Practitioner Analysis

Extreme Value Theory

Extreme values and the
measurement of operational risk

Below, in the first of a two-part discussion, Elena
Medova introduces extreme value theory and looks at
how the approach fits in with recent initiatives to
improve operational risk management in financial insti-
tutions. Next month, she offers a technical description
of a new EVT approach that makes use of Bayesian
simulation techniques to measure firm-wide op risk.

Since the publication of
Gnedenko’s limit theorems for
maxima in 1941, and Gumbel’s
Statistics of Extremes in 1958, the
engineering community has
applied a body of theory
concerning the calculation of
extreme values to a great variety
of practical problems.

Extreme value theory (EVT) has
found applications in structural,
aerospace, ocean and hydraulic
engineering as well as in studies
of pollution, meteorology and
highway traffic.

Actuaries also now use EVT
extensively to model casualty
insurance claims. So perhaps it’s
not surprising that researchers
have begun to explore whether
EVT can be used to measure
operational risk in financial
institutions.

The key attraction of EVT is
that it offers a set of ready-made
approaches to the most difficult
problem in op risk analysis: how
can risks that are both extreme,
and extremely rare, be modelled
appropriately?

But, as we discuss, applying
EVT to financial institution op

risk raises some difficult issues.
Some of these arise from the
nature of the data that is available
to analysts. Others relate to the
purpose of any op risk analysis,
the definition of an “extreme”
event, and the meaning of the
term “operational risk”.

Key EVT literature

The literature on EVT is now
quite extensive. Galambos et al
(1994) offers a useful exposition of
EVT theory and practice, while
Castillo (1998) describes its appli-
cations in engineering,.

Perhaps the most complete
exposition of EVT is given in a
series of working papers and a
monograph by Embrechts et al.
(1997) 1. The monograph also
examines the application of
extreme values to insurance and
risk management.

Other key texts include the

significant theoretical and experi-
mental results in Smith (1987,
1997) and McNeil and Saladin
(1997); McNeil’s extreme value
software library written in S-plus;
and Danielson and de Vries
(1997).

Key components of EVT
The principal results of extreme
value theory concern the limiting
distribution of sample extrema
(maxima or minima).

Suppose that X = (Xy,...,X,) is a
sequence of independent identi-
cally distributed observations
with distribution function F, not
necessarily known, and let the
sample maximum be denoted by
M,, = max {Xy,...,.X,}.

Under certain assumptions -
subexponential distributions - the
tail of the maximum determines
the tail of the sumasn — .

More generally, the generalized
extreme value distribution (GEV)
given by Hg(x) describes the
limit distribution of suitably
normalized maxima. The random
variable X may be replaced by
(X-M)/ o to obtain a standard GEV
with a distribution function that is
specified as shown below, where
M, 0 and & are the location, scale
and shape parameters, respectively.

Three standard distributions
correspond to different values of
&. They are the:

Gumbel distribution A, £=0;
Fréchet distribution ®a, &= a-1 >0;

— )\ /& _
exp—(1+E_'L_lXa ) ] if620,1+8°,F >0
HE,y,a(x)=
exp —exp(—x_;u) if$=0,

1. In August this year Risk Books will publish a collection of key papers and new research on EVT edited and introduced by Paul Embrechts,

with title of "Extremes and Integrated Risk Management".
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Weibull distribution Wa, &= -a-1 <0.

The purpose of tail estimation
procedures is to estimate the
values of X outside the range of
existing data. To do this,
researchers have employed both
extreme epochs (events), and
exceedances of a specified level.
The standard approach assumes
that the tail of the population
follows the selected family of
distributions.

Pickands (1975) showed (with
some additional assumptions) that
the generalized Pareto distribution
(GPD) — the limit distribution of
excesses Y:= max {X-u, 0} over
sufficiently high thresholds u —
offers a good approximation of
the tail of F for some fixed & and f3
which depend upon u. Similar
results have been obtained for
stationary sequences of observa-
tions whose dependence extends
only to a finite number of
previous values, see Leadbetter et
al, (1983).

Thus the distribution of Y may
be thought of as the conditional
distribution of X given

X>u

The GPD with shape parameter §
and scale parameter {3 is specified as

y\vé
1-(1+g ifE#0
B
Gepy) = y ‘
l-exp(-ﬁ) ifé=0
[0,00] if&=0
where y [

[0,-;?] if £<0

and the sign of the shape para-
meter & determines its tail behav-
iour and thus the tail behaviour of
the original distribution.

