
Sequential Importance Sampling Algorithms for

Dynamic Stochastic Programming

M.A.H. Dempster

Centre for Financial Research

Judge Institute of Management Studies

University of Cambridge, Cambridge, England

and

Cambridge Systems Associates Limited

E-mail: mahd2@cam.ac.uk

WWW: www-cfr.jims.cam.ac.uk

This paper gives a comprehensive treatment of EVPI-based sequential importance

sampling algorithms for dynamic (multistage) stochastic programming problems.

Both theory and computational algorithms are discussed. Under general assump-

tions it is shown that both expected value of perfect information (EVPI) processes

and the marginal EVPI process (the supremum norm of the conditional expecta-

tion of its generalized derivative) are nonanticipative nonnegative supermartingales.

These processes are used as importance criteria in the class of sampling algorithms

treated in the paper. When their values are negligible at a node of the current

sample problem scenario tree, scenarios descending from the node are replaced by a

single scenario at the next iteration. High values on the other hand lead to increas-

ing the number of scenarios descending from the node. Both the small sample and

asymptotic properties of the sample problem estimates arising from the algorithms

are established and the former are evaluated numerically in the context of a �nancial

planning problem. Finally, current and future research is described.

1. Introduction

This paper contains a comprehensive treatment of sequential importance

sampling schemes for dynamic stochastic programmes based on expected value of

perfect information (EVPI) processes as importance criteria. The term dynamic

stochastic programme is used to refer to a multi-stage recourse formulation of

the problem to be solved in which the data { and corresponding model coe�cient
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{ vector stochastic process is known to be evolving in real time, but is sampled

discretely at the �rst instant of each period and a fortiori of each stage. This is

the true situation in most practical applications of multistage stochastic program-

ming, e.g. in �nance, about which more will be said in x8. Since the pioneering

work of Rockafellar, Wets and King [41,26,29] and Dantzig and Glynn [11], inter-

est in { and the sophistication of { sampling schemes for stochastic optimization

problems has grown rapidly. This development has been intertwined with a par-

allel and also rapidly growing literature on the sampling properties of dynamic

simulation (see e.g. Rachev [38], Rubinstein and Shapiro [43] and P
ug [36]). In

stochastic programming, however, sampling schemes have mainly been applied

to 2-stage recourse problems [23{25] for which the concept of sampling \sce-

narios" is somewhat of a misnomer. From a statistician's viewpoint this paper

concerns more-or-less classical sequential (importance) sampling; not of a ran-

dom variable, vector, or even process, but rather of a full dynamic stochastic

optimization problem in discrete time. The contribution of the paper in this

context is an attempt to address the vexed question in applications, \How many

scenarios are enough to make the sample problem su�ciently representative of

the real-world situation?" This is a classical question of adequate sample size and

is addressed here by sequential importance sampling of the vector data process

underlying a speci�c problem. The sophisticated importance criteria proposed in

the sequel utilize dynamic EVPI process information calculated from the optimal

solutions of successive scenario-based sample problems. These sample problems

are approximations to the full problem and they are generated by sampling the

continuous time, continuous state vector data process { in applications usually

via a corporate dynamic Monte Carlo simulator operated in conditional mode.

Thus it is not surprising that all the basic considerations of classical statistical

estimation theory apply to this extended situation in which dynamic stochastic

optimization problems are being sampled.

The next two sections (xx2 and 3) of the paper set out respectively theory

and computational techniques for both full and marginal EVPI processes { the

latter being essentially directional derivatives of the former. Both are seen to be

supermartingales { an essential property for their use in sequential importance

sampling schemes for dynamic stochastic programming. The (full) EVPI process

can be reasonably e�ciently calculated by post-processing the optimal solution

of the deterministic equivalent of the current sample problem in standard form

after its computation by nested Benders decomposition, while marginal EVPI
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process values may be immediately extracted as dual variables from an appropri-

ate split variable representation of the sample problem solved by a primal-dual

interior point algorithm. Section 4 of the paper describes a class of sequential

sampling algorithms utilizing these importance criteria. The basic idea of these

procedures is that when the expected value of information { full or marginal {

at a node of the scenario tree of the current sample problem is high, the number

of scenarios descending from this node should be increased in the next sample

problem. On the other hand, when EVPI is negligible the descendant scenarios

should be decreased to one { a single scenario { which is resampled to increase

robustness. The EVPI process value at a node measures the full { or marginal

{ impact of knowledge of future scenarios on the optimal value of the stochas-

tic optimization problem remaining at the node through the decisions of this

problem. Consequently, when the EVPI process value at a node is negligible it

essentially means that the remaining decisions cannot e�ectively utilize scenario

information to in
uence forward objective function values, so that a deterministic

problem (single scenario) forward from the node will su�ce. It follows that full

or marginal EVPI processes are the natural importance sampling criteria in this

context and we shall see in x8 that the variance reduction achieved through their

use can exceed an order of magnitude.

As noted above, following classical statistics we may consider a sample prob-

lem to be a realization of a problem estimator. The three sections of the paper

following x4 treat the usual properties expected from a statistical estimator {

albeit involving much more di�cult mathematics than in classical cases. In x5

it is shown that under reasonable assumptions, and in a technical sense to be

made precise, these problem estimators are consistent, i.e. as the number of data

process sample scenarios tends to in�nity in a suitable way, the solution to the

original stochastic optimization problem is recaptured. Section 6 shows that in

very large samples the distribution of the optimal value of the problem estimator

is approximately Gaussian. However, this central limit theory result is of very

limited practical value in the context of a stochastic optimization problem, where

the bias in the optimal value estimator is one-sided due to optimization and the

small sample distribution of problem optimal values is highly skewed. Evaluat-

ing this bias is the topic of x7. All the concepts introduced in the paper are

illustrated computationally in terms of a strategic �nancial investment planning

problem in x8. Section 9 contains conclusions and directions for further research.

In the remainder of this section the dynamic stochastic programming problem is
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formally introduced.

Consider now a vector stochastic data process ! := f!t : t = 1; : : : ; Tg

whose realizations are data paths (vector sequences) in a (canonical) probabil-

ity space (
;F ; �). We shall consider a vector decision process x := fxt : t =

1; : : : ; Tg to be a measurable function x : ! 7! x(!) mapping a data trajectory

to a (vector) decision trajectory. Thus x is a contingency plan in the sense that

whatever data path ! is realized x(!) gives the corresponding sequence of deci-

sions. The temporal evolution of data and decisions up to the (in�nite) horizon

T in all the problems treated in this paper is !1;x1;!2;x2;!3;x3; : : : ;!T ;xT

(where !1 and x1 may be deterministic). (Here we consider measurable func-

tions as both random vectors, functions or processes and elements of appropriate

(Lebesgue) function spaces, distinguishing random entities from their analytic

counterparts notationally by the use of bold symbols.)

We shall be concerned for theoretical purposes with the following very gen-

eral stochastic optimization problem

(SP) �0 := sup IEf(!;x)

s:t: x 2 P (!) a:s:

g(!;x) 2 Q a:s::

Here f is a real valued measurable objective functional of the data and

decision trajectories, P is a measurable multifunction (point-to-set map), g is a

measurable vector trajectory valued constraint function of the data and decision

trajectories, IE denotes (��) expectation and the constraints are required to hold

almost surely (a:s:), i.e. with (��) probability one. An analytic formulation of

(SP) will be given in x2. Note �rst that (following the notational convention for

random entities stated above) we may write (SP) as

sup IE f(x) s:t: x 2 P a:s: g(x) 2 Q a:s:;

where now the multifunction P is interpreted as a random set P. Although

several alternative constraint formulations of equivalent generality are available,

that of (SP) �ts most naturally with the models in the sequel.
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2. EVPI Processes: Theory

We �rst give a precise analytic formulation of (SP) and then turn to the

de�nitions and properties of the full and marginal EVPI processes.

To this end, let us take the space of decision processes of (SP) to be the

Banach space Lnp := XT
t=1Lp(
;F ; �; IR

n) equipped with the topology de�ned by

the norm jjxjj := (
PT

t=1 jjxtjj
p
p)
1=p for some p, 1 � p � 1. Since T is �nite the

given topology is equivalent to the product topology and we may consider Lnp to

be Lp(
;F ; �; IR
nT ).

Let IF := fFgTt=1 be the �ltration de�ned by the data process !, where

Ft := �(!t) is the ��completed ���eld de�ned by the history !t of the process,

t = 1; : : : ; T , and (without loss of generality) we assume that the sequence F1 �

F2 � � � � � Ft � � � � � FT := F de�nes the �ltration IF := fFtg. We specify x1

(by means of !1) to be deterministic by setting F1 := f;;
g. We say that the

decision process x is nonanticipative (alternatively, that x is adapted to the data

process ! or �ltration IF ) if, and only if, the current decision xt depends only

on the data history !t to date, viz. xt := xt(!
t) a:s:, where xt is measurable.

Equivalently, xt := xt(!) is Ft� measurable or

xt = IEfxtjFtg a:s: t = 1; : : : ; T; (1)

where IEf�jFtg denotes conditional expectation with respect to the ���eld Ft 2

IF , i.e. generated by the data available at time t. More analytically, in terms of a

current decision z 2 Lp(
;F ; �; IR
n) (1 � p � 1), �t : z 7! �tz := IEfzjFtg; t =

1; : : : ; T , de�nes a closed projection. Hence (1) becomes a sequence of linear

operator constraints

(I ��t)xt = 0 t = 1; : : : ; T; (2)

involving complementary projections on Lnp . We shall denote by N the closed

linear subspace of nonanticipative decision processes in Lnp and in the sequel re-

quire that all feasible decision processes for instances of (SP) lie in this subspace.

