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hen the equity bubble of the second half

of the 1990s deflated, there was a change

in the attitude of many investors toward

risk. Investors began to search for pro-
tection that would transfer risk from them to a guaran-
tor in exchange for a fee.

Both investment banks and asset managers are
developing long-term guaranteed products allowing
the sharing of risk between the fund manager and the
investor. The purpose of these products is to take advan-
tage of new sources of performance while simultaneously
limiting the liability to the client. This liability could be
capital protection or a guaranteed return, either fixed or
linked to inflation.

Investment banks might issue structured notes with,
for example, constant-proportion portfolio insurance
(CPPI) features and automatic trading rules, adjusting
the exposure of a portfolio to risky markets depending
on the gap between the net asset value (NAV) of the port-
folio and a bond floor. One problem with this approach
is that CPPI and similar products tend to follow the
market rather than anticipating it; they provide us a risk-
less approach of reaching the guarantee, but forgo any
upside potential. This is where the asset manager has a
potential advantage. He or she can provide the protection
while still exposing the client to higher-risk markets
through active asset allocation to potentially higher returns.

The other role of the asset manager regarding
capital-protected segregated accounts is to provide risk
control, usually in conjunction with investment banks or
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insurance companies that act as guarantor of the fund. The
usual approaches, such as Markowitz mean-variance opti-
mization, are inappropriate for this task because of their
buy-and-hold static view of managing investment risk only
at the horizon and not continually over the life of the fund.

For asset managers to do their job effectively, there
is clearly a need for dynamic asset allocation on the invest—
ment side and for valuing liabiliies at market rates con-
stantly over time. Since guarantees constitute a liability for
the fund, the market value of the minimum guarantee
represents a benchmark for the fund manager that must
be exceeded and in the worst case matched.

Our approach to portfolio construction for pro-
tected products is dynaniic stochastic programming (optimiza-
tion), known in financial applications as asset liability
management (ALM). Examples appear in Kouwenberg
[2001] and Mulvey, Pauling, and Madey [2003].

Dynamic stochastic programming models will auto-
matically hedge current portfolio allocations against
projected future uncertainties in asset returns and costs of
liabilities over the time horizon (see Dempster et al. [2003]).
They also are flexible enough to take into account
multiple tinme periods, portfolio constraints such as the
prohibition of short-selling, and varying degrees of risk
aversion in the portfolio allocation.

Drynamic stochastic optimization requires a variety
of skills and techniques, particularly in the modeling of
asset returns, liabilities, and related economic factors in
order to generate scenarios for all underlying processes.
The formulations of asset liability management opti-
mization problems vary under different regulatory regimes
and for different fund sponsors. They involve econome-
tric medeling, economic scenario generation, and solu-
tions of stochastic optimization problems within required
risk tolerances. Fabozzi, Focardi, and Jonas [2004, p. 14]
note that “ALM technology can be a challenge even to
sophisticated users,” but proprietary modular software
systems can help with a variety of problems under uncertainty:

We illustrate an ALM implementation and solution
results using a simple example of a closed-end guaranteed
return fund—a starting point for the construction of
more complex guaranteed products with different risk
management strategies.

There are several different guarantees available in the
market. The most common is the nominal guaraniee, which
assures a fixed percentage of the initial wealth at a speci-
fied date in the future. There are also funds with a “real”
or flexible guarantee linked to an inflation index or some
other capital market index. Sometimes the guarantee of
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a minimum rate of return may be set in relation to the
performance of other funds. A minimum rate of return
guarantee may be termed a (lower) barrier since the fund’s
portfolio return at any time must be greater than or at least
equal to that level,

We analyze the optimal strategic asset allocation for
a closed-end guaranteed return fund over the fumd’s life. In such
a fund no contributions are allowed after the initial cash
outlay. The time horizon of the fund is T years, and the
guarantee 15 G% return on the initial wealth. Eight dif-
terent assets a are chosen for the fund to hold: coupon-
bearing Treasury securities with maturities equal to 1, 2,
3,4, 5, 10, and 30 years and an equity index to boost fund
performance. We use a five-year horizon (1" = 5) for
dlustration, although the techniques described can be
applied to much longer horizons at the cost of increased
computation time.