For &>0, the tail of the distribu-
tion function F of X decays like a
power function x1/& . In this case, F

belongs to a family of heavy-tailed
distributions that includes, among
others, the Pareto, log-gamma,
Cauchy and t-distributions.

For &=0, the tail of F decreases
exponentially, and belongs to a
class of medium-tailed distributions
that include the normal, exponen-
tial, gamma and log-normal distri-
butions.

Finally, for £<0, the underlying
distribution F is characterised by a
finite right endpoint, which class of
short-tailed distributions includes
the uniform and beta distribu-
tions.

It can be shown that the mean
excess function (expectation) of the
GDP is given by the expression

e(u) = E(X-u | X>u) =B+
1-¢
where
B=0+&u-p)
and max, Y, follows a GEV
distribution with parameters &, |,
.

The POT model
The peaks over threshold (POT)
model can be used to estimate the
excess distribution with respect to
a threshold level u, and to esti-
mate the tail shape of the original
distribution. It should be noted
that the threshold setting of the
POT model is data dependent.
The model defines a two-dimen-
sional (Y,, N ) space-time point
process on X, = u, n=1,...,N_.
Here Y,, and N, are indepen-
dent random variables such that
Y, ~ GPD(§,b), and the number of
excesses N, follows a Poisson
process with intensity A, repre-
senting the average number of
exceedances over the time interval
used for the sampling process and
given by
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A= (1+E (X—;m)_llz forx=u.

The threshold u is usually
chosen using mean excess plots,
and other statistical devices devel-
oped by Smith (1987, 1997), that
consider the trade off between
bias in estimating the excess
distribution function parameters
and their variance.

The POT model for
operational risk
The estimation of the parameters
of the POT model is usually based
on the maximum likelihood method,
which requires a relatively large
number of observations above the
threshold (e.g., more than 100).
But in an operational risk situa-
tion, it might be more realistic to
think in terms of 20 or 30 excesses.
This suggests that another estima-
tion technique will be necessary
for operational risk, and we
propose the use of Bayesian simu-
lation techniques (Medova, 1999).
A presentation of this, rather
technical, estimation procedure
will form the subject of an article
in August’s Operational Risk.
Another complex issue is the
question of consistency in
deciding upon threshold values.
In an ideal world, the threshold
obtained from the POT model
should correspond to the inte-
grated market and credit risk VaR
quantile. This is currently one
topic of our programme of
research into integrated risk
management.

Some problems
To justify the modelling of opera-
tional risk using EVT, many
obstacles must be overcome.

But not all the obstacles are
technical in nature. Many are
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caused by the fact that operational
risk continues to be ill-defined for
the purpose of calculating risk
capital.

For example, one might ask
how any approach to operational
risk using extreme value theory
relate to definitions of

n

“normality"” and the problem of
internal bank controls and
external supervision?

More topically, how does EVT
relate to the Basel Committee on
Banking Supervision’s present
proposals for controlling opera-
tional risk?

The Committee has attempted
to clarify the complex issues of
risk management by adopting a
“three-pillared” approach. The
first pillar concerns capital alloca-
tion, the second supervision and
controls, and the third trans-
parency and consistency of risk
management procedures. What is
the relation of EVT to these three
pillars — most problematically,
the second and third pillars?

Another problem is that, while
risk capital is generally under-
stood as a way of protecting a
bank against “unexpected” losses
— expected losses are covered by
business-level reserves — it is not
clear to what degree it is used to
cover the most extreme risks.

Some practitioners and regula-
tors have made it clear that they
do not intend to include the risk
of the most extreme losses in their
calculations of either economic
risk capital or regulatory risk
capital. 2 So in what way is
extreme value theory useful in
measuring operational risk?

Lastly, how can an analyst deal
with market and credit risk

management without double-
counting? Some framework that
identifies the roles of credit,
market, and other risks must be
constructed.

Below we suggest some
thoughts on these issues that help
to show how they relate to the
nature of extreme value theory.

Some solutions

Let us assume that a bank’s
market and credit risk manage-
ment is informed by quantitative
models that compute the value at
risk (VaR) for market risk and
credit risk and that allocate
economic capital to these risks.

Is such a capital allocation
sufficient for unexpected losses
due to human errors, natural
disasters, fraudulent activities and
other external factors including
acts of God? Clearly not, for two
reasons.