Before considering in detail the implications of this requirement, it will be

useful to state the analytic version of (SP) as the abstract optimization problem



6

sup
x2N

Z


f(!; x(!))�(d!)

s:t: x(!) 2 P (!) g(!; x(!)) 2 Q a:s:[�]; (3)

where, for each x 2 N � Lnp ; f(�; x(�)) : 
 ! IR is integrable and g(�; x(�))

measurable, P : 
!!X
T
t=1IR

n is a measurable multifunction and Q � XT
t=1IR

n. If

all the problem functions in (3) are concave, the multifunction P is convex set

valued and Q is a convex set, we say that (SP) is convex. If the supremum in (3)

is achieved by some not necessarily unique feasible decision process x0 we term

(SP) solvable.

Conformal with (1) the constraints of (SP) may be written in a form which

exhibits their temporal structure as

xt(!) 2 Pt(!
t) gt(!

t; xt(!)) 2 Qt a:s: t = 1; : : : ; T: (4)

Assuming the objective f to be separable, i.e.

f(!; x(!)) :=
TX
t=1

ft(!
t; xt(!));

we may write (SP) in the more compact dynamic programming representation in

terms of a set of path dependent problems

�t(!
t) := �t(!

t; xt�1(!))

:= sup
xt(!)

h
ft(!

t; xt�1(!); xt(!)) + IEf�t+1(!
t+1; xt(!))jFtg

i

s:t: xt(!) 2 Pt(!
t) a:s: (5)

gt(!
t; xt(!)) 2 Qt a:s:

xt(!) = IEfxt(!)jFtg a:s:

t = 1; : : : ; T;

where �t+1 expresses the optimal expected value for the remaining optimization

problem of the same form for the stages from t+1 to T . Clearly �1(!
1) = �1(!1) =

�0 and at the horizon �T+1(!
T ;xT ) = �T+1(!;x) :� 0. In (5) the dependence

of the decision vectors xt on the �ltrations Ft is expressed implicitly through the
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third set of constraints. Thus at the tth stage nonanticipative decisions xt(!
t) are

chosen from the feasible set Xt(!
t) := Xt(!

t;xt�1) de�ned by the constraints of

(5).

Notice that without loss of generality any instance of (SP) may be considered

to have a separable objective with ft :� 0 for all t = 1; : : : ; T � 1 and

fT (!
T ; xT (!)) := f(!; x(!)):

Following control theory, such a version of the problem is said to be in Mayer

form.

EVPI Process

An expected value of perfect information (EVPI) process is de�ned by

�t(!
t) := �t(!

t)� �t(!
t) t = 1; : : : ; T; (6)

where �t(!
t) denotes the value function of the distribution problem associated

with the relaxation of the nonanticipativity conditions (1) of (SP) to the case of

perfect foresight to the horizon T relative to a speci�c decision process x optimal

for (SP). Thus

�t(!
t) := �t(!

t;xt�1) := IEf sup
zt2Zt

h
ft(!

t;xt�1; zt) + �t+1(!
t+1;xt�1; zt)

i
jFtg;

(7)

where Zt represents the feasible set of the �rst two constraints of (5) given x, i.e.

Zt(!) := Zt(!;x
t�1) = fzt(!) : zt(!) 2 Pt(!

t); gt(!
t; zt�1(!); zt(!)) 2 Q a:s:g:

(8)

If the decision process x optimal for (SP) is unique, � is uniquely de�ned.

Otherwise, the EVPI process � may depend upon the speci�c optimal decision

process x with respect to which it is de�ned, since in period t the decision op-

portunities a�orded by perfect foresight may in general depend upon the history

xt of the decision process to date as well as upon that !t of the data process !.
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Notice that by construction an EVPI process � is nonanticipative. Based on

the behaviour of such a process we can both assess the level of stochasticity of the

problem (SP) and de�ne a sampling procedure for the selection of a sample set of

relevant representative data paths in a sequential procedure. From the de�nition

of � we have by construction that at the horizon �T :� 0.

Theorem 1. For solvable (SP) and a speci�c optimal decision process x the

corresponding unique EVPI process � is a nonanticipative nonnegative super-

martingale , i.e.

�t � IEf�sjFtg � 0 1 � t � s; s; t 2 T := f1; : : : ; Tg: (9)

Proof. Let x be an optimal decision process for (5) and let z(x) be a corre-

sponding perfect foresight process optimal almost surely along data paths for (7)

de�ning uniquely the EVPI process �(x) through (6).

The proof is by induction on the �nite horizon T .

Consider �rst the case T :=2, where we may simplify the problem notation-

ally to

sup
x2X

[f(x) + IE�(!; x)] :

De�ne

x 2 argmax
x2X

[f(x) + IE�(!; x)]

and for each ! 2 


z(!) 2 argmax
x2X

[f(x) + �(!; x)] :

Thus for all ! 2 


f(z(!)) + �(!; z(!)) � f(x) + �(!; x)

and taking expectations
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' := IEf(z(!)) + IE�(!; z(!)) � f(x) + IE�(!; x) := �;

i.e. � := '� � � 0. Hence � := �1 � IEf�2jF1g := IE�2 := 0.

Now consider an arbitrary �nite horizon T and assume the result holds for

horizon T � 1.

Since we may reformulate the solvable problem (SP), assumed separable

without loss of generality, as

max IE�T

s:t:
TX
t=1

ft(!
t; xt(!)) = �T (10)

and the constraints of (5), we may without loss of generality assume that ft � 0

for all t = 1; : : : ; T � 1, if this is not already the case.

Then, since again the �rst stage deterministic decision constraint x1 = x1

a.s. in (5) has been removed to give (7), and making use of the induction hy-

pothesis,

�1 := '1 � �1

= IEf'2(!2; z1; z2)� �2(!2; x1;x2)g (f1 :� 0)

� IEf'2(!2; x1; z2)� �2(!2; x1;x2)g (as for T := 2)

:= IE�2 := IEf�2jF1g (by de�nition)

� IEfIEf�tjF2gjF1g = IEf�tjF1g � 0 (by induction)

for all t = 3; : : : ; T as required.

Thus we have established the supermartingale property (9) by backwards

induction and, for example, a similar argument applies conditional on each real-

ization !2 = !2.

Marginal EVPI Process

We next introduce the multiplier process �0 := (�01;�
0
2; : : : ;�

0
T ) on the

nonanticipativity constraints of (SP) and show that it is also a supermartin-
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gale. (Here prime denotes vector transpose.) First recall from above that for

1 � p � 1; 1 � t <1

N := fx 2 Lnp : (I ��t)xt = 0; t = 1; : : : ; Tg (11)

is a closed linear subspace. Moreover, we shall see that the process �0 in Lnp (1 �

q := p=(p� 1) � 1) can always be chosen to be nonanticipative, i.e.

�0t = f�0tjFtg a:s: t = 1; 2; : : : ; T: (12)

Since �0t represents the Lagrange multiplier (row) vector on the nonanticipative

constraint (I ��t)xt = 0; t = 1; : : : ; T { i.e. the marginal value at the optimum

of a perturbation of this constraint with respect to information not available at

time t (more precisely, with respect to some �-measurable function z in Lnp ) {

and is nonanticipative (i.e. known at time t), we may interpret it as the marginal

expected value of perfect information (EVPI) at time t. We shall refer to �0 as

the marginal EVPI process.

More formally, we consider the perturbed abstract problem

(SPz) �(z) := sup IEf(x)

s:t: x 2 P g(x) 2 Q x 2 N + z a:s:;

where the anticipative perturbation z in LnTp is such that for t = 1; : : : ; T , zt is

F-measurable, i.e. dependent on values !s of the data process at some future

time(s) s > t 2 T .

The condition of the following proposition holds for all special cases of (SP)

under suitable regularity conditions (see Dempster [17], p.30).

Theorem 2. (Dempster [16,17]) Let x be an optimal decision process for (SP)

over Lnp (1 � p � 1; 1 � t � 1) and suppose that (SPz) is solvable and proper

(i.e. has a �nite value) for all anticipative perturbations z in a neighbourhood of

0 in Lnp . Then under the above regularity conditions the marginal EVPI process

�0 := (�01;�
0
2; : : : ;�

0
t) in Lnq (1 � q � 1) corresponding to x is a nonanticipative

nonnegative supermartingale, i.e.

�0t � f�0sjFtg � 00 a:s: 1 � t � s; s; t 2 T :
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Proof. See Dempster [17], pp. 30-31, where it is shown that �0 is the adaptation

of r�(0), the (unique) Fr�echet derivative of � evaluated at z = 0, to the �ltration

IF .

We may interpret the supermartingale property of the EVPI processes � and

�0 as representing the fact that anticipative decision processes for (SP) have the

obvious property that anticipative information is potentially the more valuable

in terms of the objective the sooner it is known.

It can be shown (Dempster [17]) that �0 and the dual process p0 (Rockafellar

andWets [40]) { which is the multiplier process on the explicit subspace constraint

x 2 N { lie in the complementary subspaces R(�0t) and R(�t)
0 = R(I 0 � �0t)

respectively of Lq(T � 
;P(T )�F ;#� �; IRn). The process p0 is a martingale

di�erence involving a martingale m0 with values in IRn, not necessarily centered

at the origin, and hence IEp0 = 00.

