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This paper is the latest in a series applying a new theoretical and computational method for

American option valuation based on linear programming (LP). Earlier papers have treated the

analytic and computational foundations, application to fast American put option valuation and

the development of structured LP solution techniques for very fast valuation of (path-dependent)

exotic American options such as lookbacks and Asians. In this paper we treat theoretically and

numerically the inverse problem of determining the local underlying volatility from vanilla option

prices and we use this in conjunction with the fast LP solver to value illustrative exotic options {

�xed-strike Asians { �tting the current volatility (smile) surface implied by the market (for S&P

500 and FTSE 100 index options). Ongoing research involves similar valuation of lookbacks and

barrier options �tting the smile.

1 Introduction

This paper continues a line of research concerned with the fast valuation of American options
begun in [18, 34] and continued in [19, 20, 44] (see also [47]). These linear programming

(LP) methods achieve valuation of vanilla American put options at tree speed { but with
much higher accuracy [20] { through the use of a special version of the revised simplex
method. This special algorithm makes use of the tridiagonal structure of the �nite-di�erence
discretization of the Black-Scholes operator, a novel basis factorization and the nature of the
optimal exercise boundary to create a pricing algorithm which is essentially linear in the
number of discretization steps in space or time with the other held �xed.

These matters are reviewed in §2 of the paper, which treats theory, basic numerical
methods and our variable coeÆcient tridiagonal simplex algorithm in some detail, together
with the degenerate PDE approach [5, 52] to valuing market-traded discretely sampled exotic
options. Section 3 discusses both theory and numerical methods for �tting option values to
the local volatility surface implied by option values in the market. This is an area pioneered
in [21, 29, 45] and { although some new theoretical proofs are given and reliable numerical
methods developed in the paper { its treatment is mainly seen here as a vehicle to demonstrate
the generality and eÆciency of the LP valuation algorithm in §2. In §4 results for S&P 500
and FTSE 100 exotic American index options { �xed-strike Asian puts { are presented to
substantiate these claims. First, results for vanilla European and American options �tting the
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smile are presented in order to evaluate potential pricing errors in �tting the local volatility
surface. Conclusions are drawn in §5 and directions of current and future work indicated.

2 LP Valuation of American and Discretely Sampled Exotic Options

First we review briey the formulation of the American put option valuation problem pre-
sented in [17, 19, 20, 34]. The problem is a classical optimal stopping problem which may be
formulated as a free-boundary problem by considering the domain properties of the problem.
Removing any explicit reference to the free boundary, the option value may be seen to be the
unique solution of an order complementarity problem by considering its equivalent formula-
tion as a variational inequality and utilising standard results for coercive operators. Finally,
the value is the solution of an abstract linear programme which can be solved with standard
LP techniques upon suitable domain truncation and discretization.

2.1 Theory

Consider the standard Black-Scholes [6] economy, where we have two �nancial instruments {
a `risky' asset with price S modelled by a geometric Brownian motion (GBM) and a savings
account whose balance is continuously compounded at a constant risk-free rate r � 0.

An equivalent martingale probability measure (EMM) Q (see Harrison-Kreps-Pliska [30,
31]) may be de�ned under which the discounted stock price process e�rtS(t) is a martingale

and the stochastic di�erential equation (SDE) for the stock price process becomes the GBM

dS

S
= rdt+ �d ~W t 2 [0; T ] S(0) > 0; (1)

where � > 0 is the constant volatility of the stock price and ~W is a Wiener process under Q ,
which is also known as the risk-neutral measure.

An option is a risky asset whose value is determined entirely by other underlying risky
assets and hence is a derivative security. A European (vanilla) call or put option confers the
right (but not the obligation) to the holder to buy or sell respectively one unit of the asset
for a price K, the strike price, only at a maturity date T . The American equivalent on the
other hand may be exercised at any exercise time � 2 [0; T ]. Since under our assumptions an
American call stock option will be optimally held to maturity, we concentrate on obtaining a
formulation of the American put problem which is suitable for numerical solution. We de�ne
the value function v : R+ � [0; T ] ! R, giving an option's fair value v(x; t) to the holder
at stock price x > 0 and time t 2 [0; T ]. This value is partially determined by the payo�

function  : R+ ! R, which for the American put is de�ned to be  (S(� )) := (K � S(� ))+

and is received by the holder upon exercise at a general stopping time � 2 [0; T ].
The value function of an American put option can be formulated as the solution of a

classical optimal stopping problem { choose the stopping time �(t) which maximises the con-
ditional expectation of the discounted payo� { and may be shown to be the �rst time the
value falls to the payo� at exercise, viz.

�(t) := inf fs 2 [t; T ] : v (S(s); s) =  (S(s))g : (2)

The domain of the value function can thus be partitioned into a continuation region C, on
which the option has value greater than the payo� for early exercise, and a stopping region
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S, where the value equals the payo� since exercise occurs at the �rst time that the value falls
to the payo�. Hence

C :=
�
(x; t) 2 R+ � [0; T ) : v(x; t) >  (x)

	
(3)

and

S :=
�
(x; t) 2 R+ � [0; T ) : v(x; t) =  (x)

	
: (4)

On the continuation region, the value function satis�es the Black-Scholes PDE

LBSv + @v

@t
= 0 (5)

for (x; t) 2 R+ � [0; T ], where LBS := 1
2
�
2
x
2 @2

@x2
+ rx

@
@x
� r, since the discounted stopped

price process of the option is a martingale, whilst as soon as the process crosses into S, v =  

and

LBSv + @v

@t
� 0 (6)

to preclude arbitrage. Hence if we require the opposite inequality to (6) we have

�
LBSv + @v

@t

�
^ (v �  ) = 0 (7)

on the whole domain R+ � [0; T ), where ^ denotes the pointwise minimum of two functions.
We now have a free-boundary formulation where v(x; t) =  (x; t) for (x; t) on the optimal
stopping or exercise boundary. We can thus remove any reference to the optimal stopping
boundary by formulating the problem in terms of (7) as a linear order complementarity

problem (OCP), using the log-transformed stock price variable � := lnx, with respect to
which the Black-Scholes operator is given by Lv + @v

@t
, where L is the constant coeÆcient

elliptic operator

L :=
1

2
�
2 @

2

@�2
+

�
r � 1

2
�
2

�
@

@�
� r (8)

and v is now the option value as a function of �. The various inequalities carry through the
domain transformation and the new payo� function is given by  (�) :=

�
K � e

�
�
. As shown

in [19] the American put value function is the unique solution to

(OCP)

8>><
>>:

v(�; T ) =  

v �  

Lv + @v
@t
� 0�Lv + @v

@t

� ^ (v �  ) = 0 a.e. in R � [0; T ]

(9)

posed in a suitable vector lattice Hilbert space, which is a Hilbert space H with inner product
h�; �i and partial order de�ned by a positive cone P such that for any points x and y the
maximum x_y and the minimum x^y exist in the given order [9, 15]. Dempster and Hutton
[19] (see also [36]) use another equivalent formulation of the value function problem as a
variational inequality (VI) to show the uniqueness of the solution to (OCP) if the di�erential
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operator is coercive, i.e. 9� 2 IR+ s:t: hu;Lui � �kuk2 8u 2 H. They show that the value
function, as the unique solution to (OCP), can be expressed as the unique solution of an
abstract linear programme given by

(LP) inf
v
hv; ci s.t. v 2 F for any c > 0 a.e. on R � [0; T ]; (10)

where

F :=

�
v : v(�; T ) =  ; v �  ; Lv + @v

@t
� 0

�
(11)

since the linear operator L on the Hilbert space H is of type-Z, i.e. hv; yi = 0 ) hv;Lyi �
0 8v; y 2 H.

From this abstract LP formulation the problem can be reduced from in�nite to �nite
dimensions through space and time discretizations and the resulting ordinary LP can be solved
to �nd a numerical approximation to the value function. To this end, the value function on
R�[0; T ] is restricted to a �nite region [L;U ]�[0; T ] with explicit conditions on the boundaries
of the domain. Then, de�ning a localised inner product with integration over the reduced
domain, we have a localised abstract LP with new constraint set

F :=

�
v : v(L; �) =  (L); v(U; �) =  (U); v(�; T ) =  ; v �  ; Lv + @v

@t
� 0

�
(12)

which in the limit, as L ! �1 and U ! 1, converges to the solution of the abstract
problem [19].

