor model (the factor being the asset value of the 

reference firm), making structural models a natural framework to price derivatives such as 

equity default swaps.   

 

An outline of the rest of this paper is as follows.  In the next section, a closed-form 

expression will be derived for the spread of an equity default swap in terms of parameters of 

a general structural model.  This expression will incorporate the legal risk of the derivative.  

In Section 3, it is explained how a particular structural model, that proposed by Leland & 

Toft (1996), can be calibrated using equity data.  The calibrated model is then used to 

investigate properties of the EDS spread, before conclusions are drawn in Section 4. 

 

 

2. Pricing an Equity Default Swap 
 

In this section, a closed-form expression for the spread of an equity default swap is derived in 

terms of the parameters of a general structural model.  A number of assumptions that are 

consistent with many structural models are made; these assumptions are described below.   

 

ASSUMPTION 1: The term structure of default-free interest rates is flat and known with 

certainty, i.e. the time- 0t  price of a default-free bond that promises a payment of one unit at a 

future time 1t  is 0 1 1 0( , ) exp[ ( )]P t t r t t= − − , where r is the (instantaneous) default-free rate of 

interest, which is constant over time. 

 

                                                
2 Some structural models, such as Goldstein, Ju & Leland (2001), model earnings before interest and tax rather 
than the asset value of the firm. 
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ASSUMPTION 2: Let tV  be the market value of a firm’s total assets at time t.  In the risk-

neutral measure, the value of a firm’s assets follows the lognormal process 

 ( )
d

r dt dδ σ= − +t
t

t

V W
V

. (1) 

Both the asset volatility σ  and the fraction δ  of the value of the assets paid out to holders of 

the firm’s debt and equity are taken to be constant.   

 

ASSUMPTION 3: The principal value of the firm’s outstanding debt F is constant.  Further, a 

firm defaults on all of its outstanding debt when tV  hits a default boundary BV , which is 

taken to be a fixed proportion of the principal value of the firm’s debt, i.e. BV Fβ=  for some 

constant β .  

 

ASSUMPTION 4: The equity value of the firm is zero at the default boundary, i.e. equity 

holders do not receive a rebate upon default by the firm. 

 

The first two assumptions are common in structural credit modelling.  These two assumptions 

are made for instance in Black & Cox (1976), Leland (1994) and Leland & Toft (1996), and 

they are generalisations of assumptions that are made in Black & Scholes (1973), Brennan & 

Schwartz (1978) and Brockman & Turtle (2003).  While the principal value of debt is often 

taken to be constant in structural modelling, it is less common to assume that the default 

boundary is fixed, although this assumption is made for example in Leland (1994), Longstaff 

& Schwartz (1995), Leland & Toft (1996) and Brockman & Turtle (2003).   

 

Assumption 4 is consistent with the vast majority of structural models.  An important 

consequence of this assumption for the pricing of equity default swaps is that the equity price 

of the reference firm will always hit the trigger price before, or at the same time as, a credit 

event on the reference bond.  If the trigger price is strictly positive, the equity price will hit 

the trigger price before a credit event occurs, provided that the value of a firm’s assets is 

modelled by a continuous process, as is done here3.  In the special case where the trigger 

                                                
3 If the value of a firm’s assets is modelled by a jump-diffusion process, as proposed for example in Zhou 
(1997), the equity price could jump from above a strictly positive trigger price to zero.  In this case, the equity 
price would hit the trigger price at the same time as a credit event.   
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price is set at zero, the equity price will hit the trigger price at the same time as a credit event, 

so that the equity default swap is equivalent to a credit default swap.   

 

 

Define a firm’s distance to default, tX , to be the ratio of the market value of the firm’s total 

assets to the default boundary, i.e. 

     t t
BV Fβ

= =t
V V

X . (2) 

Therefore, default occurs if tX  hits one.  As a consequence of Itô’s Lemma, the distance to 

default satisfies the stochastic differential equation, 

 ( )
d

r dt dδ σ= − +t
t

t

X W
X

. (3) 

Using results in Harrison (1990), it can be shown that if the firm has a distance to default of 