The properties of the marginal EVPI process �0 stated in Theorem 2 can

be expected to hold for optimal control of continuous time processes such as

di�usions. In this situation, partial results have been obtained by Back and

Pliska [1] regarding the dual process p0 (which they term the shadow price of

information process A) and further results have been given by Davis, Dempster

and Elliott [14]. In the continuous time case one can capture the full EVPI

process by suitable time integrals of the marginal EVPI process, as conjectured

by Dempster [16].

Before turning to a discussion of numerical methods, it should be pointed out

that techniques for calculating (or bounding) the norm jj�0jj of the marginal EVPI

process �0 can be expected to prove of great value in computation. Indeed, small

values of jj�0jj would justify ignoring random variables rather than computing { at

great e�ort { full stochastic solutions to (remaining) dynamic stochastic problems

with a low EVPI. In such cases the corresponding deterministic expected value

problem (in which random variables are replaced by their expectations) would

provide { at greatly reduced complexity { a su�ciently accurate approximation

to the optimal expected value and decisions. These are ideas fundamental to the

sampling schemes of x4.
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3. EVPI Processes: Computation

To make numerical solution of (SP) tractable it is commonly assumed that

the number of possible data process paths ! { termed scenarios { is �nite and

that they can be conceptually arranged in a tree structure { called an event

or scenario tree { whose nodes correspond to the optimal decision problems in

speci�c time periods (cf. Rai�a [39]). For the purposes of this paper such

scenario based instances of (SP) will constitute sample problems which must be

solved numerically in a suitable form and the corresponding EVPI process values

computed from their solutions.

Although with the new generation of fully convex interior point computer

codes such as LOQO it will soon be possible to solve numerically large scale

fully convex scenario based instances of (SP), in the remainder of this paper we

specialize to the linearly constrained convex scenario based problem given by

max
x1

f1(x
1) + IE

!
2

�
max
x2

f2(!
2;x2) + IE

!
3j!2

�
max
x3

f3(!
3;x3) +

: : :+ IE
!
T j!T�1fmax

xT

fT (!
T ;xT )g : : :

��

s:t: A11x1 = b1

A21(!
2)x1 +A22(!

2)x2 = b2(!
2) a:s:

A31(!
3)x1 +A32(!

3)x2 +A33(!
3)x3 = b3(!

3) a:s:
...

...
. . .

...

AT1(!
T )x1 +AT2(!

T )x2 + � � � +ATT (!
T )xT = bT (!

T ) a:s:

l1 � x1 � u1 (13)

lt(!
t) � xt � ut(!

t); t = 2; : : : ; T:

Here the notation, e.g. IE!3j!2(�) := IEf�j!2g, is used for simplicity, Pt := [lt;ut]

and Q := f0g.

Problem (13) is often referred to as the convex multistage recourse model

with linear constraints.

For scenario based versions of (SP) we may replace consideration of the �-

�elds Ft of the �ltration IF generated by the data process ! by partitions of the

�nite path space
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 = f!(1); : : : ; !(k); : : : ; !(K)g

of scenarios. (See Billingsley [4] for a discussion of generating �-�elds from vector

interval partitions in the continuous state case.) While F1 := f
; ;g, or the

corresponding partition

A1 = ff!(1); : : : ; !(k); : : : ; !(K)gg ;

represents no information beyond the identity of the path space, the �eld FT , or

the corresponding partition

AT = ff!(1)g; : : : ; f!(k)g; : : : ; f!(K)gg ;

represents full information.

A partition At of the sample path space 
 is �ner than the partition At�1

(At�1 is coarser than At) i� for all A 2 At there is an A0 2 At�1 such that

A � A0. A �ner (coarser) partition represents more (less) information available

to the decision maker.

An information structure is a sequence of partitions fAtg such that At is

�ner than At�1 for t = 2; : : : ; T .

At time t, it is possible to distinguish sets A 2 At each of which has as

elements those scenarios continuing the same data path history !t. However,

it is not possible at time t to distinguish amongst the scenarios in a given A.

By considering a graph with all sets in At, t = 2; : : : ; T , as nodes and each

set in At�1 joined to its corresponding subsets in At with arcs, the information

structure can be represented as a tree structure � . In terms of scenarios, each

node of � represents a nodal optimization subproblem and each branch a random

event !t, conditioned on the realized past !t�1.

Thus there is a bijective relation between each data path history !t and

each set in At. Let At(!
t) denote the set of scenarios with the same data history

path !t, viz.

At(!
t) :=

n
! 2 
 j ! � !t

o
: (14)

Here ! � !t denotes the fact that ! continues !t.
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 IN
F_S

TRUCT 

 T
 =

 4 
 K

 =
 9 

 N
 =

 16
 

Sce = 9

Sce = 8

Sce = 7

Sce = 6

Sce = 5

Sce = 4

Sce = 3

Sce = 2

Sce = 1

4321t =

A2(!
2) = ff!(1); : : : ; !(4)g;

f!(5); : : : ; !(9)gg

A1 = f
g

Figure 1. Graphical representation of an information structure in terms of scenarios

Figure 1 illustrates the tree structure of a 4 period, 9 scenario, 16 node

problem, with associated partition at time t = 3 given by

A3 := ff!(1); !(2)g; f!(3); !(4)g; f!(5); !(6); !(7); !(8)g; f!(9)gg :

Before setting the decisions x3, the decision maker is at the most uncertain

amongst four scenarios (depending on the data path history !3). If the realisation

of the data process is !(9), this will be already known by the decision maker by

t = 3.

Thus the tree � may also be considered to be a structured collection of non-

disjoint history paths !t termed a scenario tree. The hierarchical structure of

nodes (paths) uses the same descriptors as for family trees (ancestor, successor,

parent, child, sibling, cousin) and in xx4 through 7 it will be useful to use the

notation ! 2 � for scenarios ! := !T in � (considered as a sequence of nodes).

Let At(!
t) 2 At as in (14). The branching degree at node !t is equal to the

number of sets of the partition At+1 that are subsets of At(!
t). In Figure 1, let

A2(!
2) be f!(1); !(2); !(3); !(4)g, and A3 as above. Notice that f!(1); !(2)g

and f!(3); !(4)g are the two subsets of A2(!
2) corresponding to the branching

degree at node !2.
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A sub-tree �1 of � is a tree in which all its paths are also paths of � . In a

scenario-sub-tree, all scenarios of �1 are also scenarios of � .

A uniform tree of depth T is a tree where all nodes at periods t = 1; : : : ; T�1

have the same branching degree. A balanced tree is a tree where all nodes at the

same period have the same branching degree.

At the root node in Figure 1 the decision maker faces an instance of (SP)

and if the path realised in the following stages is denoted by !3 and previous

decisions were x2, at the third period the remaining problem to solve will be

given by

�3(!
3; x2) = min

x32X3(!3)

n
f3(!

3; x3) + IE f�4(!
4; x3) j !3 = !3g

o
: (15)

To aid in processing the generation from a simulator of vector data paths

consistent with the form of a speci�c scenario tree, the bijection between data

path histories !t { i.e. nodes of the tree { and sets of the information partition

may be de�ned numerically in terms of a scenario partition matrix L (Lane and

Hutchinson [30]). This j
j � T matrix has general scenario number entry

l(!; t) = l(!0; t) 8!0 2 At 2 At (16)

for ! = 1; : : : ; j
j := K; t = 1; : : : ; T . More useful for the conditional generation

of scenarios from a simulator however is the j
j � T nodal partition matrix M

whose general entry m(!; t) is the node number assigned to !t in the tree.

Figure 2 provides an example of the matrix speci�cations associated with

an arbitrary tree structure.

Either matrix identi�es uniquely the tree structure for the associated

stochastic program. The nodal partition matrix may be used by a data gen-

erator in order to derive the states of the data process in conditional mode, and

by the model generator STOCHGEN [8,9] for the de�nition of the corresponding

SMPS input �les [5] necessary for the numerical solution of the problem. See

Chen et al. [7] for more details.

A scenario tree can also be seen as a measure of the size of the corresponding

scenario based stochastic programming problem, and therefore of the complexity

and di�culty of solving the problem. To see this note that a problem equivalent

to (13) can be constructed by introducing for each possible realisation !t 2 
t,

t = 1; : : : ; T , vectors of decision variables xt(!
t), i.e. a unique set of decision
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Figure 2. Example of a scenario tree with corresponding scenario and nodal partition matrices

vectors for each node of the tree (Dantzig and Madansky [13]). This leads to the

standard form of the deterministic equivalent of the linearly constrained stochastic

convex problem (13) as

max

"
f(x1) +

X
!22
2

p(!2)f2(!
2; x2(!

2))+
X

!32
3

p(!3)f3(!
3; x3(!

3))+

� � �+
X

!T2
T

p(!T )fT (!
T ; xT (!

T ))

#

s:t:

A11x1 = b1

A21(!
2)x1 +A22(!

2)x2(!
2) = b2(!

2) 8 !2 2 
2

A31(!
3)x1 +A32(!

3)x2(!
2) +A33(!

3)x3(!
3) = b3(!

3) 8 !3 2 
3

...
...

. . .
...

AT1(!
T )x1 +AT2(!

T )x2(!
2) + � � � + ATT (!

T )xT (!
T ) = bT (!

T ) 8 !T 2 
T

l1 � x1 � u1 (17)

lt(!
t) � xt(!

t) � ut(!
t); 8 !t 2 
t; t = 2; : : : ; T:

This deterministic equivalent formulation allows the use of standard optimization

algorithms and software to solve problem (13).
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Furthermore, in most applications problem (17) involves a very sparse lower

triangular matrix. Figure 3 shows the bitmap of the constraint matrix of the

deterministic equivalent of an instance of the FRC 20 portfolio problem treated

in x8 of 20 periods and 32 scenarios. The bitmap shows the non-zero entries of

the matrix.