2.2 Numerical Methods

We approximate the value function by a function which is piecewise constant on rectangular
intervals between points in a regular lattice of dimension I�M . Denote the value at a general
point (L + i��; T �m�t) by vmi := v (L+ i��; T �m�t), where m 2 f0; 1; : : : ;Mg =: M
and i 2 f0; 1; : : : ; Ig =: I. Approximating the partial derivatives by standard Crank-Nicolson

�nite di�erences [52] we obtain a discrete form of (OCP) which, upon collapsing the space
index, can be rewritten in matrix form. The complementarity condition (line 3 of (9)) is given
in matrix form by

�
Bv

m�1 +Av
m � �

� ^ (vm �  ) = 0 m 2Mnf0g; (13)

where A and B are I � 1 square tridiagonal matrices with constant nonzero entries denoted
by fa; b; cg and fd; e; fg respectively, and

v
m :=

0
B@
v
m
1
...

v
m
I�1

1
CA  :=

0
B@
 
m
1
...

 
m
I�1

1
CA � :=

0
BBB@
�(a+ d) 0

0
...
0

1
CCCA : (14)

It is easy to see that the matrix A represents the discrete approximation of the continuous
linear type-Z operator L, so it is necessary to �nd conditions for the matrix A to be type-Z.
By de�nition [9] a matrix is type-Z if it has non-negative o�-diagonal elements, which in the
case of A occurs when jr � �

2
=2j � �

2
=�� and can be satis�ed by adjusting the number
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of space steps I in the discretization. From this condition it can also be shown that A is
coercive [19, 36]. Hence we can formulate the discretized OCP by considering the �nite (time
step) sequence of order complementarity problems

v
m �  

Bv
m�1 +Av

m � � � 0�
Bv

m�1 +Av
m � �

� ^ (vm �  ) = 0

(15)

with equivalent sequence of ordinary LPs

min c0vm

s.t. vm �  

Av
m � ��Bv

m�1
m = 1; : : : ;M:

(16)

The LP formulation can be solved either directly or iteratively and the interested reader
can �nd comparisons of solution methods in [19, 34].

We describe next a simpli�ed revised simplex method for solution of the LP formulation of
the vanilla American put option valuation problem which takes advantage of the tridiagonal
structure of the constraint matrix of (16), formed from standard Crank-Nicolson �nite di�er-
ence approximations, to produce a fast accurate direct solution method. For more details on
the terminology in this section see a standard LP text such as [41].

To rewrite (16) in standard form we de�ne a new variable um which is the value of the
option in excess of the payo� function, um := v

m �  . Substituting gives

min c
0
u
m

s:t: u
m � 0 (17)

Au
m � b;

where the right-hand side vector b is given by b := ��B
�
u
m�1 +  

��A .
Setting n := I�1, we convert (17) to an underdetermined n�2n system of linear equations

by adding non-negative slack variables s := (s1; s2; : : : ; sn), giving

min
�
c
0 00
��um

s

�
s:t: (A � I)

�
u
m

s

�
= b; u

m � 0; s � 0: (18)

The constraints of (18) describe a polytope in R2n , with the (unique) optimal solution of (18)
at a vertex of this polytope. A vertex may be identi�ed by setting n of the (slack and real)
variables (non-basics) to zero and solving the modi�ed system D�u = b for the remaining
n basic variables, where D is the n � n basis matrix constructed from the columns of the
constraint matrix corresponding to the basic variables and �u is the corresponding vector of
basic slack and real variables.

We �rst choose an initial basis, which simply amounts to excluding nb real (i.e. not slack)
non-basic variables from the basis so that it comprises �unb =

�
s1 : : : snb u

m
nb+1 : : : u

m
n

�
0

. Note
that we are assuming the connectedness of the index sets of the real basic variables and the
slack basic variables as subsets of N. This is implied by the connectedness of the stopping
and continuation regions in [L;U ] � [0; T ] (see Figure 1). We also assume that the optimal
basis contains umn , which can be guaranteed by appropriate indexing, given connectedness.
With this basis speci�ed, we next �nd the solution of the linear system
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Figure 1: The calculated optimal exercise boundary for the American put
option r := 10%, � := 20% with discretization M := 1000 and
I := 1200 and stock price range [0:37; 7:39].

D�unb = b;

where

D :=

0
BBBBBBBBBBBB@

�1
. . .

�1 a

b
. . .

c
. . . a

. . . b a

c b

1
CCCCCCCCCCCCA

: (19)

This solution may be found as

�unb =

��Inb�1
~D�1
n�nb+1

�
b; (20)

where Inb�1 is the nb � 1 identity matrix and ~D�1
n�nb+1 is the tridiagonal n � nb + 1 square
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matrix given by

~Dn�nb+1 :=

0
BBBBBBB@

�1 a

b
. . .

c
. . . a

. . . b a

c b

1
CCCCCCCA
: (21)

Since the objective function coeÆcients c1; : : : ; cn are arbitrary positive numbers, we can
choose these so that a basis with n� nb real variables always produces a solution (20) with
a smaller optimal value than a basis with n� nb� 1 real variables. Therefore, from a given
feasible basis one may �nd an optimal basis by repeatedly adding the next real variable umnb
into the current basis until the corresponding solution (20) becomes infeasible { then the new
optimal basis is that with one less real basic variable than the �rst infeasible basis. We may
start the iterative process for um from the previous time-step's solution vector um�1 { in the
case of the American put we know that this will be feasible since the exercise boundary has a
convex graph in [L;U ]� [0; T ] (see Figure 1). With options for which this graph has a positive
slope, one can reverse the iterative procedure by removing real variables from the basis until
feasibility is achieved.

The above procedure requires repeated solution of the tridiagonal system (20) for a se-
quence of basic real variables. This may be done eÆciently by factorization of the tridiagonal
matrix ~D := LU de�ned by (21) by noting that the factorization involving lower and upper
triangular bidiagonal matrices L and U respectively need only be computed once for nb = 1,
i.e. ~Dn := A [20]. We need only compute the factorization for the matrix ~Dn := A of size
n and read-o� the required factorizations of smaller matrices ~Dn�nb+1 as we progressively
increase the number of real variables n�nb in the basis. This algorithm can be implemented
eÆciently in any computing system using only 3 storage arrays containing the nontrivial
coeÆcients of the LU decomposition along the 3 diagonals.

This procedure is suitable for any standard constant parameter Black-Scholes type for-
mulation, but we now outline a procedure which yields signi�cant computational savings for
valuation problems with volatility and drift parameters which are functions of time. It also
incorporates a technique for the solution of problems with non-constant constraint matrix
coeÆcients such as those involving the untransformed Black-Scholes PDE, which has coeÆ-
cients given by functions of the underlying asset price, or for exotic option pricing problems,
where the coeÆcients vary with the third variable representing the path-dependency. In [20]
results are presented for this updating procedure which show that even for a general constraint
matrix the procedure out-performs standard commercial LP solvers by orders of magnitude.

The greatest eÆciency saving in the standard LU factorization follows from the obser-
vation that for the constant coeÆcient constraint matrix the factorization need only be per-
formed once at the outset of the algorithm. This would not be the case using the above
technique with time-dependent parameters, for these would require a full factorization of the
initial basis at each time-step. With the LU formulation it is not so easy a task to update
the factorization with the introduction of new real basic variables due to the recursive `above-
diagonal' nature of the computation of the diagonal of the U matrix. We therefore `reverse'
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the factorization to allow for computationally eÆcient updating. De�ne

�Dnb;n :=

0
BBBBBBBBB@

�1 anb

bnb+1
. . .

cnb+2
. . .

. . .
. . .

. . . an�2

cn�1 bn�1 an�1

cn bn

1
CCCCCCCCCA

(22)

to be the n � nb + 1 square submatrix of the basis matrix corresponding to (20) when nb

non-basic real variables have been excluded. The subscripts in (22) represent entries of a
general n � nb + 1 square tridiagonal matrix with entries which vary with their indices, for
example, to be dependent on the asset value. We factorize (22) by writing �Dnb;n = Unb;nLnb;n

where Unb;n and Lnb;n are upper and lower triangular bidiagonal n� nb+ 1 square matrices
respectively, with Ui i := 1 i = nb; : : : ; n. With this `reversed' factorization we remove
the need to recursively calculate all the factor matrices upon the introduction of a new real
variable - instead we perform a simple update.

Setting cnb and bnb equal to zero for notational simplicity, the factorization proceeds as
follows. At each iteration we start from a basis with n � nb real variables and factorize by
backwards recursion as

Un n = 1

Ln n�1 = cn

Ln n = bn

...
...

Li i�1 = ci

Ui i+1 =
ai

Li+1 i+1
(23)

Li i = bi � Ui i+1Li+1 i i = n� 1; : : : ; nb+ 1

Ui i = 1

...
...

Unb nb+1 =
anb

Lnb+1 nb+1

Lnb nb = �1:

When another real variable enters the basis, we perform a simple update by increasing
by one the dimension of the square matrices, calculating the new columns of L and U cor-
responding to the new variable, and re-calculating certain elements in the previous columns,
viz.
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Lnb+1 nb = cnb+1

Lnb nb�1 = 0

Lnb nb = bnb � Unb nb+1Lnb+1 nb (24)

...
...

Unb�1 nb =
anb�1

Lnb nb

Lnb�1 nb�1 = �1:
The number nb of real non-basic variables is then decremented and the procedure continues
as above. The full UL factorization has the same computational complexity as the LU de-
composition for a full factorization, but only three oating point operations are required at
each update using (24).