We stimulate the future returns of the eight assets and
construct a scenario tree where each path of asset returns
through the tree corresponds to a scenario @ in Q, and
cach node in the tree corresponds to a decision time
along one or more scenarios. An example scenario tree
1s given in Exhibit 1.

The probability p(w) of scenario win € 1s the recip-
rocal of the total number of scenarios as the data paths
are generated with equal probability by Monte Carlo
simulation. The times are given in months and years

A2

(== (B T} Certain times s, e.g., s: = =0, 1,

127 12
2,..., correspond to the (annual) decision omes at which
the fund will trade to rebalance its portfolio. T corre-
sponds to the time the guarantee will be paid out.

To represent the scenario tree structure we use a
treesiring, which is a string of integers specifying for each
stage s the number of branches for each node in that stage.
This specification gives rise to balanced scenario trees where
each subtree in the same period has the same number of
branches. The balanced scenario tree of Exhibit 1 can be
described by the treestring 3.3, giving a total of 3-3 = 9
scenarios.

MODELING THE GUARANTEE LIABILITY

Starting with an initial wealth 17, and a nominal
guarantee of G% annually, the guarantee liability at the
planning horizon T is given by:

W, 1+ 97 (1

WINTER 2006



ExHIiBIT 1
Representation of Scenarios

t=0 t=1/4 =112 =3/4

R ¢
t=5/4 1=3/2 t=7/4 =2
|

T

=3

To price the liability at time f, consider the yield for
scenario w of a zero-coupon bond that pays 1 at time T,
ie., Zn(a) =

scenario  (assuming continuous compounding) is given by:

1. The zero-coupon bond price at time #in

o)t :

where y, . (w) is the zero-coupon Treasury yield with
1'natu1'ity,T at time  1In scenario .

This gives us a formula for the nominal or fixed gua-
rantee barrier at time f in scenario o:

[¢]

=, (14 G) N (3)

)

L{w)=w,(1+6) z (w)

This formulation of the barrier shows chat short-
horizon funds are likely to attract more risk-averse par-
ticipants than long-horizon funds, whose participants can
atford to tolerate more risk in the short run. This natu-
ral distinction between short- and long-horizon funds 1s
ncorporated in the problem setup, as the barrier will
nitially be lower for long-term funds than for short-
term funds.

This feature of the model is demonstrated in Exhibit 2,
where the top line can be interpreted as the barrier for a

fund that guarantees a 2% return throughout the life of

the product, and the bottom two lines represent the
bzu‘riers if the 2% is guaranteed only at the horizon. At time
t = 0, the gap between the top line (the initial portfolio
wealth) and the bottom line (the barrier) is wider for the
five-year guarantee than for the one-year guarantee,

WINTER 2006

indicating that the five-year portfolio can afford to take a
more risky asset allocation.

This formulation agrees with what is required by the
Financial Accounting Standards Board (and has been
proposed by leading professionals): “a high-quality zero-
coupon bond whose par value matches the liability pay-
ment amount, and whose maturity matches the liability
payment date” (see Riyan and Fabozzi [2002, p. 9).

In the case of an inflation-indexed guarantee, the
final guarantee at tme T'is given by:

Wnﬁ(lﬂ"“’ cu)) “h

where 1"(_”3’(01) represents the monthly inflation at time s in
scenario .

Contrary to the nominal guarantee, at time { < T
the final inflation-linked guarantee is still unknown. We
propose to approximate the final guarantee by using the
inflation rates that are known at time t, combined with
the expected inflation at time ¢ for the period {H%, Tl.