0t
X  at time 0t , then the risk-neutral probability that a firm defaults in the period 0 1[ , ]t t  is 

given by 

 0 0

0 0

2 2
1 0 1 02

1 0
1 0 1 0

log ( ) log ( )
( , )  t ta

t t

X a t t X a t t
Q X t t X

t t t t

σ σ
σ σ

−
� � � �− − − − + −

− = Φ + Φ� � � �
� � � �− −� � � �

   (4) 

where 

 2

1
2

r
a

δ
σ
−= − . (5) 

 

In some structural models that satisfy the four assumptions above, including Leland (1994) 

and Leland & Toft (1996), expressions for the value of a firm’s equity were derived and, 

provided that all of the constant terms were known, were seen to be a function of only the 

market value of the firm’s assets4, 

 ( )S=t tS V . (6) 

Further, the equity value is a strictly monotonic increasing function of the asset value ceteris 

paribus, so that there is a bijection between the equity value and the value of a firm’s assets.  

Let *S  be the trigger value, i.e. the market value of the reference firm’s equity that triggers a 

payment by the EDS seller.  Recall that a consequence of Assumption 4 is that a payoff event 

occurs if and only if the price of a single share in the reference firm hits the trigger price.  

                                                
4 If an expression for the market value of a firm’s assets is derived using a partial differential equation, as in 
Leland (1994), this will often be an explicit assumption when deriving the PDE. 
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Therefore, the trigger value is found by simply multiplying together the trigger price and the 

number of outstanding shares in the reference firm.  At this stage, an assumption about the 

capital structure of the firm is made. 

 

ASSUMPTION 5: Firms have a fixed number of outstanding shares. 

 

As a result of this assumption, the trigger value is constant over time.  Then the 

corresponding value of the firm’s assets is the unique solution to the implicit equation5, 

 * ( *)S S V= . (7) 

Note that a consequence of (7) is that the value of the firm’s assets corresponding to the 

trigger value is constant over time.  Analogous to the distance to default, define the distance 

to a payoff event tY  to be 

 
*V

= t
t

VY , (8) 

in which case, a payoff event occurs if tY  hits one.  Itô’s Lemma shows that the distance to a 

payoff event tY  satisfies 

 ( )
d

r dt dδ σ= − +t
t

t

Y W
Y

. (9) 

Therefore, if a firm has a distance to a payoff event of 
0t

Y  at time 0t , then the risk-neutral 

probability that a payoff event occurs in the period 0 1[ , ]t t  is equal to 
0 1 0( , )tQ Y t t− , where the 

function Q is given by (4). 

 

Suppose that the notional value of the equity default swap is N and the equity default swap 

expires at time EDST .  Provided that a payoff event has not occurred, it is assumed that the 

buyer of the EDS makes a payment of 1( )EDS
i ic t t N+ −  at time  ( 1,..., )it i m=  which provides 

protection for the period 1[ , )i it t + , where 1
EDS

mt T+ = .  The value EDSc  is known as the 

annualised equity default swap spread.  However, if a payoff event has occurred, the EDS 

                                                
5 Alternatively, if tV  represents the asset value per share of the reference firm, found by dividing the market 
value of the firm’s assets by the number of outstanding shares, and F is the debt-per-share of the firm, then tS  

as given by (6) is equal to the price of a single share in the reference firm.  Then *S  represents the trigger price, 
and the value of *V  given by (7) is equal to the asset value per share that corresponds to the trigger price.   
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buyer makes no further payments.  Hence, the payment made by the EDS buyer at time it  can 

be written in the form 

 1 { * }( ) 1
i

EDS
i i tc t t N τ+ >− , (10) 

where *τ  is the time of a payoff event.  The time-t value of the total payment made by the 

EDS buyer is therefore given by 

 ( ) ( )
1 { * } 1

1 1

( ) 1       ( )[1 ( , )]i i

i

m m
r t t r t tEDS EDS

i i t i i t i
i i

e c t t N c N e t t Q Y t tτ
− − − −

+ > +
= =

� �− = − − −� �
� �
� �� , (11) 

where ( , )tQ Y u  is given by (4).     