Figure 3. Bitmap of the FRC 20 deterministic equivalent constraint matrix based on 32 scenarios

EVPI Process

To calculate the EVPI process variables at the nodes of the tree for a given

problem (refer Figure 2), it is necessary to solve, for each node !t; t = 1; : : : ; T ,

the perfect foresight (deterministic) dynamic optimization problems correspond-

ing to each descendant scenario ! � !t to obtain the optimal value �t(!) and

then to compute

�t(!
t) :=

X
!�!t

p(!)�t(!); (18)

the discrete version of (7). When (in the linear objective case) the optimal value

�0 of the problem has been computed by a nested Benders decomposition code

such as MSLiP-OSL (Thompson [48]), this is easily accomplished by backwards

recursion on partial scenarios with warm starting from the optimal bases of the
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nodal subproblems. Subtracting from these values �t(!
t) the corresponding opti-

mal values �t(!
t) of the remaining problems { computed in solving (17) { yields

the EVPI process values �(!t) at the nodes !t of the tree. (This calculation is

performed by all variants of the MSLiP code family, see Gassmann [21].)

Marginal EVPI Process

To calculate the values of the marginal EVPI process �(!t) on the other

hand, we consider the deterministic equivalent of (13) in conditional expectation

split variable form. This problem is formed by adding to the so-called split

variable problem (Dempster [16]),

max
X
!2


p(!)
h
f(x1(!)) + f2(!

2; x2(!)) + f3(!
3; x3(!)) + � � �+ fT (!

T ; xT (!))
i

s:t:

A11x1(!) = b1

A21(!
2)x1(!) +A22(!

2)x2(!) = b2(!
2) 8 !2 2 
2

A31(!
3)x1(!) +A32(!

3)x2(!) +A33(!
3)x3(!) = b3(!

3) 8 !3 2 
3

...
...

. . .
...

AT1(!
T )x1(!) +AT2(!

T )x2(!) + � � � + ATT (!
T )xT (!) = bT (!

T ) 8 !T 2 
T

l1 � x1(!)� u1 (19)

lt(!
t) � xt(!) � ut(!

t); 8 !t 2 
t; t = 2; : : : ; T; 8 ! 2 
 := 
T ;

the nonanticipativity constraints in conditional expectation form given by

xt(!) =xt(!
t) ! � !t 2 
t; t = 1; : : : ; T: (20)

Note that (20) implies

xt(!
t) =

X
!�!t

p(!)xt(!)=
X
!�!t

p(!) (21)

!t 2 
t; t = 1; : : : ; T:

Here p(!) denotes the path probability of scenario !.
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The number of variables in the problem and the number of constraints in

(20) can be reduced by noting that nodal probabilities are given by

p(!t) =
X
!�!t

p(!) =
X

!2A(!t)

p(!) !t 2 
t; t = 1; : : : ; T;

so that (21) can be written in terms of conditional probabilities of the branches

(nodes) !t+1 descending from !t (in an obvious notation) as

xt(!
t) =

X
!t+1�!t

p(!t+1)xt(!
t+1)=

X
!t+1�!t

p(!t+1) (22)

:=
X

!t+1�!t

p(!t+1j!t)xt(!
t+1)

and (20) is replaced by

xt(!
t+1) = xt(!

t) !t+1 � !t 2 
t; t = 1; : : : ; T: (23)

The constraints (23), after substituting from (22), are exactly the discrete

analogue of a realization of the continuous nonanticipativity constraint in condi-

tional expectation form (1) { hence the terminology.

At an optimum of the problem (19), (20), the nonnegative Lagrange mul-

tiplier row vectors �0t(!) 2 IR0n are anticipative marginal EVPI values whose

nonanticipative counterpart values �0t(!
t) are given by

P
!�!t p(!j!

t)�0t(!). Sim-

ilarly, relative to (22) and (23),

�0t(!
t) =

X
!t+1�!t

p(!t+1j!t)�0t(!
t+1) !t 2 
t; t = 1; : : : ; T: (24)

Note that in either case the appropriate multipliers are nonnegative since,

as in the proof of Theorem 1, relaxing (20) or (23) can only increase the problem

value.

By standard Lagrangean duality theory, the nonnegative row vector �0t(!
t) is

an element of the (convex) subgradient of �(!t). Choosing a norm, e.g. jj�0jj1 :=

maxj �j , for �
0
t(!

t) gives a single marginal EVPI number { comparable to the full

EVPI value �(!t) { at node !t. In light of Theorem 2, the resulting values clearly

de�ne a discrete supermartingale jj�0jj1.
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Although the split variable representation (19) and (20) { or its reduction

corresponding to (23) { is considerably larger than the standard deterministic

equivalent representation (17) of the scenario based (SP) problem (13), a good

preprocessor will essentially reduce the larger problem to the smaller by elimi-

nating variables using the nonanticipativity constraints. If a primal-dual interior

point algorithm is used to solve the preprocessed problem, upon solution and

postprocessing the anticipative marginal EVPI values may be immediately ex-

tracted from the solution and the nonanticipative values �0t(!
t) and the scalar

jj�0t(!
t)jj1, !

t 2 
t, t = 1; : : : ; T , calculated.

As a consequence of the supermartingale property of � and jj�0jj1 we have

the following important result whose proof is immediate.

Theorem 3. For the scenario based (SP) problem, �t(!
t) = 0 implies �t+s(!) =

0 for all ! � !t and s = 1; : : : ; T�t. A similar result holds when jj�0(!t)jj1 = 0.

As a consequence, all optimal decisions xt+s(!) for such scenarios can be

taken to agree and a single scenario ! � !t and a deterministic (perfect foresight)

decision process x(!) � x(!t) serve to represent the remaining decision problem

at !t; !t 2 
t; t = 1; : : : ; T .

4. Sequential Importance Sampling With EVPI Criteria

In this section a parametric class of sequential importance sampling estima-

tion procedures for the dynamic stochastic programming problem (SP) will be

brie
y described. As discussed in the previous sections, at each sampling iter-

ation � = 1; 2; : : : a sample data path process !̂� is generated by a conditional

simulator in the form of a scenario tree with branching structure speci�ed by

the current nodal partition matrix M� . In turn !̂� speci�es { through coe�-

cient generation and a modelling language { the sample problem SP (!̂�) in an

appropriate format for optimization (in the linear case as SMPS or MPS solver

input �les). Accordingly, either a full EVPI sample process �̂� or its marginal

equivalent jj�̂0� jj is extracted from the solution of SP (!̂�). We now specify rules

by which the current sample scenario tree !̂� may be updated to the new tree

!̂�+1 (initially through updating M� to M�+1). It was mentioned in the intro-

duction that at nodes where the appropriate importance sampling criterion value

is high we wish to expand the number of descendent scenarios, while { in light
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of Theorem 3 { at those at which it is negligible we wish to collapse the current

scenarios to a single scenario which should be resampled for robustness.

Before specifying the detailed importance sampling algorithm iteration rules,

we note that the following overall considerations will be critical to the variance

reduction performance of the resulting algorithm.

1. \Negligible" must be speci�ed for the importance sampling criterion

used.

The \zero" of Theorem 3 must be de�ned as a suitable � for computational

purposes. For � we de�ne

� := ��̂1� ; (25)

i.e. the product of the root node EVPI of the current sample problem and a

parameter � := 0:1; 0:05; 0:01; 0:005; : : : which may be tuned to speci�c prob-

lems. A value of ��(!
t
�) < � is deemed negligible, i.e. \ zero", for the purposes

of applying Theorem 3. A similar procedure is used for jj�0jj. Note that for some

purposes it is useful to specify equivalently the � tolerance for � in terms of the

relative EVPI or stochasticity of the current sample problem { i.e. the ratio of its

root node EVPI to its optimal value { given by � := � [�̂1�=�(!̂�)] and to divide

all nodal EVPI values by the problem value �(!̂�) before comparison.

2. The initial sample scenario tree !̂1 branching structure must be

speci�ed by the nodal partition matrix M1 as input.

In general, a reasonable number of scenarios should descend from the root

node in the initial balanced tree (cf. x3) and at least binary branching should

occur for the next several periods. A useful shorthand notation for specifying

balanced trees is to give the T � 1 uniform branching numbers between succes-

sive stages. For example, in the experiments with 12 stage �nancial problems

reported in x8, we have speci�ed the initial tree of 32 scenarios in the form

8 � 2 � 2 � 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1 or simply 8 � 22 � 18.

3. The sample scenario tree enrichment by adding further descendent

scenarios or collapsing existing scenarios at a node should be consid-

ered for all current nodes at a time stage.
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Successive stages are considered at successive iterations at least until the

period before the horizon, at which point processing returns to stage 2, where

the initial sample tree nodal stage processing also begins. This has the e�ect of

creating richer branching at earlier stages of successive sample trees unless the

EVPI based importance criterion utilized dictates otherwise.

4. A termination rule for sequential sampling must be speci�ed.

For both importance sampling criteria to date we have used a stopping

criterion of the form e.g. �̂1� = �̂1�+1 to within 3 decimal places, together with a

maximum iteration count �max.

Sample tree modi�cation from iteration to iteration may be e�ected by vari-

ations on the following themes.

5. Di�erential scenario branching expansion of high importance cri-

terion value nodes.