The inflation-indexed barrier at time ¢ is now given

by:

Voo
E

P

\
( ) H l+:’”’(u))JZ ®
}

H('““”’)

' T

( Vo
=Wuln(l+ii"”)JEt H 1+ (w)

lo)lT-r) (5)

s=t+

14
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EXHIBIT 2

Barrier for One-Year and Five-Year 2% Guaranteed Fund

M5 ——————

110
105

80

1-Jan-99 1-Jan-00

'——— 1-Year Barrier

31-Dec-00  31-Dec-01

31-Dec-02  31-Dec-03

5-Year Barrier

ExHIBIT 3

Five-Year Simulation Using Gaussian Three-Factor Model

0.08+—— S .

Yield

O o o T
0 1 2 3 4 5
Time (Years)
| 3-month — - —1-year ------. 3-year —-.—- 5-year 10-year 30-year‘

For the fixed guaranteed return fund, the end value
is known from the start. Because of different yield curve
scenarios, though, this guarantee will be discounted at dif-
ferent values, thereby creating different barriers for each
scenario. In the case of an inflation-linked guarantee,
both the expected inflation and the expected yields will
vary across scenarios, giving different barriers and diffe-
rent terminal values for the guarantee for each scenario.

The challenge is to derive and simulate the scena-
rios for the yield curve according to these requirements.
We use a Gaussian three-factor economic model with
2 closed-form solution for the yields with parameters
estimated using the Kalman filter. Yields of 16 different

e

ANAGING GUARANTEES

maturities ranging from 1 month to 30 years are used in
the estimation process to capture the dynamics of the entire
term structure. The vyields of the bonds in which the
fund invests must be a subset of these data.

A typical yield curve simulation is shown in Exhibit 3.

MODELING ASSET RETURNS

As the products we discuss are aimed at the European
market, the assets used in the model are denominated in
euros. The equity is the Dow Jones Eurostoxx 30 index,
which is assumed to follow a geometric Brownian motion.
The returns of individual Treasury securities are obtained

WINTER 2006



from the yield curve, which is used to generate the bar-
rier, 1.e., for pricing the Hability. Thus both asset returns
and habilities are priced in a consistent way across all
future scenarios.

As sufficient historical data on coupon-bearing euro
Treasury securities are difficult to obtain, the returns of
relevant securities are obtained from the zero-coupon
yield curve. Coupons on newly issued securities are closely
related to the corresponding spot rate at the time, so we will
use the current zero yield with maturity T as a proxy for
the coupon rate of a coupon-bearing security with matu-
rity T, i.e., the coupon rate §* (w on a newly issued
ten-year Treasury security at time t = 2 will be set equal
to the projected ten-year spot rate Yy (@) at time = 2,
thereby creating par securities.

Treasury securities are assumed to pay coupons
semiannually and to be rolled over on an annual basis, so
that a coupon will be received after six months and again
after a year just before selling the security. This forces us
to distinguish between the price at which we will sell
the security and the price for which we buy the new
security at decision times.

For inflation-linked guarantees, we propose to
approach the problem in the same general way as the nom-
inal guaranteed return funds, still using a three-factor
economic factor model estimated using the Kalman
filter to simulate the nominal yields and using a mean-
reverting Ornstein-Uhlenbeck (OQU) process to model
inflation. By using this approach, we obtain flexibility
and allow the model to be applied to virtually any index-
tracking guarantee. With licdle data available on inflation-
linked Treasury securities in the European market, we
perceive this to be a better approach than having to
simulate break-even rates and from those derive expected
inflation rates.

MULTISTAGE ALM

Exhibit 4 defines the variables and parameters of the
stochastic programming problem.