 

It is assumed that a payoff event can occur at any time.  The payoff of a credit default swap 

depends upon the level of recovery of the reference bond upon default.  However, if the 

payoff of an equity default swap is triggered by the equity value of the firm hitting the trigger 

value (which always occurs in the framework outlined in this paper), the payoff is usually 

taken to be a fixed proportion of the notional value of the EDS; the size of the payoff would 

often be stipulated in the contract of the derivative.  Therefore, if a payoff event occurs before 

time EDST , the seller of the EDS is assumed to make a payment of wN , where w is a fixed 

value.   

 

The legal risk of an equity default swap is modelled by allowing a period of length s between 

the payoff event and the payment by the EDS seller, where s is a random variable.  The 

period between the payoff event and the payment by the derivative seller is likely to be 

shorter for equity default swaps than for credit default swaps, so that the legal risk of an EDS 

is lower than that for a CDS.  This is because the payoff event of a credit default swap 

depends on whether there has been a default on the reference bond; since there may be 

disagreement between the buyer and seller of a CDS as to whether a default has occurred, 

there is a legal process, described in Henderson (2000), that occurs once a firm has defaulted 

before the seller of the CDS has to make a payment.  However, a payment by the seller of an 

EDS will usually be triggered by the equity value of the reference firm hitting the trigger 

value (or equivalently, the firm’s equity price hitting the trigger price).  As the payment 

therefore depends on the movement of an observable variable, there is less likelihood of a 

disagreement about whether the payoff event of an EDS has occurred. 
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The time-t value of the payoff of the EDS is given by 

 ( ) ( , )
EDST

r u t
t

t

e wNq Y u t du− + −
� �

−� �
� �
� �
�

s
� , (12) 

where 
( , )

( , ) t
t

Q Y u t
q Y u t

u
∂ −− =

∂
 is the probability density function of the first passage time of 

tV  to *V  in the risk-neutral measure.  If it is assumed that the length of the period s is 

independent of tV , then after a change of variable, (12) can be written as  

 ( ) ( , )r EDS
twN e G Y T t− −s

� , (13) 

where  

 
0

( , )  ( , )
EDST t

EDS ru
t tG Y T t e q Y u du

−
−− = �  (14) 

and ( )re− s
�  is simply the moment generating function of the random variable s.  By 

differentiating (4), it can be seen that the expression for the probability density function of the 

first passage time of tV  to *V  is given by  

 2

22

3/ 2

log log1 1
( , ) exp

22

a
t t

t t

Y au Y
q Y u Y

u u
σ

σπ σ

− 	 
−� �= −� �� �
� �� � �

. (15) 

Using results from Rubenstein & Reiner (1991), it can be shown that 

 ( )
1 2( , ) [ ( , )] [ ( , )]EDS a b EDS a b EDS

t t t t tG Y T t Y d Y T t Y d Y T t− + − +− = Φ − + Φ − , (16) 

where 

 
2

1

log
( , ) t

t

Y b u
d Y u

u

σ
σ

− −= , (17) 

 
2

2

log
( , ) t

t

Y b u
d Y u

u

σ
σ

− += , (18) 

and 

 
2 2 2

2

( ) 2a r
b

σ σ
σ

+
= . (19) 

 

The time-t value of the EDS to the buyer of the derivative is given by the value of the payoff 

of the EDS minus the value of the total payment made by the EDS buyer: 

 ( )
1

1

Value ( ) ( , ) ( )[1 ( , )]i

m
r t tr EDS EDS

t i i t i
i

wN e G Y T t c N e t t Q Y t t− −−
+

=
= − − − − −�s

� . (20) 
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The following proposition is a simple consequence of (20). 

 

Theorem 1 

The par EDS spread *c  that makes the time-t value of the equity default swap equal to zero 

is given by 

 
( )

1
1

( , )
* ( )

( )[1 ( , )]i

EDS
r t

m
r t t

i i t i
i

G Y T t
c w e

e t t Q Y t t

−

− −
+

=

−=
− − −�

s
� . (21) 

 

Three special cases are now considered.  First, recall from earlier in this section that a credit 

default swap can be thought of as an equity default swap with a trigger price of zero (or 

equivalently, a trigger value of zero).  As a consequence of Assumption 4, *V  is equal to the 

default boundary BV  if the trigger value is zero.  Therefore, by comparing (2) and (8), it can 

be seen that, in this case, the initial distance to a payoff event tY  is equal to the initial distance 

to default tX .  Hence, by setting tY  equal to tX  in (21), Theorem 1 gives an expression for 

the spread of a credit default swap. 