The di�erence between the highest criterion value in the sample tree and �

is divided into equal intervals and nodes with criterion values falling in each in-

terval are branched the same number of times. For example, we might divide this

interval into 3 and branch 2, 3 and 4 times for nodal values falling in successively

higher thirds.

6. \Zero" importance criterion nodes with binary branching have their

two descendent scenarios resampled.

This ensures enhances robustness of the sample problem at early iterations.

7. Multibranched \zero" nodes have all descendent scenarios collapsed

into a single resampled scenario.

This removes portions of the current sample tree which are irrelevant from

the point-of-view of usefully exploiting sample data process information with the

remaining decisions. Thereby sample problem dimensions are reduced and only

\relevant" scenarios remain in the subsequent sample problem.

8. When the current stage expansion produces only \zero" nodes the

stage considered is stepped backwards in time to reconsider a stage

considered previously.

This procedure of stepping back in the tree { particularly for the marginal
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EVPI importance sampling criterion { keeps the procedure running and results

in sample problems with highly unbalanced trees (see Figure 5). Currently step

back is set at 2 stages.

Figure 4 shows an initial sample scenario tree of 32 scenarios with the

marginal EVPI computed for the FRC problem of x8. Notice the supermartingale

property of the computed jj�(!t)jj values. Figure 5 illustrates the highly unbal-

anced nature of the sample scenario tree after several iterations. Note that the

path probabilities of all scenarios generated by sampling from a simulator will be

equal { as for an empirical probability distribution.

5. Consistency of EVPI-based Problem Estimators

In the next three sections of this paper we study the sampling properties

of the (SP) problem estimator SP (!̂N ) produced at termination by the EVPI-

based sequential importance sampling algorithms introduced in the previous sec-

tion. Following classical statistics, what is needed is a version of central limit

theory { extending functional central limit theory { appropriate to �nite scenario

based sampling of a continuous state dynamic stochastic optimization problem.

Following early relevant work on the distribution problem (see e.g. Bereanu [2,3]

and Pr�ekopa [37]) the literature on this topic has mainly been con�ned to two

stage problems. An exception is the approach we shall take to demonstrating the

consistency { i.e. asymptotic accuracy { of SP (!̂N ) as N !1 in the sense that

both optimal decisions { and a fortiori (optimal) values { of the scenario based

�nite dimensional sample problem estimator converge almost surely to those of

the continuous in�nite dimensional \true" problem (SP) in the strictly convex

linearly constrained case. This is of course a strong law of large numbers for

dynamic stochastic optimization problems which is based here on earlier work of

Daniel [10] and Olsen [35]. In the next section we treat the question of the asymp-

totic distribution of sample problem estimators, which requires a corresponding

central limit theorem. These hard-to-obtain results { while reassuring { are un-

fortunately of little or no practical relevance. In x7 we therefore set out what is

known theoretically about the small sample behaviour of the problem estimators

and in x8 give empirical results on a speci�c 12 stage �nancial problem.

For the purposes of studying the sample properties of scenario based prob-

lem estimators SP (!̂N ) we shall express the linearly constrained strictly convex



24

 FRC    T = 12  K = 32  N = 313  Jul 29 98  16:20:41 

Sce = 32,   p =    0.031250 

Sce = 31,   p =    0.031250 

Sce = 30,   p =    0.031250 

Sce = 29,   p =    0.031250 

Sce = 28,   p =    0.031250 

Sce = 27,   p =    0.031250 

Sce = 26,   p =    0.031250 

Sce = 25,   p =    0.031250 

Sce = 24,   p =    0.031250 

Sce = 23,   p =    0.031250 

Sce = 22,   p =    0.031250 

Sce = 21,   p =    0.031250 

Sce = 20,   p =    0.031250 

Sce = 19,   p =    0.031250 

Sce = 18,   p =    0.031250 

Sce = 17,   p =    0.031250 

Sce = 16,   p =    0.031250 

Sce = 15,   p =    0.031250 

Sce = 14,   p =    0.031250 

Sce = 13,   p =    0.031250 

Sce = 12,   p =    0.031250 

Sce = 11,   p =    0.031250 

Sce = 10,   p =    0.031250 

Sce = 9,   p =    0.031250 

Sce = 8,   p =    0.031250 

Sce = 7,   p =    0.031250 

Sce = 6,   p =    0.031250 

Sce = 5,   p =    0.031250 

Sce = 4,   p =    0.031250 

Sce = 3,   p =    0.031250 

Sce = 2,   p =    0.031250 

Sce = 1,   p =    0.031250 

 0.078252 

 0.081185 

 0.048136 

 0.065937 

 0.032581 

 0.062914 

 0.067862 

 0.059755 

 0.047545 

 0.057106 

 0.057573 

 0.010996 

 0.084033 

 0.039195 

 0.14079 

 0.11395 

 0.068942 

 0.19546 

 0.19021 

 0.077048 

 0.10314 

 0.16182 

 0.14395 

 0.33077 

  1.0303 

Figure 4. Initial 32 scenario tree for the FRC problem with computed marginal EVPI values