Constraints

The basic constraints of the dynamic model con-
sidered for the minimum guaranteed return problem are:

o Cash balance constraints. These constraints ensure
that the net cash flow at each decision time and
at each scenario is equal to zero:

;1 e ((f)).’f(:” (m) =W, (m) wEQ (6)
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Z 4 8 (m ) Fox, (ru) + 2 gﬁhfl (w ).\fu ((u) =
€115} 2 ) s A
E e ((t) )\'f_“ ((u)

aed

wEQ teEry {O} )

Short sale constraints. These eliminate the possibility
of short-selling the equity and bond assets:

x |w)=0 a4 wEQR teT“\{T 8
(o) (8)
X, [w) =0 aEA weEQ (ET {T} (9)
.\’f’_“(w) =0 a€E4 weQ rer \{0} (10)

Wealth constraint. This constraint determines the
portfolio wealth at each time:

Wf (w) = 2 _fP{_t:"‘ (m),\',‘“ (w)

a€d

wEQ tETe \{T} (11)

#o)- Sertlo)s , (o)

a4 12"

3 e, v 2
@28} r—

12

Accounting balance constrainis. These constraints
give the quantity invested in each asset at each
time and for each scenario:

X, ((u)=.r(‘;_u(co) aEA weEQ (13)

a

x{_”(w):x | (cu)+.rf*_“((u)fA\fvu((u)

=
1

a€EA wEQ rET™ \{0} (14)

Information constrainis. These constraints ensure
that the portfolio allocation cannot be changed
between decision times:

“':...- ((U) =x, (cu) =0
a€EA wEQR (ET\T (15)

Coupon reinvestiment constraints. We assume that the
coupon paid each six months will be reinvested
in the same coupon-bearing Treasury bond:

THE JOURNAL OF PORTFOLIO MANAGEMENT



o), (o)

X ((u) = o {;')7 - = ((r)) =0

La

xto(@) = (w) -0

ac\{s} wee rer (16)

= Annual rollover constraint. This constraint ensures
that at each decision time all the coupon-bearing
Treasury security holdings are sold:

B (m) —F ] ((u)

Er—
12

aEA\{S} wEQ rer! \{o} A7)
e Barrier constraints. These constraints determine

the shortfall of the portfolio at each time and in
each scenario as defined in Exhibit 4:

hl(w)+W,(a))zL,(w)

h,(a))zO

wEQ e (18)

wEQ 7™ (19)

*  Non-anticipativity constraints. These constraints
prevent foresight of uncertain future events and
in the nodal problem representation used here are
taken into account implicidy.

As the objective of the stochastic program will
put a penalty on any shortfall, optimizing will ensure that
h(w) will be zero if possible and as small as possible
otherwise.

To obtain the maximum shortfall for each scenario,
we need to add one of two constraints:

H(m)ah}(co)
Il(w)ahﬂ(w)

Constraint {20) must be added if the maximum shortfall
is taken into account on a yearly basis, while (21) con-

wea rer u{r} (20)

wEQ rer (21)

siders the maximum shortfall on a monthly basis.

Objective Functions

The risk-return trade-oft is incorporated into
the objective function. Defining shortfall as the amount
by which the portfolio’s wealth falls below the barrier,

MANAGING GUARANTEES

the risk of the policy is quantified in two ways. First,
we consider the average shortfall over time for each
scenario and then take the expectation over all scenarios
(the expected average shortfall approach). Second, we look
at the maximum shortfall over time for each scenario,
and then as before take the expectation over all scenarios
(the expected maximum shortfall approach). A scaling
factor, which can be interpreted as a measure of risk
aversion, links the portfolio wealth and the shortfall/
risk factor for the guarantee in the objective function.
The objective function of the expected average

shortfall (EAS) model is given by:

'I 1-pIW \w)- 4 \1=
max E E (“’)t( fj) ,( ) ’8|T“'U{T}|J]

) r,lHJ‘ Prr=e It

) et ugry
acAd

‘ijﬁ!JET“’ u{r}‘
\
(lfﬁ)t E 7 ((u) E W{(w)J »
~ max ‘ o o ’( ) \
[fr0le)y ). hlw
i."fégwizd:;[f}[ L“Zzp(m)h__r%y}|r‘ ulr |J

(22)

That is, we maximize the expected sum of wealth
over time while exacting a penalty every time wealth
talls below the barrier. In this case, only the shortfalls at
decision times are taken into account, and any serious loss
in portfolio wealth in between decision times is ignored.