 

The second special case is that of an equity default option, where the buyer of the derivative 

makes a single payment at time t, which gives protection against a credit event and a large 

fall in the reference firm’s equity value until time EDST .  The above theorem shows that the 

fee of the equity default option should be 

 *( )   ( ) ( , )EDS r EDS
tc T t N w e G Y T t N−− = −s

� . (22) 

 

The final special case to be considered is where the equity default swap buyer makes n 

regular payments every year, and 

 
1

i

i
t t

n
−= + . (23) 

If it is further assumed that EDST t−  is an exact multiple of 1/ n , then Theorem 1 shows that 

the par EDS spread is given by 

 
( ) 1

/

0

( , )
* ( )

[1 ( , / )]
EDS

EDS
r t

n T t
ri n

t
i

G Y T t
c nw e

e Q Y i n

−
− −

−

=

−=
−�

s
� . (24) 
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3. Properties of the Spread of an Equity Default Swap 
 

In the previous section, it was only necessary to make general assumptions about default-free 

interest rates, the dynamics of the asset value of the firm, the principal value of outstanding 

debt and the default boundary to derive an expression for the spread of an equity default swap 

in terms of parameters of a structural model.  However, three of the parameters (the initial 

value of the firm’s assets, the asset volatility, and the net payout rate to security holders) in 

(21) are unobservable.  In this section, the effect of observable variables on the EDS spread is 

investigated.  So that this can be done, one solution is to calibrate a structural model using 

equity data.  The equity value of a firm depends on assumptions about the capital structure of 

the firm, e.g. whether the firm issues finite-maturity bonds or perpetual bonds.  Therefore, it 

is now necessary to focus on a specific structural model, and the model proposed by Leland 

& Toft (1996) is selected for use in this section.   

 

The model developed by Leland & Toft (1996) satisfies the first four assumptions outlined in 

Section 2.  Leland & Toft did not make, nor did they need to make, any assumptions about 

the number of outstanding shares in a firm.  As a result, the fifth assumption made in Section 

2 is also consistent with their model.  The reference firm is assumed to continually issue 

coupon bonds at a constant rate; these bonds are all of the same seniority and have an initial 

time-to-maturity T < ∞ .  As a result, the firm issues bonds with a principal value of 

( / )F T dt  in the interval [ , ]t t dt+ , where F is the principal value of all outstanding debt.  All 

bonds are assumed to pay a continual stream of coupon payments at a rate of c, so that the 

firm pays out a total of cFdt  in coupon payments in the interval [ , ]t t dt+ .  However, the firm 

receives tax benefits on these coupons at a tax rate that will be labelled tax .  Also, the firm 

experiences default costs of BVα  at the time of default.  Finally, since the issued bonds have 

the same seniority, debt-holders receive the same fraction of par at the time of default, 

regardless of the bond’s remaining maturity. 
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Theorem 2 

Given the capital structure outlined above, the value of a firm’s equity is given by 

 

( )(1 ) ( )
  ( )  

1
                                1 ( , ) (1 ) ( , ).

a b
t t t t

rT

t t

tax cF tax c
S S V V FX

r r

c e c
F I X T FJ X T

r rT r

αβ

α β

− +

−

− � �= = − − +� �
� �

� �−� � � �− − − − − −� �� � � �
� � � �� �

 (25) 

where the functions ( , )tI X T  and ( , )tJ X T  are equal to 

 ( )1
( , ) ( , ) ( , )rT

t t tI X T G X T e Q X T
rT

−= −  (26) 

and 

 ( )
1 1 2 2

1
( , ) [ ( , )] ( , ) [ ( , )] ( , )a b a b

t t t t t t tJ X T X d X T d X T X d X T d X T
b Tσ

− + − +	 
= − Φ + Φ �, (27) 

while 1( , )td X T  and 2 ( , )td X T  are given by (17) and (18) respectively. 