marked on its nodes



25 FRC    T = 12  K = 601  N = 4051  Jul 28 98  00:02:40 

Sce = 596,   p =    0.001664 

Sce = 589,   p =    0.001664 

Sce = 582,   p =    0.001664 

Sce = 575,   p =    0.001664 

Sce = 568,   p =    0.001664 

Sce = 561,   p =    0.001664 

Sce = 554,   p =    0.001664 

Sce = 547,   p =    0.001664 

Sce = 540,   p =    0.001664 

Sce = 533,   p =    0.001664 

Sce = 526,   p =    0.001664 

Sce = 519,   p =    0.001664 

Sce = 512,   p =    0.001664 

Sce = 505,   p =    0.001664 

Sce = 498,   p =    0.001664 

Sce = 491,   p =    0.001664 

Sce = 484,   p =    0.001664 

Sce = 477,   p =    0.001664 

Sce = 470,   p =    0.001664 

Sce = 463,   p =    0.001664 

Sce = 456,   p =    0.001664 

Sce = 449,   p =    0.001664 

Sce = 442,   p =    0.001664 

Sce = 435,   p =    0.001664 

Sce = 428,   p =    0.001664 

Sce = 421,   p =    0.001664 

Sce = 414,   p =    0.001664 

Sce = 407,   p =    0.001664 

Sce = 400,   p =    0.001664 

Sce = 393,   p =    0.001664 

Sce = 386,   p =    0.001664 

Sce = 379,   p =    0.001664 

Sce = 372,   p =    0.001664 

Sce = 365,   p =    0.001664 

Sce = 358,   p =    0.001664 

Sce = 351,   p =    0.001664 

Sce = 344,   p =    0.001664 

Sce = 337,   p =    0.001664 

Sce = 330,   p =    0.001664 

Sce = 323,   p =    0.001664 

Sce = 316,   p =    0.001664 

Sce = 309,   p =    0.001664 

Sce = 302,   p =    0.001664 

Sce = 295,   p =    0.001664 

Sce = 288,   p =    0.001664 

Sce = 281,   p =    0.001664 

Sce = 274,   p =    0.001664 

Sce = 267,   p =    0.001664 

Sce = 260,   p =    0.001664 

Sce = 253,   p =    0.001664 

Sce = 246,   p =    0.001664 

Sce = 239,   p =    0.001664 

Sce = 232,   p =    0.001664 

Sce = 225,   p =    0.001664 

Sce = 218,   p =    0.001664 

Sce = 211,   p =    0.001664 

Sce = 204,   p =    0.001664 

Sce = 197,   p =    0.001664 

Sce = 190,   p =    0.001664 

Sce = 183,   p =    0.001664 

Sce = 176,   p =    0.001664 

Sce = 169,   p =    0.001664 

Sce = 162,   p =    0.001664 

Sce = 155,   p =    0.001664 

Sce = 148,   p =    0.001664 

Sce = 141,   p =    0.001664 

Sce = 134,   p =    0.001664 

Sce = 127,   p =    0.001664 

Sce = 120,   p =    0.001664 

Sce = 113,   p =    0.001664 

Sce = 106,   p =    0.001664 

Sce = 99,   p =    0.001664 

Sce = 92,   p =    0.001664 

Sce = 85,   p =    0.001664 

Sce = 78,   p =    0.001664 

Sce = 71,   p =    0.001664 

Sce = 64,   p =    0.001664 

Sce = 57,   p =    0.001664 

Sce = 50,   p =    0.001664 

Sce = 43,   p =    0.001664 

Sce = 36,   p =    0.001664 

Sce = 29,   p =    0.001664 

Sce = 22,   p =    0.001664 

Sce = 15,   p =    0.001664 

Sce = 8,   p =    0.001664 

Sce = 1,   p =    0.001664 

 0.17096 

 0.17114 

 0.17123 

 0.17054 

 0.17036 

 0.17007 

 0.17112 

 0.17095 

 0.17132 

 0.17203 

 0.17231 

  0.1727 

 0.18124 

 0.18149 

 0.18171 

 0.17169 

 0.17179 

 0.17246 

 0.17248 

 0.17277 

 0.17298 

 0.17327 

 0.17251 

 0.17306 

 0.17242 

 0.17264 

 0.17273 

 0.25532 

 0.27269 

 0.27134 

 0.24173 

 0.53962 

 0.24186 

 0.27053 

 0.23879 

 0.24067 

 0.49449 

 0.46231 

 0.62774 

  1.1782 

 0.0024185 

 0.0089187 

 0.010767 

 0.0047977 

 0.014265 

 0.012994 

 0.0065607 

 0.0081278 

 0.01199 

 0.010697 

 0.012768 

 0.010203 

 0.0023644 

 0.0053089 

 0.065377 

 0.0017614 

 0.0013919 

 0.00073994 

 0.00088561 

 0.0012038 

 0.0014365 

 0.00060534 

 0.0078293 

 0.0075471 

 0.0091041 

 0.0087437 

 0.0019584 

 0.012031 

 0.0038606 

 0.003787 

  1.0215 

 0.017872 

 0.20359 

 0.018295 

 0.019945 

 0.050285 

 0.034714 

 0.027115 

 0.032942 

 0.020502 

 0.013859 

 0.0071861 

 0.0084551 

 0.0041148 

 0.0055467 

 0.0020496 

 0.020511 

 0.00243 

 0.0016365 

 0.0028666 

 0.0027511 

 0.011013 

 0.015942 

 0.009352 

 0.012657 

 0.012447 

 0.015466 

 0.028032 

 0.016478 

 0.007715 

 0.0072976 

 0.0044367 

 0.0066929 

 0.012405 

 0.062375 

 0.019405 

 0.00841 

 0.0048164 

 0.0068825 

 0.13421 

 0.089232 

 0.087902 

 0.077232 

 0.21791 

 0.21676 

 0.71477 

 0.65991 

 0.64087 

 0.0094905 

 0.043247 

 0.24318 

 0.039894 

 0.02972 

 0.21433 

 0.018271 

 0.016557 

 0.02527 

 0.02379 

 0.011075 

 0.010633 

 0.0032695 

 0.0029748 

 0.0080233 

 0.0036799 

 0.023281 

 0.024164 

 0.011655 

 0.043045 

 0.069844 

 0.0035079 

 0.004769 

 0.0071557 

 0.0086863 
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Figure 5. FRC problem sample scenario tree after 6 iterations with the marginal EVPI impor-

tance sampling criterion
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version of (SP) given by (13) variously as

�0 := sup
x2X

IE f(x;!) (26)

:= sup
x12X1

[f(x1) + IE �2(!2; x1)] (27)

as appropriate, where X1 := fx 2 IRn : A11x = b1g. Correspondingly, the �nite

dimensional problem estimators at termination of the sampling algorithm after

N iterations will be denoted by

�̂N := sup
x̂N2XN

IE f(x̂N ; !̂N ) (28)

:= sup
x̂1N2X1

[f(x̂1N ) + IE �2(!̂2N ; x̂1N )] : (29)

We wish to establish in this section that x̂N ! x0 { and in particular x̂1N ! x10

{ almost surely so that a fortiori �̂N ! �0 as N !1 in an appropriate sense.

To this end we recall the ingenious construction due to Olsen [35] of (es-

sentially) a generalized scenario tree appropriate to the study of the asymptotic

behaviour of a multistage scenario based stochastic programming sample problem

as the branching number of the sample problem scenario tree tends to in�nity at

every stage. Clearly this latter condition is necessary if the empirical measures

on (
;F)

�N (�) :=
X
!2!̂N

�!(�)=j!̂N j (30)

corresponding to the realized sample scenario trees !̂N are to converge weakly to

the underlying probability measure � as N !1. Here j!̂N j denotes the number

of distinct scenarios in !̂N .

A sampling tree �N for the data process ! of (SP) is de�ned as �N :=

[!̂N ;BN ], where !̂N is an ordinary (�nite) scenario tree with �-�eld FN := Pf! :

! 2 !̂Ng given by all subsets of scenarios in !̂N and BN : !̂N
!
!
 is a measurable

multifunction such that:

a) BN (!) is an element of the Borel �-�eld B(
) of data paths in IRdT for all

! 2 !̂N and suitable d,

b) BN [!̂N ] = 
,
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c) !; !0 2 !̂N and ! 6= !0 imply BN (!) \BN (!
0) = ;,

d) � 2 BN (!); �
0 2 BN (!

0) and � = �0 imply ! = !0.

Condition a) states that measurability of the multifunction BN is with respect

to (FN ;B(
)). Conditions b) and c) state that the images of BN are Borel

partitions, while d) is a generalized branching condition which states that the

element of the partition corresponding to a given scenario ! 2 !̂N is unique. If 


is �nite, BN is an identity map and �N is equivalent to an ordinary scenario tree.

The general situation for scalar datapaths (r := 1); T := 5 and a 4 scenario tree

!̂ is illustrated in Figure 6. Here !̂ := f!1; !2; !3; !4g, B := fB1; B2; B3; B4g and

the sets Bi are depicted as four factor Cartesian products of half open intervals.

1 1ωB

4

1 2 3 4 5t = 

B

B

B

2

4

3

ω

ω

ω

2

3

Figure 6. Illustration of an Olsen sampling tree

An empirical probability measure �N is de�ned on the �nite scenario tree

!̂N of the sampling tree �N by

�N (!) := �(BN (!)) 8! 2 !̂N : (31)

For (conditional) Monte Carlo path generation from a simulator of course

�N (!) = 1=j!̂j as in (30).
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Theorem 4. (Consistency of problem estimators)

Consider the linearly constrained strictly convex problem (SP) given by (17)

and suppose ! has p > 1 moments �nite and 
 � IRrT is bounded. Let xN solve

the sample problem SP (!̂N ). If the branch numbers at every node of the sample

scenario trees !̂N tend to in�nity almost surely as N ! 1, then �̂N ! �0 and

xN ! x0 almost surely for x0 the unique solution of (SP).

Proof. We only sketch the proof whose details will appear elsewhere. (The linear

case was treated in Corvera Poir�e [8].)

The proof consists of the following steps.

First we observe that the stated convergence condition on the structure of

the sample scenario tree !̂N implies that

maxfdiamBN (!) : ! 2 !̂Ng ! 0 as N !1

for the corresponding Olsen sampling trees �N .

Next, following Olsen [35], we use the sampling tree �N to construct a �nite

dimensional discrete approximation of (SP) in Lp(
;F ; �; IR
nT ) for p > 1.

Results of Daniel [10] then imply that x̂N ! x0 in pth norm as N !1.

Finally, using Skorohod's theorem (Billingsley [4], p.337{340) we may con-

clude that x̂N ! x0 almost surely.

Regularity of the appropriate abstract version (3) of (SP) and uniqueness of

its solution in the strictly convex linearly constrained case are standard matters

(see e.g. Dempster [16]).

Two other approaches to establishing a similar result are possible. The most

straightforward is to notice that the \deterministic" equivalent of the sample

problem estimator SP (!̂N ) has variables and constraints tending to in�nity with

j!̂N j as N !1 and to generalize the results of Pr�ekopa [37] appropriately. The

other, perhaps more elegant, approach is to study the sample problem estimator

as a random perturbation of (SP) in terms of the empirical sample measure �N
(see Fiedler and R�omisch [20], Dentcheva and R�omisch [19]).

6. Asymptotic Distribution of EVPI-based Problem Estimators

Turning to the question of the asymptotic distributions associated with the

scenario based sample problem estimator SP (!̂N ) we know from the important
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work of King and Rockafellar [26,27,29] { and as originally observed by Bereanu [2,

3] { that it is too much to hope in general that in nontrivial { i.e. constrained {

cases that the distribution of x̂N is asymptotically Gaussian. However, this does

not preclude the asymptotic sampling distribution of �̂N from being Gaussian

in the complete recourse case appropriate to �nancial modelling. We shall make

use of results of Shapiro [45{47] to prove the following.

Theorem 5. (Asymptotic normality of the sample problem value for complete

recourse)

Under the conditions of Theorem 4 for the complete recourse case,

p
N(�̂N � �0)! N (0; �2(x10)) (32)

weakly, i.e. in distribution.

Proof. The proof is by induction on the �nite horizon T .

First note that since 
 � IRrT is bounded it may be demonstrated by a

backwards recursive argument that both �2(�; x1) and �2N (�; x̂1N ) of (27) and

(29) respectively are Lipschitz continuous { with bounded Lipschitz constant

{ uniformly in the original problem and sample problem decisions over X1 �

IRn providing that the terms in the separable objective function have a similar

property (R�omisch [42]).

Next observe that as a result of Monte Carlo independent identically dis-

tributed scenario sampling between the �rst two stages

�̂N := sup
x̂1N2X1

ff(x̂1N ) +
1

K(N)

K(N)X
k=1

�2N (!̂
k
2 ; x̂1N )g; (33)

where K(N) = O(j
̂N j
1=T ) almost surely.

Now consider T := 2. The conditions of Shapiro [47], p.438, are met and we

may conclude the required result.

To demonstrate the induction step, suppose the results holds for horizon

T�1. From (33) we observe that �̂N is an equiprobable mixture of asymptotically

Gaussian variables and hence is asymptotically Gaussian with �nite variance

�2(x10) as required.



30

The di�culty in the present context with this asymptotic result is that N {

or in terms of scenarios j!̂N j { is likely to have to be very large before sampling

error in SP (!̂N ) is suppressed.

For the sequential importance sampling algorithms of x4 this is of course an

empirical matter { to which we turn in xx7 and 8. First however note that we may

use Theorem 5 to construct in the usual way an approximate 100�% con�dence

interval for �0 as

h
�̂N � z�=2�̂N=

p
N; �̂N + z�=2�̂N=

p
N
i
; (34)

where �̂N is the realized sample problem optimum at sequential algorithm ter-

mination after N iterations, �̂N is the sample standard deviation of successive

sample problems prior to termination and z�=2 is the standard normal z-score at

level �=2.