From the fund manager’s perspective, however, the
position of the portfolio’s wealth relative to the fund’s bar-
rier 1s always significant, and serious or repeated drops
below this barrier might force the purchase of expensive
insurance. To capture this feature specific to minimum
guaranteed return funds, we also use an objective function
that considers the shortfall of the portfolio on a monthly
basis.

For the expected average shortfall with monthly
checking (EAS MC) model, the objective function is
given by:

( \
I— [) p oJ E ( )
e e ufr}
max ( )\
.\l‘”|’:u'.\'%‘““m|.\'7‘[)ij]:] w
lstoeierdufrl | |B L Solo) S J
ul=e] T mm T (23)

Note that although we still rebalance only once
a year, shortfall 1s now measured in the objective on a
monthly basis so that the annual decisions must also take
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ExHIBIT 4
Variables and Parameters of the Model

Time Sets

on ! — s ; :
s {(J, = 7} set of' all times considered in the stochastic program

12"

set of decision times

P e B set of intermediate times

. 1 3 1 i Eo . A
T === —-— times a coupon is paid out in between decision times

203 2
Instruments
s ((u) Dow Jones Eurostoxx 50 index level at time ¢ in scenario @
B’ ({u) EU Treasury security with maturity 7 at time ¢ in scenario @
T

5:‘ (m) coupon rate of EU Treasury security with maturity T at time / in scenario @

# face value of EU Treasury security with maturity 7'
F Y y ¥
Z{w EU zero-coupon Treasury security price at time / in scenario @

| P ry Y p

Risk Management Barrier

Y., (w) EU zero-coupon Treasury yield with maturity 7" at time ¢ in scenario @
(@] annual guaranteed return
L (w) barrier at time ¢ in scenario @)

Portfolio Evolution

A set of all assets

buy/scll price ol asset @€ A at time 7 in scenario @

g transaction costs of buying/selling

X, (w) quantity held of assct @€ A between time 7 and £+1/12 in scenario @

uantity bought/sold of assets @€ A at time 7 in scenario @
(1 B

w (w) portfolio wealth at time ¢ € 7" in scenario @

I (m)r: rnax((], L (cu)— W (w)) shortfall at time ¢ in scenario @

into account the possible forward effects they will have on
monthly shortfall.

The value of 0 = = 1 can be chosen freely and
sets the level of risk aversion. The higher the value of 3,
the more importance given to shortfall and the less to the
expected sum of fund values over time, and hence

WINTER 2006

the more risk-averse the optimal portfolio allocation will
be. The two extreme cascs are represented by = 0, the
unconstrained situation, which is indifferent to the prob-
ability of falling below the barrier, and 8= 1, when only
the shortfall is penalized and the expected sum of fund
values is ignored.
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ExHIBIT 5
Backtest 1999-2004: 2% Annual Guarantee
Using Expected Maximum Shortfall Objective

130.00
125.00
120.00
115.00
110.00
105.00

100.00 W TN
95.00 /\/\\W
90.00
1-Jan-99 1-Jan-00 31-Dec-00  31-Dec-01  31-Dec-02  31-Dec-03
barrier - ... EMS 4 ExpEMS ——EMSMC & ExpEMSMC
512.2.2.2.2 tree
The second model we consider uses the expected RESULTS

maxinium shortfall (EMS) objective given by:

1=n){Zrle) 3, mlo)-

=+ erulr)
max v

S0, o), (o)
el ,3( 3 p(m)H(w)) (24)

wE

using constraint (20) to define H{w).

For the expected maximum shortfall with monthly
checking (EMS MC) model, the objective function
remains the same, but H(w) is now defined by (21). In
this model we penalize the expected maximum shortfall
over time assuming that for each scenario @ € Q, H(w)
1s as Jow as possible. Combining this with the constraints
(20) or (21) ensures that H(®) is equal to the maximum
shortfall for scenario m.