To gain an understanding of the exact computational savings of the above methods,
�rst consider the complexity of the one-factor American put option valuation problem after
transformation to the constant-coeÆcient Black-Scholes operator. At each time-step the
maximum number of real variables which can enter the basis is given by b lnK�L

�x
c, where K

is the strike price, L and �x are respectively the lower bound and space step size of the
discretization of the space domain and b�c denotes integer part. Thus we have O(I) possible
new basis variables, i.e. iterations, at each time step, where I is the number of points in the
spatial discretization. In fact, after the �rst few time steps { where the exercise boundary
has greatest curvature away from lnK (see Figure 1) { at most one new basic variable enters
at each time step. Far from maturity, calculations for several time steps may utilize the
same basis. Each iteration requires O(n) operations to solve, where n � I, giving O(I)
operations at each time step. Hence the space complexity of the algorithm is linear and the
total operation count is O(TI), where T is the number of time-steps.

For the updating technique the calculations result in a similar complexity, but extra
solution time is needed for the dynamic allocation of the UL factorization at each iteration.
For the full recalculation method it is necessary to include the UL factorization calculation
at each iteration, resulting in an extra O(I) operations at each time point but still O(I)
complexity { a signi�cant saving over the O(I3) operations required for a full I � I matrix
LU factorization and equation solution.

Results for the constant coeÆcient method and for the non-constant coeÆcient updating
technique are reported in [20], along with results for a complete calculation of the full LU
factorization at each iteration to highlight the overheads of using general commercial solvers.

2.3 Discretely Sampled Exotic Options

An exotic option is any derivative security which has a path-dependent component in its payo�
at exercise. Vanilla options on the other hand have payo�s which are at most functions of
the stock price at exercise time. We may also formulate exotic option valuation problems
as linear programs, with new values dependent on the underlying stock price, time and an
additional `independent' variable which encapsulates the required path information.

This PDE is derived by augmenting the state-space with a new independent variable
representing the path-dependent quantity to create a degenerate two-dimensional PDE [5]
with no di�usion (i.e. second derivative) term in the new variable. It can be shown (see [52])
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that when a path-dependent quantity is sampled discretely on a �nite number of occasions (as
for traded options) the option value satis�es a �xed parameter one-dimensional Black-Scholes
equation with jump conditions across sampling dates. As a result the degeneracy can be
removed and we can express discretely-sampled exotics in LP form. The problem must still
be solved in two space dimensions, but the extra variable enters only as a parameter in the
valuation problem.

We outline here the formulation of a general American exotic option in a discretely-
sampled setting using a dynamic programming algorithm for the option valuation based on
the unifying framework of [52]. Denote by V (S;M; t) the value function of the option with
V : R+ � R+ � [0; T ]! R, where S denotes the asset price and M denotes the current value
of the additional path-dependent variable. We assume that the asset price is sampled on N
occasions during the life of the option with maturity T . Denote byMn the observed asset price
at the sampling date tn, n = 0; : : : ; N � 1. For completeness de�ne tN := T and assume that
the sampling begins at time 0,1 so that t0 = 0 and M0 = S(0). The variable Mn is constant
throughout the period [tn; tn+1), since no sampling takes place until time tn+1. E�ectively
Mn is simply a parameter in the formulation during this period, and any randomness in the
model is due to the asset price process. The Black-Scholes PDE will thus be satis�ed within
the period with jump conditions applied at sampling dates, see [25, 52] for more details.

Across a general sampling date tn the path-dependent variable is updated from a value
Mn�1 just prior to the date to a valueMn at the sample date. To avoid arbitrage opportunities
the option value must be continuous across sampling dates for any particular realization of
the asset. This leads to the jump condition

V
�
S;Mn�1; t

�

n

�
= V (S;Mn; tn) n = 1; : : : ; N � 1; (25)

where t�n and tn are times immediately before and at the sampling date tn. In the time
interval [tn; tn+1) to the next sampling date, V satis�es the augmented Black-Scholes PDE

given by

@V

@t
+

NX
i=1

Æ(t� ti)f(S)
@V

@M
+

1

2
�
2
S
2@

2
V

@S2
+ rS

@V

@S
� rV = 0; (26)

where Æ(�) denotes the Dirac delta function and f(S) is a function to be determined for each
speci�c exotic option.

We consider the �nal period [tN�1; T ] and use a dynamic programming algorithm to de-
termine values for earlier periods. As in the American put case, but with increased dimension,
the American exotic valuation domain R+ �R+ � [tN�1; T ] can be partitioned into a contin-
uation region CN and a stopping region SN and we can establish the existence of an optimal
exercise boundary. In this period we must have from arbitrage considerations

V (S;MN�1; t) �  (S;MN�1) t 2 [tN�1; T ]; (27)

for any possible value of MN�1 with V and @V
@S

continuous. The boundary at S = 0 is an
absorbing boundary since the asset price follows GBM and if the asset has zero value it will
remain zero. If the option is held until maturity in this case, then the value at exercise is

1The implementation of any sampling scheme is computationally straightforward, so that very general

schemes can be solved in this manner.
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equal to the payo� and so at a time t 2 [tN�1; T ] the option value is given by the discounted
payo�

V (0;MN�1; t) = e
�r(T�t)

 (0;MN�1) t 2 [tN�1; T ]: (28)

This contradicts (27) and so the option must be stopped, i.e optimally exercised, when the
asset price reaches 0.

To complete the formulation of the discretely-sampled exotic option value in the �nal
period we require a terminal condition and boundary conditions at S = 0 and as S !1. In
the �nal period [tN�1; tN ] our terminal condition is that the value of the option equals the
payo� at maturity.

The boundary condition at S = 0 is given by (28). As S ! 1 the value of the option
tends to zero monotonically, since at maturity the option value is zero if S � MN�1. It is
suÆcient for this formulation to say that the option value can grow at most linearly2 with S
as S !1. Hence we implement the boundary condition

@
2
V

@S2
! 0 as S !1: (29)

Again we log-transform the primitive variables (� := lnS; �N�1 := lnMN�1) and formulate
the valuation problem with �xed �N�1 as an OCP with respect to the transformed operator
L := 1

2�
2 @2

@�2
+
�
r � 1

2�
2
�

@
@�
� r, de�ning a new partition with regions ~CN and ~SN . Thus

the American exotic valuation problem in the �nal period may be formulated in terms of
the transformed value function V := V

�
e
�
; e

�N�1 ; t
�
as the unique solution of the order

complementarity problem

(OCP)

8>><
>>:

V (�; �; T ) = ~ 

V � ~ 

LV + @V
@t
� 0�LV + @V

@t

� ^ (V � ~ ) = 0 a.e. in R � R � (tN�1; T ];

(30)

where ~ (�; �N�1) is the payo� function and V now denotes the option value as a function of
�N�1 and �. This puts us in a framework equivalent to the vanilla American put in Section 2,
but with the additional parameter �N�1, and hence we can show equivalence to an abstract
LP for each value of �N�1 2 (�1;1). The problem must now be solved for all possible values
of the parameter �N�1. Applying the jump conditions (25) at tN�1 to obtain the terminal
value V (S;MN�2; t

�

N�1), the argument may be repeated for the period [tN�2; tN�1] and, by
backwards recursion, eventually for the period [0; t1].

3 Fitting the Volatility Smile

In §2.1 we described the Black-Scholes model which is an idealised pricing environment.
Black-Scholes theory assumes that stock prices are lognormally distributed and stochastic,
yet the future volatilities and interest-rates are deterministic. However in recent years the
market has been pricing options violating the assumption of known constant volatilities, and
the Black-Scholes model has been adapted to deal with these deviations from the lognormal

2For further discussion see [52] (pp. 212{214).
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world. In this section we suggest alternate ways of looking at the `real-world' by relaxing
some of the assumptions of Black-Scholes theory and calibrating the option pricing algorithm
to market data.

3.1 Empirical Evidence for Non-Constant Volatility

The Black-Scholes economy has one unobservable quantity - the volatility parameter �. To be
able to price derivatives some suitable value of this parameter must be inferred. Particularly
since the stock market crash of 1987 the volatility of equity options has exhibited variation
both with the strike price and the options' maturity. The time dependence gives rise to a term
structure of volatility and the curvature with respect to the strike price is termed the volatility
smile (or skew). Both of these e�ects highlight the markets' deviation from the assumption
in the Black-Scholes economy that the future asset price has a constant variance lognormal
conditional probability density. Since `zero-probability' events such as the stock market crash
of 1987, or the market turmoil in the Far East in 1998, are so recent in the memory of market-
makers, it is diÆcult to reconcile these events with a short-tailed distribution. In e�ect the
market is grafting long tails onto the probability density and changing its temporal shape to
cope with these memories.

Several approaches have been suggested in the literature to model this behaviour. The
�rst approach is to treat the volatility as an additional stochastic variable with the aim of
recovering the volatility parameter from the model. This approach was �rst suggested by
Hull and White [32] and is also explored in [12, 4]. Whilst giving the model the ability to deal
with non-constant e�ects, this approach is diÆcult to �t to the data and is not arbitrage-free.
It also introduces an additional dimension to the pricing problem with the obvious additional
computational complexity that this entails.