Proof 

See Leland & Toft (1996).                                                                                                         � 

 

As mentioned in Assumption 3, the default boundary is given by BV Fβ= .  In the model 

proposed by Leland & Toft (1996), the value of β  is calculated endogenously to maximise 

the market value of the firm’s equity; Leland & Toft show that the optimal default boundary 

is given by 

 

( )
( )

ˆ
1 ( ) (1 )

c A A tax c
B a b

r rT rT r
a b B

β
α α

� �� � � �− − − +� �� � � �
� �� � � �=

+ + − −
, (28) 

where 

 
2 2

2 ( ) 2 ( ) ( ) ( ) ( )
rT

rT e
A ae a T b b T b T a T b a

T T
σ σ φ σ φ σ

σ σ

−
−= Φ − Φ − + + −  (29) 

and 

 2 2

2 2 1
2 ( ) ( ) ( )B b b T b T b a

b T b TT
σ φ σ

σ σσ
� �= − + Φ − + − +� �
� �

. (30) 

 

To calibrate the Leland & Toft model using equity data, three equations are needed that link 

the unobservable variables to equity variables, since there are three unobservable variables in 

the structural model.  One equation is provided by (25), so two more equations are required.   
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An application of Itô’s Lemma to (6) reveals that the equity value follows the process6 

 ( ) .t
S

t

S
d dt d

V
µ σ

� �∂= +� �∂� �
t t t tS V V W  (31) 

This can be written as  

 
( ) SS

t

d
dt d

µ σ
� �

= +� �
� �

t t
t

t t

S V
W

S S
, (32) 

so that by comparing (31) and (32), the equity volatility at time t, S
tσ , can be seen to be equal 

to 

 S t t
t

t t

V S
S V

σσ ∂=
∂

. (33) 

The derivative in (33) can be found by simply differentiating (25). 

 

A firm makes three sets of payments to security holders: dividend payments to equity-

holders, and coupon and principal payments to debt-holders.  However, the firm receives two 

sets of payments: the tax-sheltering value of the coupon payments made to debt-holders, and 

the money received from issuing new debt.  Therefore, the net payout rate to security holders 

is taken to be 

 
(1 ) /S

t t t

t

S tax cF F T SB
dt dt

V
δδ + − + −= , (34) 

where S
tδ  is the dividend yield at time t, ( / )F T dt  is the principal payment made for bonds 

that were issued in the interval [ , ]t T t T dt− − + , and tSB dt  is the time-t market value of the 

bonds that are issued in the interval [ , ]t t dt+ .  This was shown in Leland & Toft (1996) to be 

equal to 

 1 [1 ( , )] (1 ) ( , ).rT
t t t

cF c F c F
SB e Q X T G X T

rT r T r T
α β−� � � �= + − − + − −� � � �

� � � �
 (35) 

Therefore, the right-hand side of (34) provides an estimate of the net payout rate of the firm 

at time t.  The net payout rate δ  is then fixed at this value as δ  is assumed to be constant 

over time (see Assumption 2). 

 

                                                
6 Although Itô’s Lemma can be used to derive the form of the drift term in (31), it is not necessary for the work 
here. 
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Three equations linking the unobservable variables to observable variables have now been 

derived.  Therefore, given values for the equity value tS , equity volatility S
tσ , and the 

principal value of outstanding debt F of the reference firm as well as r, S
tδ , c, T, tax and α , 

the initial market value of the reference firm’s assets, the asset volatility and the net payout 

rate can be found by solving (25), (33) and (34) simultaneously.  However, if the asset 

volatility of the reference firm is known as well as tS , F, r, S
tδ , c, T, tax and α , the values of 

two unobservable variables remain to be found, so only two equations are needed.  Hence in 

this case, the initial asset value of the firm and the net payout rate can be found by solving 

(25) and (34) simultaneously.  

 

Once the structural model has been calibrated using equity data, the next stage is to calculate 

*V , the value of the reference firm’s assets that corresponds to the trigger value *S , by 

solving the implicit equation (7).  As the equity value is a monotonic increasing function of 

the value of a firm’s assets, *V  can be found by repeated bisection.  Then the distance to a 

payoff event can be calculated using (8), and the par annual EDS spread can be computed 

using the expression in Theorem 1. 