7. Evaluating Small Sample Bias

It has long been a folk theorem that due to optimization the sample problem

value estimator �̂N has unidirectional bias. Recently, Norkin et al. [34] and Mak

et al. [31] have come up with a simple demonstration of this fact in the two stage

case which is easily extended to multistage (SP).

Theorem 6. The �nite sample problem estimator �̂N of the (SP) problem value

�0 has one-sided bias, i.e. IE�̂N � �0.

Proof. We again make use of induction on the horizon T . Using (33) the result

is easily seen to be valid for T := 2, due to the independent identically distributed

(i.i.d.) sampling of \scenarios" in this case.

Similarly, for the general induction step for horizon T ,
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IE�̂N = IE sup
x̂1N2X1

2
4f1(x̂1N ) + 1

K(N)

K(N)X
k=1

�2N (!̂
k
2 ; x̂1N )

3
5

� sup
x̂1N2X1

�
f1(x̂1N ) +

K(N)

K(N)
IE�2N (!̂

k
2 ; x̂1N )

�

� sup
x̂1N2X1

[f1(x̂1N ) + IE�2N (!̂2; x̂1N )]

= �0:

Here the second inequality makes use of the induction hypothesis and i.i.d. sam-

pling of second stage data path values.

Theorem 6 prompts the search for an easily computed lower bound for the

value �0 of (SP) in which a large enough scenario sample can be generated to

e�ectively suppress sampling error. With such a lower bound, maximum small

sample bias �̂N � �0 can be conservatively estimated. It is easily seen that any

variant of (SP) in which the decision process x is further restricted provides such a

lower bound. In the next section, which treats a strategic �nancial asset allocation

problem, we report bias estimates based on restricting all elements of the decision

process to be constant { i.e. restricting decisions to the Markowitz [32] buy-and-

hold portfolio strategy.

8. A Financial Example

The strategic asset allocation (CALM-)FRC model applies scenario based

dynamic stochastic linear { and quadratic { programming to long term �nancial

planning. It incorporates uncertainty in unknown rates of return, and produces

investment decision strategies contingent on these rates. The stochastic data pro-

cess paths were generated by a simulation code described in Hicks Pedr�on [22] and

based on a vector di�usion process model of Brennan, Schwartz and Lagnado [6]

calibrated to recent US market history (see also Chen et al. [7]).

The investor is assumed to invest in three assets - an instantaneously riskless

security, cash, a long term (consol) bond and an equity portfolio. The model

assumes that the investor has a long term horizon (20 years) and no liabilities.

Borrowing is not allowed.
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The speci�cation of the stochastic programming strategic asset allocation -

FRC - model is presented in detail in Hicks Pedr�on [22]. The model assumes 20

annual time periods in which random variables are realized at the beginning of

each period. There are no stochastic parameters in the �rst period and period

21 is just a balance closing period in which no decisions take place.

The stages of the stochastic programming formulation { corresponding to

annual portfolio rebalancing { are de�ned by associating a recourse problem with

each realization of the rates of return on the di�erent assets, computed by com-

pounding biweekly returns to the end of every year from the twenty-year simu-

lation. Figure 7 shows the bitmap of the base scenario for the resulting FRC 20

model.

Problem:     FRC     

Figure 7. Non zero entries in FRC 20 base scenario coe�cient matrix

For the EVPI-based sequential importance sampling experiments described

here the last 12 annual rebalancing decisions were grouped into two year stages

to make a 12 stage approximation FRC 12 of the full FRC 20 model.

Table 1 shows the results of 10 runs of the full EVPI importance sampling

algorithm on the FRC 12 problem and Figure 8 depicts the progress of the se-

quential algorithm in terms of the value of the expected terminal wealth objective

of successive sample problems for the 10 runs. Table 2 and Figure 9 show compa-

rable results for the marginal EVPI sampling algorithm, while Figure 10 shows
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the progress of the corresponding root node marginal EVPI values. Note that

a high value of marginal EVPI is quickly reduced by further branching so that

arbitrages are handled by the importance sampling algorithm directly.

Sample: SCE GEN ITER OPT �opt EVPI %EVPI CPU time xT1 xT2 xT3

FRC 12 32:1 146 852 9 7:391 7:689 0:280 3:79% 6201000 0:0 1:0 0:0

FRC 12 32:2 359 2124 9 7:850 7:789 0:483 6:15% 10501500 0:0 1:0 0:0

FRC 12 32:3 237 1479 10 7:532 7:417 0:316 4:19% 13305500 0:0 1:0 0:0

FRC 12 32:4 168 1454 12 8:004 7:935 0:524 6:55% 11605200 0:0 1:0 0:0

FRC 12 32:5 216 2077 14 8:090 7:689 0:458 5:66% 18101200 0:0 1:0 0:0

FRC 12 32:6 219 1976 14 7:497 7:587 0:411 5:48% 17104500 0:0 1:0 0:0

FRC 12 32:7 283 2114 13 8:102 7:957 0:296 3:65% 12704000 1:0 0:0 0:0

FRC 12 32:8 247 1829 13 6:949 7:395 0:307 4:42% 10502300 0:0 1:0 0:0

FRC 12 32:9 182 1425 12 7:413 7:372 0:422 5:69% 10903700 1:0 0:0 0:0

FRC 12 32:10 249 1484 10 8:081 7:760 0:711 8:79% 13600300 0:0 1:0 0:0

� 230 1681 12 7:691 7:658 0:421 5:44% 13501200 0:2 0:8 0:0

� 61 412 2 0:392 0:215 0:133 1:55% 4605600 0:42 0:42 0

�=�
p
10 8:38% 7.74% 5:28% 1:61% 0:88% 10:01% 9:01% 9:59% 66:7% 16:8% 0

Table 1

Full EVPI sampling { FRC 12 problem { initial tree 32 = 812218 scenarios { sequential sampling

with stopping criterion { 10 runs { tolerance 0.005 { max number of iterations in each sample

is 15 { stopping tolerance is 3 decimal places { IBM RS6000/590/AIX 4.2

The sampling standard deviation across the runs is in each case respectable

{ 1.61% and 1.06% respectively for the full and marginal criteria. While this

corresponds to an approximate 95% con�dence interval of about 5% of objective

value, much further experimentation with algorithm strategies and parameters

is required. The instability of the terminal �rst stage decisions x̂1N shown for

full EVPI in Table 1 is perhaps worrying. Nevertheless, in both cases variance

reduction { in the sense of number of scenarios retained in the �nal sample tree

versus (partial) scenarios generated { is about an order of magnitude (see Tables 1

and 2). This empirical fact holds out the promise of the implicit generation of

tens of thousands of scenarios in strategic �nancial planning problems over long

term horizons.

As to bounding sampling error, Table 3 shows that the lower bound buy-

and-hold strategy with reinvestment of dividends based on 10,000 sample paths

gives a maximum sampling error bias of 114 basis points (1.14%) per annum
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Figure 8. Progress of the full EVPI importance sampling algorithm for 10 runs on FRC 12 with

32 scenario initial tree

Figure 9. Progress of the marginal EVPI importance sampling algorithm for 10 runs on FRC 12

with 64 scenario initial tree

for a single FRC 12 sample problem based in 1024 scenarios. By comparison,

collapsing the time stages from an arbitrary instance of FRC 20 to this problem

gives a di�erence of 32 basis points per annum.
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Sample: SCE GEN ITER OPT �opt � EVPI CPU time

FRC 12 64:1 798 5199 15 6.81 6.78 0.85 18'27"

FRC 12 64:2 980 4806 15 6.94 6.97 0.87 27'31'

FRC 12 64:3 854 4704 15 7.37 7.15 0.92 19'36"

FRC 12 64:4 792 5099 15 7.35 7.06 0.92 17'37"

FRC 12 64:5 988 4463 15 7.17 7.06 0.89 18'48"

FRC 12 64:6 902 4830 15 7.27 7.01 0.91 18'30"

FRC 12 64:7 808 5193 15 6.66 6.70 0.83 17'55"

FRC 12 64:8 806 5100 15 6.97 6.94 0.87 17'52"

FRC 12 64:9 816 5275 15 6.84 6.83 0.86 18'22"

FRC 12 64:10 956 4871 15 6.64 6.91 0.83 19'25"

� 860.44 4963.22 15 7.04 6.95 0.88 19'21"

� 77.95 274.46 0 0.26 0.15 0.03 3'07"

�=�
p
10 2.62% 1.60% 0 1.06% 0.62% 1.06% 4.65%

Table 2

Marginal EVPI sampling { FRC 12 problem { initial tree 64 = 812317 scenarios { sequential

sampling with stopping criterion { 10 runs { tolerance 0.05 { max number of iterations in each

sample is 15 { Intel PII 400/Debian Linux 2.0.34

Strategy � � SRT Annual Averageh
1+��(1+0:05)20

�

i1=20
Compound

Rate of Return

Stochastic Programming FRC 20.1024 9.823 0.961 1.113 12.65% p.a.

with reinvestment

Stochastic Programming FRC 12-20.1024 9.210 0.916 1.111 12.32% p.a.

with reinvestment

100/0 Stocks/Bonds Buy-and-hold 5.951 0.635 1.055 10.18% p.a.

with reinvestment

Table 3

Characteristics of the Terminal Wealth Distributions
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Figure 10. Root node marginal EVPI process sample paths corresponding to Figure 9

9. Conclusion

This paper has attempted to give a comprehensive treatment of EVPI-based

sequential importance sampling algorithms for dynamic stochastic programming

problems. While the theory { at least for the linearly constrained convex case {

is essentially complete, much experimentation with sampling strategies remains

to be carried out.