The second approach is to allow the volatility � := �(S; t) to be a variable which is both
state and time dependent. Early methods speci�ed a functional form for the volatility but did
not generally �t the market data suÆciently. However, by starting from the market data and
backing-out the local volatilities which are consistent with the market, this model can be made
to price the market exactly. This is commonly termed an inverse problem[39, 38]. The most
popular structures on which this local volatility is determined are binomial or trinomial trees,
which allow speci�cation of nodal transitional probabilities to �t the smile. These implied

tree approaches di�er in complexity and accuracy of �t, with some �tting a single terminal
maturity probability distribution [48, 45, 46] and others attempting a multiple-maturity �t.
Dupire [28] introduced a continuous-time theory involving the adjoint PDE to the Black-
Scholes equation [40] which we summarise below. This work has been extended by Derman
& Kani [22, 23] whose latter paper also attempts to model the volatility surface through
calendar time using shocks - in essence a combination of an implied tree and a stochastic
volatility model.

The methods used to �t the market data to a tree or lattice are all prone to the same
instabilities. Generally the data can imply unreasonable (e.g. negative or large) values of the
local volatility, which may create negative transitional probabilities which necessarily allow
arbitrage possibilities in the model. Several methods have been suggested to calibrate the data
to models. Filtering is one such method, but so far in practice �ltering has only been done
in an ad hoc manner with any unstable volatility values (or equivalently negative transitional
probabilities) simply being ignored or set to zero. For examples of methods in this category
see [49, 50] which apply principal component analysis to determine the number of factors in
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the Derman and Kani [23, 24] model.
The general inverse problem is ill-posed since the number of volatility parameters to be

found far outnumbers the limited number of available option prices in the market. It is often
assumed that a continuum of European call option prices C(K;T ) are available for all strikes
and maturities, although in practice this is not the case, but the assumption is usually justi�ed
by the use of interpolation and extrapolation of given market data to obtain the call option
prices for any required maturity and strike price.

Recent papers have implemented regularization methods [38] to make the inverse problem
stable. The method of Tikhonov regularization [8, 7, 40] uses an optimization approach to
add a smoothing measure which ensures that the inverse problem is well-posed and that the
volatility surface solution is the unique minimizer of some goodness-of-�t measure relative to
observed option prices. Another such approach was introduced in [13] whose authors apply
regularization to a function interpolating and extrapolating the observed market data. Other
regularization approaches have been taken in [39, 35] - the latter uses maximum entropy

regularization as the stabilizing functional based on a prior estimate of the local volatility.
Finally, the recent article by Andersen and Brotherton-Ratcli�e [2] should be mentioned

because it is closest in spirit to the approach utilised here. Their method involves forward
induction [37] of Arrow-Debreu prices to generate the local volatility { similar to the approach
of Dupire [29] { through an implicit �nite di�erence approach. The continuous coeÆcients
in the Black-Scholes PDE are replaced by discrete equivalents derived from the market data,
speci�cally call option prices, bond prices and forward prices. Since the same market data is
used in this approach as in the implied tree approach the same data discrepancies occur.

Thus several approaches have been pursued to model the smile e�ect, but all su�er from
the consequences of inconsistent data and will not price all options correctly in the face of
these data problems. For some methods it is enough to price a subset of options accurately,
but even in these cases there is no guarantee that arbitrage opportunities will not occur. The
modelling approach used in this paper is not claimed to be the most accurate or eÆcient, but
is simply used to highlight how versatile the LP pricing method is in the face of a degenerate,
ill-posed problem with non-constant coeÆcients.

3.2 Continuous-Time Volatility Theory

An arbitrage-free local volatility surface in continuous time can be inferred from market data
- in particular the prices of European call options. This theory was �rst derived by [29, 28]
and has since been given more formal treatments in [22, 21, 23]. The main idea is that there
exists an adjoint [40] or dual PDE to the Black-Scholes PDE which has the strike price K
and maturity T as the independent variables, instead of the asset price S and current time t.
The PDE can be derived through consideration of the conditional probability distribution of
the underlying stochastic process and the forward PDE satis�ed by this probability density.

As discussed above we assume that a continuum of European call option prices for all
strikes and maturities are available from the market, i.e. there exists C(K;T ) for all K;T 2
R+ . In practice of course this is not the case, but any `gaps' in the data can be �lled by
interpolation or extrapolation techniques and we will deal with any arbitrage violations in
these approximated values later. The underlying asset price is assumed to follow a one-factor
di�usion process under the risk-neutral measure Q , but now with non-constant volatility, viz.

dS = Sr(t)dt+ S�(S; t)dW; (31)
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where r is the risk-free rate assumed to be at most dependent on time and � is now allowed
to be dependent on both state variables. The price of a European call option can be written
in terms of an expectation under Q in terms of the conditional probability density function

p(s; T jS; t) of the underlying asset S having value s at time T given that the asset price is S
at time t. Hence

C(S; t;K;T ) = exp

�
�
Z T

t

r(u)du

�Z
1

0

p(s; T jS; t)(s�K)+ds (32)

= P (t; T )

Z
1

K

p(s; T jS; t)(s�K)ds: (33)

where t � T and the discount factor

P (t; T ) := exp

�
�
Z T

t

r(u)du

�
:

Breeden and Litzenberger [10] showed that the European call option price and this con-
ditional probability density were related by di�erentiation of the call price.

Proposition 1

The conditional probability density p(K;T jS; t) is given by

p(K;T jS; t) = 1

P (t; T )

@
2
C(S; t;K;T )

@K2
(34)

where C(S; t;K;T ) is the European call price given by (33).

The function p(K;T jS; t) is the risk-neutral transitional probability density and is also
the Green's function (or fundamental solution [27, 51]) of the Black-Scholes PDE for the
European call option value. Thus it satis�es the PDE with terminal condition (t = T )

p(K;T jS; t) = Æ(S �K);

where Æ(�) is the Dirac delta function. Since C is assumed known this density function can
be found from the idealised market data.

The risk-neutral conditional probability density function, p(K;T jS; t) can also be shown
to satisfy the Fokker-Planck (or forward Kolmogorov) PDE, through the following theorem.

Theorem 2

The conditional probability density function p(y; � jx; t) of a general stochastic process X(t)
where t � 0 given by

dX(t) = �(x; t)dt+ �(x; t)dW(t)

satis�es the Fokker-Planck or forward Kolmogorov equation

@p(y; � jx; t)
@�

+
@ (�(y; �)p(y; � jx; t))

@y
� 1

2

@
2
�
�
2(y; �)p(y; � jx; t)�

@y2
= 0; (35)

for �xed (x; t) 2 R � R+ with initial condition

p(y; tjx; t) = Æ(x� y):
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Proof

See a standard stochastic di�erential equation text such as [42], or see [44].

Corollary 3

The transitional probability density p(S0; T jS; t) of the stock price process given by (31) satis�es
the PDE

@p(S0; T jS; t)
@T

=
1

2

@
2(�2(S0; T )S02p(S0; T jS; t)

@S0
2

� @

@S0

�
rS

0
p(S0; T jS; t)� (36)

with initial condition (T = t) p(S0; T jS; t) = Æ(S0 � S).

Proof

The proof follows from Theorem 2 by noting that for the process (31) the drift term �(y; �) =
r(�)y and variance �2(y; �) = �

2(y; �)y2. Substituting in (35) gives the result, since y is
simply a value of the process at time � so can be replaced by S0 at time T .

We now state the following corollary, originally due to Dupire [29].

Corollary 4

Given that the underlying asset price process follows (31) the price of a European call option

C(S; t;K;T ) solves the partial di�erential equation

@C

@T
=
�(K;T )2K2

2

@
2
C

@K2
� r(T )K

@C

@K
(37)

with boundary condition C(S; t;S; t) = 0.

Proof

We prove the corollary by substituting for the density p(S0; � jS; t) given by (34) into the
Fokker-Planck equation (36). Thus

@p(S0; � jS; t)
@�

=
@

@�

�
1

P (t; �)

@
2
C

@S0
2

�

=
1

P (t; �)

@

@�

�
@
2
C

@S0
2

�
+
@
2
C

@S0
2

@

@�

�
1

P (t; �)

�

=
1

P (t; �)

�
@

@�

�
@
2
C

@S0
2

�
+ r(�)

@
2
C

@S0
2

�
(38)

=
1

P (t; �)

�
@
2

@S0
2

�
@C

@�

�
+ r(�)

@
2
C

@S0
2

�

Similarly,

@

@S0

�
rS

0
p(S0; � jS; t)� = r

P (t; �)

@

@S0

�
S
0
@
2
C

@S0
2

�
(39)

and substituting back into (35) gives

@
2

@S0
2

�
@C

@�

�
+ r(�)

@
2
C

@S0
2
+ r(�)

@

@S0

�
S
0
@
2
C

@S0
2

�
� 1

2

@
2

@S0
2

�
�
2(S0; �)S0

2 @
2
C

@S0
2

�
= 0: (40)
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Following [22], multiplying (40) by (S0 �K) and integrating with respect to S0 from K

to 1 gives

Z 1

K

�
@2

@S02

�
@C

@�

�
+ r(�)

@2C

@S02
+ r(�)

@

@S0

�
S0

@2C

@S02

�
�

1

2

@2

@S02

�
�2(S0; �)S0

2 @
2C

@S02

��
(S0 �K)dS0 = 0:

(41)

Then, integrating by parts and considering each term of (41) in turn

Z
1

K

@
2

@S0
2

�
@C

@�

�
(S0 �K)dS0 =

@C

@�
+

�
(S0 �K)

@

@S0

�
@C

@�

��
S0=1

(42a)

Z
1

K

r(�)
@
2
C

@S0
2
(S0 �K)dS0 = r(�)C(S; t;K; �) +

�
r(S0 �K)

@C

@S0

�
S0=1

(42b)Z
1

K

r(�)
@

@S0

�
S
0
@
2
C

@S0
2

�
(S0 �K)dS0 = r(�)K

@C

@K
� r(�)C(S; t;K; �) (42c)

+

�
r(�)(S0 �K)S0

@
2
C

@S0
2
� r(�)S0

@C

@S0

�
S0=1Z

1

K

1

2

@
2

@S0
2

�
�
2(S0; �)S0

2 @
2
C

@S0
2

�
(S0 �K)dS0 =

1

2
�
2(K; �)K2 @

2
C

@K2
(42d)

+

�
1

2
(S0 �K)

@

@S0

�
�
2(S0; �)S0

2 @
2
C

@S0
2

��
S0=1

:

The boundary terms can be shown to tend to zero as S0 ! 1 under suitable justi�able

assumptions. Firstly, we assume that @C(S;t;S0;t)
@S0

! 0 as S0 ! 1. Given that the European
call option has payo� at maturity given by  (S0) := (S � S

0)+ then it is clear that the call
price tends to zero as S0 !1, and hence so does the �rst strike derivative.

Secondly we must assume that the conditional density p(S0; � jS; t) ! 0 suÆciently fast
so that S0p(S0; � jS; t) tends to zero as S0 ! 1. Clearly this is the case for the log-normal
conditional asset price probability distribution inferred by the asset price process (31). The
lognormal probability distribution has exponential tails which disappear to zero as the strike
increases linearly towards in�nity.

With these assumptions, all the boundary terms are zero and can be ignored. Substitut-
ing (42a-42d) with � = T into (41) gives the required result.

The local volatility function �(S; t) can be fully determined from the solution to this
PDE since all other terms in the equation are in terms of the given market data. However,
since the problem is ill-posed there may be many possible local volatility functionals which
�t the market data. To obtain an approximately arbitrage-free pricing algorithm the implied
volatility (or alternatively call price data) supplied by the market must be �tted exactly. In
an attempt to achieve this we apply the interpolation and extrapolation method of cubic
splines to approximate the implied volatility surface.

Several methods exist for �tting a line or surface to discrete data, including polynomial

interpolation methods, but for several reasons our choice favours cubic splines. Splines tend
to be more stable than other methods and are easily extended to approximating in two
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dimensions, using bicubic splines. An application of cubic splines in one-dimension produces
a �t which is smooth in the �rst derivative and continuous in the second derivative, however
this is not the case for higher dimensions and only smoothness is then guaranteed. The
ease with which approximations to these derivatives can be obtained is a major advantage
in reducing the computational complexity of our method for determining the local volatility
described in §3.3 below.

Bicubic splines extend one-dimensional cubic splines by constructing nK row splines (one
for each strike yj) of length nT across the volatility data. When these approximations have
been constructed, the value for any strike K at maturity T can be found by constructing a
column spline of length nK down the tabulated values vi(K); i = 1; : : : ; nK . The order of
the interpolation is chosen to ensure stability - in general data is available for many more
strike prices than maturities.

The precomputed algorithm for �nding the value of volatility for a general strike K and
maturity T can be summarised as follows:

� Fit nK bicubic splines of length nT to the rows of the volatility data.

� Calculate and store the derivatives vTT , vT and the volatility v for maturity T on each
row spline to obtain values for all strike prices at the given maturity T .

� Fit a spline of length nK across the newly created values, and calculate the volatility
value and derivatives with respect to the strike K for maturity T .

Since the construction of a length N cubic spline is the solution of a tridiagonal system
it is an O(N) calculation. The complexity of the problem can be reduced by precomputing
more derivative information, at the expense of additional memory requirements.

3.3 Methodology

We now outline the approach used to obtain a local volatility surface which �ts the market
data { in the form of implied volatilities of European call options { and uses bicubic spline
interpolation to create a continuous analogue of the discrete data available in the market.
Further, a consistent local volatility must be derived so that we can use the linear programming
approach developed in §2 to price American exotic options consistent with the volatility smile.

Since we are considering the implied volatility non-constant in the underlying di�usion,
assume that the quoted European call prices are Black-Scholes prices with non-constant im-
plied volatilities as an additional parameter. Hence, de�ne the European call prices in terms
of the implied volatility �(K;T ) associated with the call option of strike K and maturity T .
Then

C(K;T ) := CBS(S; t;K;T; �(K;T ));

where CBS is the Black-Scholes European call price.
Using this formulation we can write the local volatility in terms of derivatives of the

Black-Scholes implied volatility, using the following proposition 3.

3This result was derived following discussions with S.H. Babbs (then of HSBC Markets, now First National

Bank of Chicago) and has since been independently derived in [2].
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Proposition 5

Let the asset price S follow the di�usion process in (31). Then the local volatility function

�(S; t) consistent with the arbitrage-free European call prices is given uniquely, in the absence

of dividends4, by

�
2(K;T ) = 2

@C
@T

+ r(T )K @C
@K

K2 @2C
@K2

(43)

with S = K.
In terms of the implied volatility function �(K;T ) this can be written as

�2(K;T ) =
2
�p

T � t @�
@T

+ 1

2

�p
T�t + r(T )K @�

@K

�

K2

�
1

�

�
@�
@K

((T � t)� d1)�
1

K
p
T�t

� �
�d1

@�
@K

p
T � t� 1

K

�
+ @2�

@K2

p
T � t+

p
T�t
K

@�
@K

�
(44)

where

d1 :=
ln(S=K) +

�
r + 1

2�(K;T )
2
�
(T � t)

�(K;T )
p
T � t

: (45)

Proof

Equation (43) follows immediately from (37). Following the portfolio dominance arguments
in [2] it can be shown that �2(K;T ) is non-negative in the absence of arbitrage if the numerator
of (43) is non-negative. This result follows since the denominator is a probability density
which is non-negative in an arbitrage-free world.

Equation (44) follows from (43) after much calculation. Using the chain rule of di�eren-
tiation we can rewrite (43) as

�
2(K;T ) = 2

C��T + r(T )KC��K

K2 (CK��K + C��KK)
: (46)

Since C is simply the solution of the Black-Scholes equation given by (45) we can obtain
expressions for the derivatives with respect to � in (46), giving

C� = SN 0(d1)
p
T � t

where

N 0(x) =
1p
2�
e
�

1

2
x2

and

CKK = CK��K + C��KK

=
1

�

�
@�

@K
((T � t)� d1)�

1

K
p
T � t

��
�d1

@�

@K

p
T � t�

1

K

�
+

@2�

@K2

p
T � t+

p
T � t

K

@�

@K

(47)

4The addition of a deterministic dividend process is a simple extension of this work.
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which upon substitution into (46) gives (44) as required.

We will use this algebraic expression to obtain the local volatilities. An alternative deriva-
tion has been produced in [2] and independently in [3]. The market call prices could have been
utilized directly through interpolation and the use of (43) but this method has several short-
comings. For example, the call prices for high strikes tend to zero so oating-point numerical
inaccuracies occur in the derivatives of these call prices. It is also possible for the interpolated
call prices to become negative for deep out-of-the-money options. Another similar approach
is to directly interpolate the Black-Scholes implied volatilities and to use the Black-Scholes
equation in a transitional sense to obtain the call option prices. This method also breaks
down in practice since the standard normal distribution N (�) must be numerically approx-
imated and this is diÆcult to achieve eÆciently to a higher accuracy than 10�10. For high
strikes and small maturities this method produces negative call prices and is thus an unstable
algorithm. For the method followed here the implied volatilities are relatively stable and our
expression for the local volatility involves relatively few numerical calculations and only one
computationally expensive logarithmic calculation for each point at which it is evaluated.

First a bicubic spline interpolation is �tted to the market implied volatility data, with
the calculated second derivatives with respect to the maturity stored in an array. By �rstly
�tting the splines across maturities for each strike we obtain approximations for the �rst and
second derivatives with respect to the strike when the �nal column spline is evaluated. The
�rst-order derivative of the volatility with respect to maturity is not a natural by-product of
the interpolation but is instead approximated by a simple �rst order approximation. Given
strike and maturity values at a mesh point the cubic spline interpolation is suÆcient to supply
all the values required for the calculation of the local volatility in (44).