 

The following two graphs shows the annual spread of a five-year equity default swap for 

various trigger values, which are shown as a proportion of the current equity value of the 

firm7.  In these graphs, the default-free interest rate is taken to be 6%, while the reference 

firm is assumed to have a debt-equity ratio8 of 100%, an equity volatility of 50%, a dividend 

yield of 2%, and a coupon rate of 7%.  The firm is assumed to issue bonds with an initial 

time-to-maturity of ten years.  The tax rate is 15%, and it is assumed that the reference firm 

loses 15% of its value upon default, i.e. 15%α = .  Further, the buyer of the EDS makes 

quarterly payments, w is taken to be 50% (so that the EDS seller makes a payment of 0.5N  

upon a payoff event), and the seller of the derivative makes a payment at the time of the 

payoff event, i.e. s is equal to zero with probability one. 

 

                                                
7 If the number of outstanding shares is constant over time, a fall in the equity value of the firm by %z  is 
equivalent to a fall in the price of a single share by %z . 
8 The debt-equity ratio of a firm is defined as the principal value of its debt over the market value of its equity. 
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Figure 1: EDS Spreads for Different Trigger Values (Logarithmic Scale) 
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Figure 2: EDS Spreads for Different Trigger Values 

 

These graphs show that even a very low trigger value can lead to a substantial increase in the 

annual spread compared with a credit default swap (equivalent to an equity default swap with 

a trigger value of 0).  For the particular case investigated above, the EDS spread is 86.48bps 

if the trigger value is 0, but increases to 189.73bps and 576.39bps if the trigger value is 5% 
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and 30% of the current equity value respectively.  Note that the CDS spread is consistent with 

that of an investment-grade reference firm.  However, if the trigger value is 30% of the 

current equity value, the spread of a five-year equity default swap is similar in magnitude to 

that seen on credit default swaps for some speculative-grade firms.   

 

If the trigger value is 100% of the equity value at time t, the probability of a payoff event at a 

time greater than t is 1.  Thus, from (24), if the EDS buyer makes n payments a year, the 

annual EDS spread at time t is 10,000wn  basis points.  In Figure 1, it was assumed that 

50%w =  and 4n = , so that the EDS spread is 20,000bps  if the trigger value is 100% of the 

current equity value. 

 

The effect of the reference firm’s debt-equity ratio on the EDS spread is now investigated.  

The spreads of both a one-year equity default swap (comparable to the expiry time of a 

reasonably long-dated equity option) and a five-year EDS (comparable to the expiry time of 

the most liquid credit default swaps) will be calculated, while the trigger value is set at 30% 

of the current equity value.  Table 1 shows the EDS spreads for different debt-equity ratios 

while the asset volatility of the reference firm is fixed.  Recall from (1) that the asset 

volatility of a firm is assumed to be constant over time, so that the EDS spreads in Table 1 

can be thought of as the spreads of a single reference firm as its debt-equity ratio varies.  It is 

assumed that the buyer of the EDS makes quarterly payments, and the values of r, S
tδ , c, T, 

w, s, tax and α  used in Table 1 are the same as those used for Figures 1 and 2. 

 

Observable Variables Structural Variables Equity Default Swap 
Spreads (in basis points) 

Initial Debt-
Equity Ratio 

Initial 
Equity 

Volatility 

Distance to 
Payoff 
Event 

Asset 
Volatility 

Net Payout 
Rate 

One Year 
EDS 

Five Year 
EDS 

25% 30.69% 2.32 25% 2.71% 3.61 126.86 
50% 36.80% 1.93 25% 3.25% 44.31 267.46 
100% 48.83% 1.61 25% 4.13% 301.03 538.81 
200% 69.86% 1.41 25% 5.54% 1,003.91 981.17 
400% 102.57% 1.29 25% 7.48% 2,113.22 1,629.34 

 

Table 1: EDS Spreads for Different Debt-Equity Ratios While Asset Volatility is Fixed 
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Table 1 shows that the annual EDS spread increases as the debt-equity ratio increases, i.e. as 

the debt-equity of a firm increases, it is more likely to suffer a large fall in its equity value.  