The EMS model focuses on limiting the maximum
shortfall and therefore does not penalize portfolio wealth
falling just slightly below the barrier several times. The
EAS model, on the other hand, incurs a penalty every tme
the portfolio’s wealth falls below the barrier, but does
not differentiate between a substantial shortfall at one
time and a series of small shortfalls over time. So one
model limits fund wealth from falling below the barrier
substantially, and the other limits the number of times it
does so.

MANAGING GUAIRRANTEES

To illustrate the methodology we propose, we
describe some backtests over January 1999 to January
2004. In this period we saw a major correction in the
equity market and a period of declining interest rates,
resulting in increased present values of the liabilicy. While
this would represent a difficult time to earn high portfo-
lio returns, it is an excellent time to see how the model
performs under adverse market conditions with its risk
management assumptions in place.

Included in the exhibits are the one-year ahead in-
sample expectations of the portfolio’s wealth. Implement-
ing the first-stage decisions, we calculate the portfolio’s
wealth for each scenario in the simulated tree one year
later, and then take an expectation over the scenarios.

The initial in-sample overestimation of the model
is likely due mainly to the short time series for parame-
ter estimation, which leads to hugely inflated stock return
expectations. As time progresses and we have more data
points to recalibrate the model, the model expectation and
real-life realization very closely approximate one another.

Three different sets of experiments are considered:

* 2% nominal guarantee, no transaction costs;

¢ 2% nominal guarantee, 50 basis point bid-ask
spread;

* Inflation-linked guarantee, no transaction costs.

The 2% nominal guarantee experiments in Exhibit 5
show a clear difference between the expected maximum
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EXHIBIT 6

Backtest 1999-2004: 2% Annual Guarantee with Transaction Costs

Using Expected Maximum Shortfall Objective

120.00
115.00
110.00
105.00
100.00

96.00

90.00
1-Jan-99

1-Jan-00

barrier
—EMS MC "

32.4.4.4.4 free.

31-Dec-00 31-Dec-01

31-Dec-02 31-Dec-03

s ExpEMS

Exp EMS MC

ExHIBIT 7

Portfolio Allocation for 2% Annual Guarantee with Transaction Costs

Using Expected Maximum Shortfall Objective

Iy 2y 3y 4y Sy 10y 30y | Sto(-:k__‘1
Jan 99 0 0 0 0 0.79 0.14 0 007 |
Jan 00 0 0 0 0 0 0.17 0.52 0.31
Jan 01 0 0 0 0 0.60 0.17 0 0.23
Jan02 | g 0.53 0 0 | o042 0o | 0 0.05
Jan03 | 096 | 0.04 0 0 0 0 0 0
32.4.4.4.4 tree.

shortfall approach using just yearly checks and monitor—
ing the shortfall on a monthly basis.

As the system with annual rollover involves the
selling and buying of a new Treasury security portfolio
each year, including transaction costs puts significant
downward pressure on the portfolio’s wealth. The terminal
wealth is now more in the region of 115, rather than the
120 of earlier experiments.

Exhibit 6 shows that, even under this increased
downward pressure, the model performs well, staying
above the barrier at all times. Exhibits 7 and 8 reflect this
need for a more conservative portfolio allocation in the
diminished reliance on equity.

For the inflation-linked guarantees, Exhibits 9 and
10 give the portfolio allocations for the 512.2.2.2.2 tree

WiNTER 2006

using the maximum shortfall objective functions. In
both cases, we can identify a tendency for the portfolio to
move to the safer, shorter-term assets as time progresses.
This is naturally built into the model (as explained by
Exhibit 2).