Firstly, the models do not take
into account operational risks
(extreme or not). Secondly, they
make various assumptions about
“normality”, and so exclude
extreme and rare events. Such
events include natural disasters as
well as major social or political
events.

How can we think clearly about
operational and extreme events?
In our research, we termed the
related risk factors primal (cata-
strophic). Processing all incoming
information and taking decisions
at different levels of the bank may
lead to further losses reflected in
increased business costs. Some
such secondary causes are human
or technological errors, lack of
control to prevent unauthorised
or inappropriate transactions

being made, fraud and faulty
reporting.

Many of these secondary
causes are used in one or other
definition of operational risk.
Some of them, such as the failure
of a bank’s internal computer
system, may themselves be
regarded as primal and cata-
strophic.

The first step in operational risk
management should be a careful
analysis of all available data to
identify the statistical patterns of
losses related to identifiable
primal and secondary risk factors.

Ideally, this analysis would
form part of the financial surveil-
lance system for the bank. In the
future, perhaps such an analysis
might also form part of the duties
of bank supervisors. In other
words, at a conceptual level, it
relates to the second of the Basel
Committee’s three pillars.

Here, the important point for
analysts is that this surveillance is
concerned with the identification
of the “normality” of business
processes. The identification of
suitable of market and credit risk
models also forms a natural part
of this operational risk assess-
ment.

Such an analysis should allow
an analyst to classify a bank’s
losses into two categories:

(1) significant in value but rare,
corresponding to extreme loss
events distributions;

(2) low value but frequently occur-
ring, corresponding to ‘normal’
loss event distributions.

Next, we might take the view
that control procedures will be
developed for the reduction of the
low value/frequent losses, and for

2. For example, see practitioner Tony Peccia’s comments on capital allocation at CIBC, one of Canada’s leading banks, in April’s Operational

Risk, page 12, and comments by Jeremy Quick of the UK’s Financial Services Authority, in February’s Operational Risk, page 10.
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their illumination and disclosure
(the third pillar of the Basel
approach).

These control procedures, and
any continuing expected level of
loss, should be accounted for in
the operational budget. This
allows us to assume that only
losses of large magnitude need be
considered for operational risk
economic capital provision.

Again, an analysis of the profit
and loss data, and the verification
or rejection of the assumption of
normality, related to the universe
of primary and secondary risks,
are all the part of the (usually
internal) risk supervisory process.

From value at risk to
extreme event analysis
Value at risk (VaR) has been
adopted as the central measure of
market risk by many organisa-
tions that trade in the world’s
financial markets.

Under normal market condi-
tions VaR provides a measure of
the market risk due to adverse
market movements. Any devia-
tion from normality will tend to
underestimate the value at risk.

Similarly, under normal condi-
tions for credit risk, which corre-
spond to credit ratings higher
than BBB, credit models provide
measures for credit risk.

But there are theoretical alter-
natives to VaR that also offer a
coherent risk measure (Artzner et
al., 1997, 1999). One approach is to
define a measure for the expected
shortfall or tail conditional expec-
tation with respect to the
unknown maximal loss distribu-
tion.

We adopt a similar conditional
measure for operational risk. But
we assume that a threshold has
been derived from the marginal
statistical distribution of losses as
a part of the operational risk
supervisory process — as
discussed above, and in next
month’s technical paper.

This gives a slight twist to the
usual definition of operational
risk. For the purpose of calcu-
lating capital provision, opera-
tional risk is everything which is
not credit and market risk under
normal conditions — including
catastrophic market and credit
losses losses where appropriate.

In effect, operational risk is
redefined as a tail of the profit
and loss distribution of the appro-
priate level — business unit, or
enterprise-wide — of the bank
(see Figure).

In the presence of extremes,
further analysis will be required
for the identification of a
threshold, and for the evaluation
of a capital requirement for unex-
pected operational losses.

Dr Elena A. Medova is part of a
research team led by Professor
M.A.H. Dempster, and including M.
N. Kyriacou, working on the topic of
operational risk at the Centre for
Financial Research, Judge Institute of
Management Studies, University of
Cambridge, www-cfr.jims.cam.ac.uk.
The research reported here was
partially sponsored by
PricewaterhouseCoopers.
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Figure 1. Profit and loss distributions and a chosen threshold for extreme operational losses
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