Since the option valuation takes place on a log-transformed grid for consistency with the
earlier developed methods, the strike prices need to be transformed so that the same grid can
be utilized for calibration and pricing. De�ning � := ln(K) and ~C(�; T ) := C

�
e
�
; T
�
the local

volatility is given in terms of � as

�2(�; T ) =
2
�p

T � t @�
@T

+ 1

2

�p
T�t

+ r(T )@�
@�

�
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�
1

�

�
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�
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� 1p
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�
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�
@2�
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� @�
@�

�p
T � t+ e��

p
T � t@�

@�

�
(48)

where ~d1 is simply d1 in terms of � instead of K. At each node (i;m) in the grid the local
volatility is calculated from the spline approximation and the array of calculated volatilities
is stored to be used later in the pricing algorithm.

The pricing procedure follows from that developed for the Black-Scholes model with the
modi�cation that the volatility in the formulation is no longer considered to be constant. This
changes the constraint matrix in the order complementarity problem, and thus in the linear
programming formulation; the matrix now has non-constant diagonals, but is still tridiagonal
in nature. However, for American and exotic options this is the ideal problem to be solved by
the non-constant tridiagonal simplex method described in §2.2. Since this method calculates
the UL basis decomposition at each time-step, updating the decomposition only when new
basic variables enter the basis, it is a very eÆcient solution procedure for this problem.
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3.4 Dealing with Market Arbitrage

As noted above, the main problem with �tting the volatility smile to the market data is that
the result may not be arbitrage free. Several studies (e.g. [1, 11]) have aimed to detail these
instabilities in the data and why they occur. If a model produces arbitrage opportunities we
must use some regularization or �ltering procedure applied to the original market data to
remove them. Some practitioners suggest setting any negative probability densities to zero
(implying an in�nite local volatility), or restricting any local volatilities to lie within a range
(�min; �max) where the bounds are supplied somewhat arbitrarily. In our procedure we try to
�lter the data using methods derived from the underlying theory.

When a negative denominator occurs in (44) we necessarily have an arbitrage opportunity
since this implies a negative value of the transitional probability density. We correct this value
using put-call parity [33] to consider the prices of European put options implied by the call
option market data. Inherent in the �nite di�erence solution is the approximation of an
integral by a discrete sum, namely

Z
1

0

 (K)p(K;T jS; t)dK �
NX
i=0

 (Ki)p(Ki; T jS; t)�K; (49)

where p(�) := p(�; T jS; t) now denotes the discrete form of the conditional density. If the
market data implies a negative value of p(Kj) for some j 2 [0; N ] we consider a European
put option of strike Kj+1 with value P (S; t;Kj+1; T ). Then

P (S; t;Kj+1; T ) � e
�r(T�t)

jX
i=0

(Kj+1 �Ki)p(Ki)�K (50)

= e
�r(T�t)

j�1X
i=0

(Kj+1 �Ki)p(Ki)�K + e
�r(T�t)(Kj+1 �Kj)p(Kj)�K

which given all European put option prices are known (from the assumption that all European
call option prices are known together with put-call parity) allows us to �nd a value of the
discrete probability p(Kj) consistent with the market data. We must of course ensure that
this probability is non-negative, otherwise its value is set to zero.

The other possible inconsistency in the data is when the numerator of (44) is negative.
We rectify this by setting the local volatility at this point to zero.

4 Numerical Results

In this section we give empirical results for the procedure for pricing options consistent with
the observed market volatility smile outlined in §3.3. To make comparisons with published
articles we use two sets of real market data previously utilized as our underlying implied
volatility surfaces and price European, American and exotic options with respect to this
data. All solution times quoted are for results calculated on an IBM RS6000/590 workstation
with 1 GB RAM running under AIX 4.3, although only a small proportion of this memory
is utilized. Results are quoted in [20, 44] for solution on a Pentium II 400Mhz machine
running under Windows NT 4, which gives signi�cant speed-ups for most levels of domain
discretization.
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4.1 Volatility Data

Several approaches in the literature `manufacture' a volatility surface as a test data set, but
to test the numerical procedure described in §3.3 we use two di�erent market data sets as
noted above. The �rst contains European call option prices quoted on the S&P 500 index as
used in [2, 13] and the second consists of FTSE 100 volatility values implied from European
call option data as described in [26].

The corresponding two sets of implied volatility data are given in Tables 1 and 2 and
graphically in Figures 2 and 3. The data in Table 1 refers to the Black-Scholes implied
volatilities of European call options on the S&P 500 index as observed in October 1995. At
the time the data was gathered the S&P 500 index stood at a level of 590, and European
call options were available for a range of strikes from 85-140% of the current price, an index
range of 501.50 to 826.00. Call options were also available for maturities ranging from 0.175-
5 years, but as in [2] this study uses only short-maturity data with T < 2 years. It should
be noted that the data given is not all quoted in the market as the volatilities have been
extrapolated in areas of the table for which data was not available. The authors of [2] have
extrapolated a severe upward sloping section of the data for short maturities and high strikes
to put additional pressure on the pricing algorithm. For benchmark results we use only
options with maturity less than the mid-range of the data, i.e. with T � 1 year, since this
data is the most reliable. Figure 2 illustrates the implied volatility test surface given by the
data in Table 1 and shows the dependence of the implied volatility on the maturity and strike
price, highlighting smile and temporal volatility e�ects.

Table 2 corresponds to FTSE 100 volatility values implied from European call option data
for 31 March 1995. The initial index level was 3129.5 and data was quoted for 8 strike prices
and 5 maturities, but prices were quoted for di�erent strikes for the last two maturities than
for the earlier three maturities. However the data was simply interpolated to �ll the gaps as
described in §3.2. We also assume that a constant rate of interest r = 10% applies throughout
the period from time 0 until maturity 0.737 years.

Maturity

Strike 0.175 0.425 0.695 0.940 1.000 1.500 2.000 3.000 4.000 5.000

501.50 0.190 0.177 0.172 0.171 0.171 0.169 0.169 0.168 0.168 0.168

531.00 0.168 0.155 0.157 0.159 0.159 0.160 0.161 0.161 0.162 0.164

560.50 0.133 0.138 0.144 0.149 0.150 0.151 0.153 0.155 0.157 0.159

590.00 0.113 0.125 0.133 0.137 0.138 0.142 0.145 0.149 0.152 0.154

619.50 0.102 0.109 0.118 0.127 0.128 0.133 0.137 0.143 0.148 0.151

649.00 0.097 0.103 0.104 0.113 0.115 0.124 0.130 0.137 0.143 0.148

678.50 0.120 0.100 0.100 0.106 0.107 0.119 0.126 0.133 0.139 0.144

708.00 0.142 0.114 0.101 0.103 0.103 0.113 0.119 0.128 0.135 0.140

767.00 0.169 0.130 0.108 0.100 0.099 0.107 0.115 0.124 0.130 0.136

826.00 0.200 0.150 0.124 0.110 0.108 0.102 0.111 0.123 0.128 0.132

Table 1: Implied volatilities of S&P 500 equity index European call options
for October 1995 - Initial index 590
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Figure 2: Implied volatility surface for European call options on the S&P
500 index

Strike Price April May June Sept Dec

2975 17.36% 15.92% 16.52%

3025 16.16% 15.57% 16.04% 16.25% 16.23%

3075 14.67% 15.22% 15.72%

3125 14.45% 14.79% 15.41% 15.69% 15.89%

3175 14.30% 14.46% 15.05%

3225 13.64% 14.16% 14.61% 14.97% 15.46%

3275 13.94% 13.98% 14.25%

3325 13.21% 13.75% 13.83% 14.39% 14.92%

Maturity in Years 0.057534 0.134247 0.210959 0.460274 0.736986

Table 2: Implied volatilities for the FTSE 100 equity index European call
options for March 31 1995 - Initial index 3129.5
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Figure 3: Implied volatility surface for European call options on the FTSE
100 index

4.2 Computational Procedure

As described in §3.3 the pricing procedure occurs in two stand-alone stages. The �rst -
calibrating the local volatility - utilises the estimates of the implied volatility derivatives
to calculate the surface �(S; t) for use in pricing. In the following results this calibration
takes place on the same mesh which is used in the pricing procedure. However there are
signi�cant computational savings to be made by only calculating the local volatilities on a
coarser mesh and performing some type of interpolation between the calibrated values; this
is not investigated further in this paper.

The initial calibration of the surface is computationally expensive. To calculate a volatility
surface for a discretization of 800 time-steps and 200 space-steps takes approximately 20
seconds, although the time required for subsequent valuations on the same grid is a fraction
of this if the surface is stored for future use. We only quote solution times for the option
valuation, assuming that the initial creation of the local volatility surface is in memory.