Comparing these inflation-linked guarantee portfolio
allocations to the portfolio allocations of the nominal
guarantee, we see that the portfolios are not as well
diversified. As time progresses, we also do not see as clear
a move toward shorter-maturity securities. A possible
explanation is that, as time progresses, inflation remains
uncertain, so even one year away from maturity a one-
year securiry might not be sufficient to hedge the infla-
tion risk. The optimizer therefore chooses slightly longer-
term securities with a better guarantee of higher returns,
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ExXHIBIT 8

Portfolio Allocation for 2% Annual Guarantee with Transaction Costs
Using Expected Maximum Shortfall with Monthly Checking Objective

1y 2y 3y 4y | sy 10y 30y | Stock |
Jan 99 0 0 0 0 0.90 | 0.02 0 0.08
Jan 00 0 0 0 0 0.75 0.02 0 0.23
dandl | 0 0 0 0.77 0.06 0 0.17
Jan02 | a3 0.01 0 0 0.71 0 0 | 0.05
| 703 | 039 | o0m 0 0 0.59 0o | o 0.01
32.4.4.4.4 tree.
EXHIBIT 9
Portfolio Allocation for Inflation-Linked Guarantee
Using Expected Maximum Shortfall Objective
ly 2y | 3y dy Sy 10y 30y Stock |
Jan99 | 0 0 | 0 0 0 0.62 0 038 |
Jn00 | 0 0 0 0 033 0 0.6ﬁ
[ Tan 01 0 0 0 0 0.60 0 040 |
= —
Jan 02 0 0 0 0 0.83 | 0.08 0 0.09
Jan03 | 0.77 0 0.23 0 0 0 0 o]

512.2.2.2.2 tree.

Furthermore, for decisions to be made on January
2002-2003, portfolio wealth is significantly closer to the
barrier for the EMS model than for the EMS MC model.
The model takes this increased risk for the fund into
account, resulting in an investment in safer short-term
securities. While the EMS MC model invests mainly in
securities with a maturity in the range of four to five years,
the EMS model stays in the one- to three-year range, and
hence for both models the portfolio’s wealth manages to
stay above the barrier.

For reference, Exhibit 11 describes the performance
of the Eurostoxx 50 to give some indication of how
the stock market performed over the backtesting period.

CONCLUSION

We have demonstrated the construction of invest-
ment products that give a nominal or real minimum gua-
ranteed return. Our main focus has been on designing the
liability side of the product.

Overall, the expected maximum shortfall with
monthly checking objective outperforms the other

MANAGING GUARANTEES

objectives, in terms of both portfolio performance over
the life of the product and terminal portfolio wealth.
Higher initial branching factors tend to improve the per-
formance, although the expected maximum shortfall with
monthly checking already performs well even with low
wnitial branching factors (the objective functions with
yearly checking perform quite poorly with low initial
branching factors). Transaction costs unsurprisingly reduce
the portfolio’s terminal wealth, but the model continues
to perform well, choosing more conservative portfolio
asset allocations, and therefore remaining above the bar-
rier at all times.

These backtests show that the stochastic optimiza-
tion framework we describe carefully considers the risks
created by the guarantee. The expected maximum short-
fall with monthly checking model in particular produces
well-diversified portfolios that do not change drastically
from one year to the next and results in a dynamic
portfolio allocation that even in a period of economic
downturn and uncertainty caused by increasing inflation
rates remains above the barrier. The dynamic risk
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ExuiBir 10

Portfolio Allocation for Inflation-Linked Guarantee
Using Expected Maximum Shortfall with Monthly Checking Objective

|

ly 2y 3y 4y T 3y L 10y 30y | Stock
Jan 99 0 0 { 0 0 | 036 [ 0.38 0 0.26
Jan 00 0 | o 0 0 0.58 0 ] 0 0.42
Jan 01 0 | 0 0 T 0 0.40 0.29 0 031
Jan 02 0 0 0 0.07 0.85 0 0 0.08
Jan 03 | 0.15 0 L 0 0.07 0.77 0 0 0.01
512.2.2.2.2 tree.
ExHIBIT 11
Backtest 1999-2004: Inflation-Linked Guarantee
Using EMS—Comparison to Eurostoxx 50
150
140
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1-Jan-09 1-Jan-00  31-Dec-00  31-Dec01  31-Dec-02  31-Dec-03
bamier  ....... EMS a  ExpEMS
——EMS MC m Exp EMS MC eurostoxx 50

control we propose using monthly time steps may be
generalized to any time step appropriate to the style and
asset choices of the fund.
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