This is due to two reasons.  First, the net payout rate to security holders δ  is larger if the 

initial debt-equity ratio of the firm is greater.  This can be seen by examining (34).  A firm’s 

credit quality decreases as its debt-equity ratio increases, so that the amount of money it 

receives from issuing new debt decreases.  Therefore, unless the dividend yield is 

significantly greater than (1 )tax c− , the drift term of the process modelling the asset value of 

the firm, given by (1), decreases as a firm’s debt-equity ratio increases.  This usually causes 

the expected growth of the firm’s equity to be lower, making it more likely that the firm will 

suffer a large loss in its equity value.  The second reason is the leverage effect, which says 

that a firm’s equity volatility is positively related to its leverage9.  Note from Table 1 that the 

Leland & Toft model is consistent with the leverage effect.  Therefore, a firm would be more 

likely to suffer a large fall in its equity value as its debt-equity ratio increases, even if the 

expected growth of the firm’s equity remained the same.  A combination of these two factors 

explains the high sensitivity of the EDS spread to the firm’s debt-equity ratio. 

 

Table 2 shows the EDS spreads for different debt-equity ratios while the initial equity 

volatility remains fixed.  This can be thought of as the EDS spreads of a cross-section of 

firms with the same equity volatility.  Again, it is assumed that the buyer of the EDS makes 

quarterly payments, and the values of r, S
tδ , c, T, w, s, tax and α  used in Table 2 are the 

same as those used for Figures 1 and 2. 

 

Observable Variables Structural Variables Equity Default Swap 
Spreads (in basis points) 

Initial Debt-
Equity Ratio 

Initial 
Equity 

Volatility 

Distance to 
Payoff 
Event 

Asset 
Volatility 

Net Payout 
Rate 

One Year 
EDS 

Five Year 
EDS 

25% 50% 2.35 40.60% 2.82% 225.75 545.44 
50% 50% 1.96 34.17% 3.41% 285.31 565.82 
100% 50% 1.61 25.74% 4.20% 346.98 576.39 
200% 50% 1.34 16.67% 4.89% 389.91 567.18 
400% 50% 1.16 8.85% 5.32% 396.45 530.48 

 

Table 2: EDS Spreads for Different Debt-Equity Ratios While Initial Equity Volatility is 

Fixed 

                                                
9 Empirical evidence of the leverage effect is provided in Black (1976), Christie (1982) and Duffee (1995). 
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The above table shows a complex relationship between a firm’s debt-equity ratio and the 

spread of an equity default swap.  For the particular values analysed here, the EDS spread 

remains positively related to the debt-equity ratio of the reference firm for equity default 

swaps that are reasonably close to expiry.  Therefore, a highly-levered firm is more likely to 

suffer a 70% fall in its equity value in the next year than a firm with a low leverage, even if 

both firms have an initial equity volatility of 50%.  However, the spread of a five-year equity 

default swap appears to be less sensitive to the reference firm’s debt-equity ratio, and is also 

no longer a monotonic function of the debt-equity ratio.  For the values used in Table 2, 

reference firms with debt-equity ratios of 50% and 200% would have similar EDS spreads, 

while a firm with a debt-equity ratio of 100% would have a higher EDS spread. 

 

 

4. Conclusions 
 

In this paper, a closed-form expression for the price of a new equity-credit hybrid derivative, 

an equity default swap, was derived in terms of parameters of a general structural credit 

model.  The legal risk of the derivative was modelled and incorporated into the expression for 

the EDS spread.  It was shown how a particular structural model could be calibrated using 

equity data, and this model was then used to investigate properties of the equity default swap 

spread.  It is seen that an equity default swap with a low trigger value can have a substantially 

greater annual spread than a credit default swap.  Also, it was shown that, provided that the 

dividend yield was not significantly larger than (1 )tax−  times the coupon rate, the EDS 

spread increases as a firm’s debt-equity ratio increases, assuming that the firm’s asset 

volatility is constant.  However, if there are two reference firms with different debt-equity 

ratios, but the same equity volatility, it was seen that there is a complex relationship between 

EDS spreads. 

 

The equity-credit hybrid derivative market is already producing more complicated products, 

such as the equity collateralised obligation (ECO), which is an equity-credit hybrid analogy 

of the collateralised debt obligation (CDO).  This paper has shown that the use of structural 

credit models produces a simple closed-form expression for a basic hybrid derivative.  Future 

research will focus on using structural models to price the more exotic hybrid derivatives that 

are increasingly becoming available. 
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