The principal impediment to implementing this programme fully is the cur-

rent running time of the complex software needed to e�ect sequential sampling

(Chen et al. [7]). However, considerable progress { a factor of about 30 for a

comparable number of scenarios in the �nal tree { has already been made in this

direction (cf. Tables 1 and 2) and a �nal reduction in runtime of the algorithms

to termination of several orders of magnitude is expected. To further reduce

computation time we have already experimented with parallel full EVPI-based

sequential importance sampling (Dempster and Thompson [18]) with some suc-

cess and further progress is certainly possible. An additional promising line of

attack on speedup and increased problem size is to use sparse memory interior

point codes to enable larger sample problems with many more scenarios to be

rapidly computed.

Finally, following the elegant recent paper of King [28] we hope ultimately

to use these methods to produce accurate valuations of derivative �nancial in-
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struments and portfolios.

Acknowledgements

The ideas reported in this paper have developed over a long period and ben-

e�tted greatly from collaboration and discussion with Horand Gassmann, Zhao

Yang, Mark Davis, Xavier Corvera-Poir�e, Giorgio Consigli, Robin Thompson,

John Mulvey, Nieves Hicks Pedr�on and James Scott. The research has over the

years enjoyed the generous support of NSERC Canada, EPSRC UK, 3rd Direc-

torate EU and a number of Universities on both sides of the Atlantic { for all of

which the author is grateful. The development of the FRC strategic asset alloca-

tion model as an instance of the more general CALM asset-liability management

model was partially supported by the Frank Russell Company.

References

[1] K.Back and S.R.Pliska. The shadow price of information in continuous-time decision prob-

lems. Stochastics 22 (1987) 151{186.

[2] B.Bereanu. On stochastic linear programming II: Distribution problems. Non-stochastic

technology matrix. Rev. Roumaine Math. Pures Appl. 11 (1966) 713{725.

[3] B.Bereanu. On stochastic linear programming: Distribution problems. Stochastic technol-

ogy matrix. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967) 148{152.

[4] P.Billingsley. Probability and Measure, 2nd ed. Wiley, New York (1980).

[5] J.R.Birge, M.A.H.Dempster, H.I.Gassmann, E.A.Gunn, A.J.King and S.Wallace. A stan-

dard input format for multiperiod stochastic linear programs. Mathematical Programming

Society, Committee on Algorithms Newsletter 17 (1987) 1{20.

[6] M.J.Brennan, E.S.Schwartz and R.Lagnado. Strategic asset allocation. Journal of Economic

Dynamics and Control 21 (1997) 1377{1403.

[7] Z.Chen, G.Consigli, M.A.H.Dempster and N.Hicks Pedr�on. Towards sequential sampling

algorithms for dynamic portfolio management. In [49] 197{211.

[8] X.Corvera Poir�e. Model Generation and Sampling Algorithms for Dynamic Stochastic Pro-

gramming. PhD Thesis, Dept of Mathematics, University of Essex, UK (1995).

[9] X.Corvera Poir�e. STOCHGEN User's Manual. Department of Mathematics, University of

Essex, UK (1995).

[10] J.W.Daniel. The Approximate Minimization of Functionals. Prentice-Hall, Englewood

Cli�s, NJ (1971).

[11] G.B.Dantzig and P.W.Glynn. Parallel processors for planning under uncertainty. Annals of

Operations Research 22 (1990) 1{21.



38

[12] G.B.Dantzig and G.Infanger. Large-scale stochastic linear programs: Importance sampling

and Benders decomposition. Technical Report SOL 91-4, Department of Operations Re-

search, Stanford University, Stanford, CA (1991).

[13] G.B.Dantzig and A.Madansky. On the solution of two-stage linear programs under uncer-

tainty. Proceedings of the Fourth Symposium on Mathematical Statistics and Probability,

Vol.I. Univ. of California, Berkeley (1961) 165{176.

[14] M.H.A. Davis, M.A.H.Dempster and R.J.Elliott. On the value of information in controlled

di�usion processes. In [33] 125{138.

[15] M.A.H.Dempster, ed. Stochastic Programming, Academic Press, London (1980).

[16] M.A.H.Dempster. The expected value of perfect information in the optimal evolu-

tion of stochastic systems. Stochastic Di�erential Systems. M.Arato, D.Vermes and

A.V.Balikrishnan, eds. Lecture Notes in Information and Control 36, Springer, Berlin

(1981) 25{40.

[17] M.A.H.Dempster. On stochastic programming: II. Dynamic problems under risk. Stochas-

tics 25 (1988) 15{42.

[18] M.A.H.Dempster and R.T.Thompson. EVPI-based importance sampling solution proce-

dures for multistage stochastic linear programmes on parallel MIMD architectures. Annals

of Operations Research (1999), to appear.

[19] D.Dentcheva and W.R�omisch. Di�erential stability of two-stage stochastic programs.

Preprint no. 96-36, Institute of Mathematics, Humboldt University, Berlin (1996).

[20] O.Fiedler and W.R�omisch. Stability in multistage stochastic programming. Annals of Op-

erations Research 56 (1995) 79{93.

[21] H.I.Gassmann. MSLiP: A computer code for the multistage stochastic linear programming

problem. Mathematical Programming 47 (1990) 407{423.

[22] N.Hicks Pedr�on. Model-Based Asset Management: A Comparative Study. PhD Thesis,

Judge Institute of Management Studies, University of Cambridge, UK (1998).

[23] J.L.Higle and S.Sen. Stochastic decomposition: An algorithm for two stage linear programs

with recourse. Mathematics of Operations Research 16 (1991) 650{669.

[24] J.L.Higle and S.Sen. Stochastic Decomposition: A Statistical Method for Large Scale

Stochastic Linear Programming. Kluwer Academic Publishers, Dordrecht (1996).

[25] G.Infanger. Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs.

Boyd & Fraser, Danvers, MA (1994).

[26] A.J.King. Asymptotic Behaviour of Solutions in Stochastic Optimization: Nonsmooth

Analysis and the Derivation of Non-normal Limit Distributions. PhD Thesis, Department

of Mathematics, University of Washington (1986).

[27] A.J.King. Generalized delta theorems for multivalued mappings and measurable selections.

Mathematics of Operations Research 14 (1989) 720{736.

[28] A.J.King. Martingales and duality in contingent claims analysis: The discrete case. Re-

search Report RC21153, IBM Research Division, T.J. Watson Research Center, Yorktown

Heights, NY (1998).

[29] A.J.King and R.T.Rockafellar. Asymptotic theory for solutions in statistical estimation and

stochastic programming. Mathematics of Operations Research 18 (1993) 148{162.



39

[30] M.Lane and P.Hutchinson. A model for managing a certi�cate of deposit portfolio under

uncertainty. In [15] 473{493.

[31] W.K.Mak, D.P. Morton and R.K.Wood. Monte Carlo bounding techniques for determining

solution quality in stochastic programs. Research Report, Department of Computer Science,

University of Texas at Austin, January (1997).

[32] H.M.Markowitz. Portfolio Selection, E�cient Diversi�cation of Investments, 2nd ed. Black-

well, Oxford (1987).

[33] E.Mayer-Wolf, E.Merzbach and A.Schwartz. Stochastic Analysis. Academic Press, New

York (1991).

[34] V.I.Norkin, G.C.P
ug and A.Ruszcynski. A branch and bound method for stochastic global

optimization. Working Paper WP-96-065, International Institute for Applied Systems Anal-

ysis, Laxenburg, Austria (1996).

[35] P.Olsen. Discretizations of multistage stochastic programming problems.Mathematical Pro-

gramming Studies 6 (1976) 111{124.

[36] G.Ch.P
ug. Optimization of Stochastic Models: The Interface Between Simulation and

Optimization. Kluwer, Boston (1996).

[37] A.Pr�ekopa. Laws of large numbers for random linear programs. Math. Systems Theory 6

(1972) 277{288.

[38] S.T.Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley, New York

(1991).

[39] H.Rai�a. Decision Analysis. Addison-Wesley, Reading, MA (1968).

[40] R.T.Rockafellar and R.J-B.Wets. Nonanticipativity and L1-martingales in stochastic opti-

mization problems. Mathematical Programming Studies 6 (1976) 170{186.

[41] R.T.Rockafellar and R.J-B.Wets. A Lagrangian �nite generation technique for solving

linear-quadratic problems in stochastic programming. Mathematical Programming Studies

28 (1986) 63{93.

[42] W.R�omisch. Quantitative stability of stochastic programs. Presented at 16th International

Symposium on Mathematical Programming, Lausanne (1997).

[43] R.Y.Rubinstein and A.Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochastic

Optimization by the Score Function Method. Wiley, New York (1993).

[44] G.Salinetti and R.J-B.Wets. On the distribution of measurable multifunctions (random

sets), normal integrands, stochastic processes and stochastic in�ma. Mathematics of Oper-

ations Research 11 (1986) 385{419.

[45] A.Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations Research 30

(1991) 169{186.

[46] A.Shapiro. Asymptotic behaviour of optimal solutions in stochastic programming. Mathe-

matics of Operations Research 18 (1993) 829-845.

[47] A.Shapiro. Simulation-based optimization: Convergence analysis and statistical inference.

Commun. Statist. { Stochastic Models 12 (1996) 425-454.

[48] R.T.Thompson. MSLiP-OSL 8.3 User's Guide. Judge Institute of Management Studies,

University of Cambridge, UK (1997).



40

[49] C.Zopounidis, ed. Operational Tools in the Management of Financial Risks. Kluwer, Dor-

drecht (1997).