After calibrating the volatility surface the options are valued using the UL update algo-
rithm of §2 for options with American exercise and for European options using a simple linear
equation solver. For the former, at each time-step of the UL update the basis decomposition
was calculated and the update used only when new variables entered the basis.
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4.3 Underlying Model Accuracy

We will attempt to evaluate the accuracy of the calibration of the volatility surface using the
pricing procedures previously outlined. But before doing this it is necessary to understand
the e�ect of the numerical approximations made in the �nite-di�erence scheme. As discussed
in [20] Crank-Nicolson �nite-di�erence approximations are accurate to O((�t)2 + (�x)2)
so that this underlying numerical error { not due to the volatility calibration { must be
accounted for in any comparisons between the given market data and computed option prices.
To enable this comparison to be made, the values of European call options on the S&P
500 index (Table 1) of less than 1 year maturity were calculated using the Crank-Nicolson
scheme (described in [20]) with a reasonable discretization level and � was set to the at-the-
money Black-Scholes implied volatility �atm for each strike K. The tridag solution algorithm
described in [43] replaced the tridiagonal LP solver, since for European options the discretized
PDE is simply a linear vector equation. These results are displayed in Table 3 and show that
for quite a low discretization level, which is convergent to 2 decimal places, the error of the
computational pricing scheme is less than 4 basis points (at the money) when compared with
the market values. These benchmark market values were calculated from the Black-Scholes
call pricing equation, and thus have themselves a small numerical error due to approximating
the normal distribution function. Since the actual market values would be contained within
a bid-ask spread, this accuracy is acceptable and is our benchmark for the accuracy of the
volatility �t.

4.4 European Option Results

With an understanding of the underlying numerical pricing accuracy of the �nite-di�erence
approach, we now use our pricing algorithm to recover the values of all the options given in
the market in order to assess the goodness-of-�t of the calibrated surface.

Since the S&P 500 volatility data is only used for maturities less than 2 years the results
in Table 4 concentrate on shorter maturity European call options. As discussed in [2] the
validity of option prices cannot be guaranteed for longer maturities since the volume of trade in
these markets is much less than for shorter maturities. Table 4 contains European call option
prices for the strikes and maturities given by the market. The reference values are calculated
through the use of the Black-Scholes pricing equation [6] with implied volatility values given
by Table 2. This requires an approximation for the cumulative Normal distribution which is
accurate to 10 decimal places [33]. The results in this table are for the same parameters as in
Table 3 using the same procedure, so that an accuracy comparison can be made. The errors
can be seen to be comparable to - more accurate in some cases than - the baseline numerical
accuracy described in Table 3. The conclusion must be that �tting the volatility smile does not
induce any signi�cant errors above the baseline accuracy into the option values for European
call options. Since the original European call options can be seen to be accurately priced,
the conclusion must be that the volatility surface that is �t to the data is consistent with
the local volatilities implied by the market through the prices it quotes. Solution time for a
European option at this discretization is approximately 0.4 seconds. The actual calculated
local volatility surface can be seen in Figure 4. A comparison with the implied volatility
surface shown in Figure 2 shows signi�cant di�erences.

The local volatility surface (Figure 4) is represented on a truncated strike domain. At
short maturities a spike of local volatility occurs at a strike value of approximately 650 which
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Maturity Strike Implied Market PDE Value Error

(years) volatility value �100
501.5 0.177 110.296 110.296 0.012

531 0.155 82.857 82.856 0.054

560.5 0.138 56.708 56.694 1.432

590 0.125 33.547 33.510 3.720

0.425 619.5 0.109 14.979 14.962 1.708

649 0.103 5.006 5.037 3.135

678.5 0.1 1.205 1.224 1.890

708 0.114 0.545 0.562 1.707

767 0.13 0.083 0.088 0.487

826 0.15 0.025 0.027 0.184

501.5 0.172 123.845 123.842 0.306

531 0.157 97.630 97.627 0.256

560.5 0.144 72.615 72.602 1.345

590 0.133 49.804 49.776 2.818

0.695 619.5 0.118 29.460 29.441 1.891

649 0.104 13.863 13.878 1.495

678.5 0.1 5.672 5.682 0.965

708 0.101 2.196 2.224 2.830

767 0.108 0.336 0.349 1.265

826 0.124 0.108 0.113 0.530

501.5 0.171 138.610 138.605 0.437

531 0.159 113.447 113.442 0.453

560.5 0.15 89.551 89.539 1.248

590 0.138 66.743 66.720 2.327

1 619.5 0.128 46.397 46.380 1.786

649 0.115 28.393 28.394 0.153

678.5 0.107 15.469 15.462 0.696

708 0.103 7.616 7.640 2.365

767 0.099 1.338 1.363 2.532

826 0.108 0.361 0.373 1.219

Table 3: Pricing Error: At the money European call options. T � 1 years,
M = 800, I = 200.
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M I K T BS � Value BS Value Error(�100)
800 200 501.5 0.175 19.00% 97.37 97.37 0.81

800 200 531 0.175 16.80% 68.82 68.84 2.33

800 200 560.5 0.175 13.30% 40.89 40.87 1.42

800 200 590 0.175 11.30% 16.90 16.89 0.85

800 200 619.5 0.175 10.20% 3.48 3.45 2.57

800 200 649 0.175 9.70% 0.28 0.26 1.90

800 200 678.5 0.175 12.00% 0.04 0.08 4.01

800 200 708 0.175 14.20% 0.00 0.03 2.66

800 200 767 0.175 16.90% 0.00 0.00 0.29

800 200 826 0.175 20.00% 0.00 0.00 0.09

800 200 501.5 0.425 17.70% 110.26 110.30 3.14

800 200 531 0.425 15.50% 82.83 82.86 2.79

800 200 560.5 0.425 13.80% 56.68 56.71 3.14

800 200 590 0.425 12.50% 33.51 33.55 3.91

800 200 619.5 0.425 10.90% 14.98 14.98 0.34

800 200 649 0.425 10.30% 5.01 5.01 0.45

800 200 678.5 0.425 10.00% 1.18 1.20 2.30

800 200 708 0.425 11.40% 0.32 0.55 2.56

800 200 767 0.425 13.00% 0.03 0.08 5.00

800 200 826 0.425 15.00% 0.01 0.02 1.52

800 200 501.5 0.695 17.20% 123.80 123.85 4.74

800 200 531 0.695 15.70% 97.58 97.63 4.76

800 200 560.5 0.695 14.40% 72.57 72.62 4.99

800 200 590 0.695 13.30% 49.75 49.80 5.53

800 200 619.5 0.695 11.80% 29.42 29.46 3.86

800 200 649 0.695 10.40% 13.91 13.86 4.43

800 200 678.5 0.695 10.00% 5.67 5.67 0.61

800 200 708 0.695 10.10% 2.19 2.20 0.52

800 200 767 0.695 10.80% 0.34 0.34 0.34

800 200 826 0.695 12.40% 0.11 0.11 0.12

800 200 501.5 1 17.10% 138.54 138.61 6.75

800 200 531 1 15.90% 113.38 113.45 6.43

800 200 560.5 1 15.00% 89.46 89.55 9.42

800 200 590 1 13.80% 66.66 66.74 7.91

800 200 619.5 1 12.80% 46.32 46.40 7.45

800 200 649 1 11.50% 28.39 28.39 0.38

800 200 678.5 1 10.70% 15.44 15.47 2.72

800 200 708 1 10.30% 7.62 7.62 0.80

800 200 767 1 9.90% 1.36 1.34 1.81

800 200 826 1 10.80% 0.37 0.36 0.49

Table 4: European call option prices �tting the S&P 500 volatility - short
maturities. Initial spot S = 590. Value is the calculated value. BS
value is the Black-Scholes price using the given implied volatility.
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Figure 4: Local volatilities �(S; t) for S&P 500 index options on a truncated
strike domain. Parameters M = 200, I = 200 for the full strike
range.

distorts any graphical representation of the local volatility surface, but does not cause any
instability in the calculated option values. For ease of representation, the local volatility is
shown for all strikes less than the level at which the spike occurs.

Results for the FTSE 100 data show similar patterns. Table 5 contains speci�c pricing
errors of European call options for di�erent levels of the domain discretization and shows
the convergence properties of the algorithm. We compare the calculated value with the value
given by the Black-Scholes call pricing equation to de�ne the quoted error. As can be seen the
error is behaving properly, with a reduction in the error as both time and space discretizations
increase. This particular option had value 114:194 so an error of � 0:115 is equivalent to a
0:1% error in the option value. It can be seen that the number of time-steps is quite critical
and this may be due to the discontinuity in the interpolation of the term structure of the
volatility. The derivative of volatility with respect to maturity is approximated by a �rst-
order di�erence since this term is not a natural by-product of bicubic spline interpolation.
However, a discretization level of M = 1600 and I � 300 gave an error of less than 0:1%.
If we require accuracy to within 0:1% of strike then all levels of discretization would satisfy
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Number of Time-Steps

100 200 400 800 1600 3200

Space 100 -0.867 -0.370 -0.114 0.020 0.097 0.141

Steps 200 -0.998 -0.508 -0.262 -0.138 -0.074 -0.040

400 -0.984 -0.494 -0.249 -0.127 -0.065 -0.034

Table 5: Errors in the calculated values of a European option on the FTSE
100 index with changes in the discretization level. Strike K = 3125
T = 0:211 r = 0:1 S = 3109:5.

Strike April May June

Price Value Actual Error Value Actual Error Value Actual Error

2975 158.84 158.87 3.50 189.08 189.09 1.00 221.23 221.25 2.30

3025 114.92 114.88 4.40 148.82 148.80 1.80 181.84 181.82 1.70

3075 74.54 74.52 1.63 112.51 112.52 0.70 146.10 146.11 1.20

3125 44.43 44.46 2.89 80.69 80.72 3.32 114.15 114.19 4.00

3175 23.50 23.51 1.09 54.92 54.91 0.54 86.11 86.13 1.93

3225 9.77 9.79 2.34 35.13 35.08 4.88 62.02 61.98 3.99

3275 4.15 4.17 2.10 21.24 21.21 2.62 42.85 42.84 0.94

3325 1.09 1.06 2.79 11.85 11.82 3.48 27.83 27.80 3.36

Table 6: Pricing errors �100 of FTSE 100 European call options. Actual
value given by Black-Scholes call pricing equation. M = 3200,
I = 200.

this criterion. Table 6 shows the pricing error for original quoted FTSE 100 options, using a
discretization level of 3200 time-steps and 200 space-steps. All pricing errors are less than 5
basis points at this level of discretization.

The calculated local volatility surface is shown in Figure 5. The axes are truncated in a
similar manner to the S&P local volatility surface, as a spike of volatility is also in evidence for
the FTSE data at a strike level of approximately 3250. The �gure also shows that for short
maturities the local volatility is behaving like the reciprocal of the conditional probability
density, smoothing out somewhat for higher maturities.

4.5 American Option Results

The next stage of our analysis is to extend the work to the pricing of American options.
This introduces an added dimension to the problem, since there is a very real possibility that
the optimal exercise boundary (see §2.1) will be moved by uctuations in the local volatility
surface. The actual solution is a modi�cation of the valuation of European options in the
previous section, with the updating tridiagonal LP solver introduced in place of the tridag

linear equation solver. Boundary conditions used in this section are as described in [20].
The �rst results on the S&P 500 in Table 7 show American put valuations for the LP

tridiagonal solver and also for the PSOR algorithm described in [14]. As a benchmark we
use the original LP valuation on a very �ne solution mesh using the at-the-money BS implied
volatility. For the American option we can immediately see that the values are lower than
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Figure 5: Local volatilities �(S; t) for FTSE 100 index options on a trun-
cated strike domain. Parameters M = 200, I = 200 for the full
strike range.

the constant volatility values to within the numerical tolerance allowed. The PSOR and LP
solutions both have comparable values on a relatively small grid, however the LP solution
time is 0.4 seconds whilst the PSOR solution time is close to 9 seconds. Since both solution
algorithms converge to within the same accuracy, the discrepancy between the smile-�tting
and at-the-money implied values must be due to the volatility surface.

It was noted in §2 that the convex shape of the optimal exercise boundary for the American
put problem could be used to increase the eÆciency of the tridiagonal solver. Figure 6
highlights the reasons why the option value is so di�erent when the volatility smile is �tted
by illustrating the di�erence in the shape of the optimal exercise boundary for the option.
When we take account of the local volatility, the exercise boundary is no longer a smooth
function of the asset price as might be expected, but is shifted by changes in the volatility.
Whilst this is no problem for the accuracy of the pricing algorithm, it does radically a�ect
the realised option price.

Table 8 contains comparison results for the FTSE 100 index. For this data the smile-
�tting values are signi�cantly higher than the LP(�LP) constant volatility computed values,
reecting the opposite slope of the short-dated option `smirk' in this case to that of the S&P
500 options.
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K � LP PSOR LP(�atm)

501.5 17.100% 2.695 2.696 2.704

531 15.900% 4.630 4.633 4.776

560.5 15.000% 8.378 8.393 8.946

590 13.800% 15.244 15.301 16.137

619.5 12.800% 30.230 30.352 31.145

649 11.500% 59.000 59.000 59.000

678.5 10.700% 88.500 88.500 88.500

708 10.300% 118.000 118.000 118.000

767 9.900% 177.000 177.000 177.000

826 10.800% 236.000 236.000 236.000

Table 7: American put valuation results �tting the S&P 500 volatility smile.
T = 1 year,M = 800, I = 200. PSOR tolerance=1�10�8 , ! = 1:2.
LP(�imp) corresponds to the 1-factor tridiagonal solution using at-
the-money BS implied volatility with M = 10000, I = 10000.

Figure 6: American put optimal exercise boundary for the smile �tting LP
solution. Comparison with the 1-factor LP method using ATM
BS implied volatility. Parameters: M = 1000; I = 1000 S0 =
K = 590; �BS = 13:8%
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Strike April May June

Price Smile Fit LP(�atm) Smile Fit LP(�atm) Smile Fit LP(�atm)

2975 9.31 7.12 18.54 15.01 29.86 24.62

3025 15.72 12.77 28.66 24.05 40.69 34.13

3075 26.03 21.86 42.92 37.11 55.40 47.43

3125 46.40 41.77 62.28 54.65 74.50 64.45

3175 76.53 70.38 88.59 78.01 98.70 85.33

3225 116.51 106.80 122.79 107.71 129.19 110.15

3275 166.50 150.90 165.84 143.13 167.70 139.95

3325 215.50 197.59 215.50 183.13 215.50 173.86

Table 8: American put option valuation results �tting the FTSE 100 volatil-
ity smile. LP(�atm) is the value calculated from the tridiagonal
solver with discretization M = 10000, I = 10000.

4.6 Exotic Option Results

We now price Asian �xed-strike options by �tting the smile. A discretely-sampled Asian �xed-

strike option's value is dependent on a pre-speci�ed strike value K and the current value of
a discretely-sampled arithmetic average of the asset price, where the average is calculated on
certain sample dates.

All results correspond to at-the-money options of 1 year maturity with the risk-free rate
assumed constant at 10%. In all the tables the column implied value refers to the value found
using the LP approach with constant volatility set to the Black-Scholes at-the-money implied
volatility for the options in question. The column smile value illustrates the results obtained
by �tting the volatility smile and term structure.

Table 9 contains option values for the European Asian put option with �xed-strike equal to
the initial asset price. As can be seen the option price �tting the volatility smile is signi�cantly
greater than the constant volatility price. This is the pattern seen throughout all S&P 500
put option results for all sampling levels, with a similar e�ect being seen in the price of call
options. In general, all these options are priced higher by �tting the smile, despite the fact
that the same volatility structure was used to accurately �t the European call option prices
in §4.4.

The corresponding American option values are shown in Table 10. Unlike the vanilla
American put, the modelling of the volatility adds, rather than subtracts, a premium from
the option value for the Asian option. The solution time for a discretization of 200� 2002 is
approximately 18 seconds.

Conversely, the American �xed-strike Asian option results on the FTSE 100 index (Ta-
ble 11) show a mixed e�ect. For a small number of samples of the average the smile-�tting
value is less than the Black-Scholes implied value, but the converse relationship holds for
higher sampling rates. This e�ect is likely due to the time-to-maturity variability of implied
volatility at strike 2975 depicted in Figure 3.
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Samples M I J Implied Value Smile Value

200 100 100 5.12 6.32

2 200 200 200 5.16 6.35

(6 monthly) 400 200 200 5.16 6.38

260 100 100 6.81 8.60

12 260 200 200 6.80 8.58

(monthly) 520 200 200 6.80 8.58

Table 9: Discretely sampled European �xed-strike Asian put option results
�tting the S&P 500 smile. Parameters: K = 590, S0 = 590 and
T = 1 year.

Samples M I J Implied Value Smile Value

200 100 100 5.38 6.64

2 200 200 200 5.42 6.67

(6 monthly) 400 200 200 5.42 6.68

260 100 100 9.71 12.03

12 260 200 200 10.20 12.57

(monthly) 520 200 200 10.20 12.67

Table 10: Discretely sampled American �xed-strike Asian put option results
�tting the S&P 500 smile. Parameters: K = 590, S0 = 590 and
T = 1 year

SAMPLES M I J Implied Value Smile Value

400 200 200 0.360 0.295

2 800 200 200 0.360 0.296

(6 monthly) 800 400 400 0.353 0.278

270 200 200 3.134 3.710

12 540 200 200 3.135 3.759

(monthly) 540 400 400 3.127 3.737

Table 11: Discretely sampled American �xed-strike Asian put option results
�tting the FTSE 100 smile. Parameters: K = 2975, S0 = 3137
and T = 0:211 years.
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5 Conclusions and Future Directions

In this paper we have applied a fast accurate linear programming valuation algorithm to
pricing exotic American options �tting the volatility smile implied by the market prices of
vanilla European call options. We have demonstrated �rst that the basic Crank-Nicolson
�nite di�erence methods have low discretization error and that the quoted vanilla options
are accurately priced by the �tted local volatility surface. Subsequently we have seen that
due to local volatility e�ects on the computed optimal exercise boundary, prices of American
options �tted to the smile di�er signi�cantly from those with constant volatilities. Finally, we
have seen similar e�ects for exotic options { as represented by discretely sampled �xed-strike
Asian options.

Current research extends the testing of these methods to lookbacks and barriers, including
both digitals and knock-in and knock-out features for Asians and lookbacks. An interesting
area of related research involves the Kalman �ltering of local volatility surfaces { as for
example computed in this paper { from one market epoch (day) to the next in order to achieve
better long-run hedging. Another line of our current research with PDE-based valuation
methods concerns wavelet basis techniques for high-dimensional Bermudan and American
�xed income derivatives.
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