
On the Martingale Problem for Jumping

Di�usions

M.A.H. Dempster

Centre for Financial Research

Judge Institute of Management Studies

University of Cambridge, Cambridge, England.

mahd2@cam.ac.uk

www-cfr.jims.cam.ac.uk

and

G.Ch. Gotsis

Hellenic Capital Market Commission

Syntagma Sq., Athens, Greece.

May 1998

Abstract

Jumping di�usion models for �nancial prices and returns are �nding increasing

application in the pricing of current contingent claims. Generalizing the theory for

a Markov process with continuous sample paths { characterized in terms of its in-

�nitesimal generator { we establish existence and uniqueness of solutions to jump

stochastic di�erential equations. We adapt the Stroock and Varadhan approach,

which develops a variant of the `weak sense' solution of a stochastic di�erential equa-

tion by formulating it as a di�usion process solution of a martingale problem. Our

approach to deriving the integro-partial di�erential equation for the value of a con-

tingent claim through the corresponding Kolmogorov forward equation is illustrated

by a generalization of the recent work of Babbs and Webber describing �xed income

derivative valuation in the presence of central bank rate changes.

Keywords: jumping di�usions, Markov processes, martingale problem, semimartin-

gales, �xed income derivatives.
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1 Introduction

The concept of jump-di�usion Markov process models of �nancial prices and returns is

�nding increasing application in pricing and hedging ever more complex contingent claims.

Some of these applications include equity index jumps [24, 18], central bank rate changes

[3, 19], credit rating changes [7], catastrophe risk [1], etc. On the other hand, usually

either formal statements are simply assumed correct or practically restrictive assumptions

are made in setting out the corresponding integro-partial di�erential equation (PDE) for

claim valuation and hedging. In this paper, we marshall appropriate results from the

mathematical literature to establish the existence and uniqueness of a weak solution to a

general jump stochastic di�erential equation (SDE) in terms of the corresponding martin-

gale problem stated in terms of the in�nitesimal generator of the Markov solution process.

Although, for example, non-Markovian versions of Heath-Jarrow-Morton compatible short

term interest rate models are possible [5], Markov models are almost universally used in

practice. We illustrate the use of the solution to a martingale problem for a Markov pro-

cess in a typical �nancial application under a risk neutral measure to derive rigorously

the integro-PDE satis�ed by the claim value. The machinery treated in this paper can be

applied ceteris paribus to all the �nancial situations mentioned above { and many more

involving point process events.

A number of authors have studied the existence and uniqueness of solutions to stochas-

tic di�erential equations whose solutions are termed di�usion processes. Loosely speaking

the term di�usion is attributed to a Markov process which has continuous sample paths

and can be characterized in terms of its in�nitesimal generator. The latter is speci�ed

in terms of drift and di�usion coeÆcients which have natural interpretations in �nancial

modelling.

There are several approaches to the study of di�usions ranging from the purely an-

alytical to the purely probabilistic. The methodology of stochastic di�erential equations

(SDEs) was suggested by P. Levy [17] as an `alternative' probabilistic approach to the

deterministic theory of heat di�usion and was carried out by K. Ito. [14]. His strong so-

lution is constructed on a given probability space, with respect to a given �ltration and a

given Brownian motion W. The idea of weak solution is a notion in which the probability

space, the �ltration and the driving Brownian motion are all part of the solution, rather

than the statement, of the problem. Stroock and Varadhan [22, 23] developed a varia-
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tion of the solution of a stochastic di�erential equation in the `weak sense' by formulating

the search for a di�usion process with given drift and dispersion coeÆcients in terms of

the martingale problem. Uniqueness of the solution process is required in the sense of its

�nite-dimensional distributions and the continuity of its sample paths. Although �nding

this process is equivalent to solving the related stochastic di�erential equation in the weak

sense, the SDE is not explicitly involved. Rather, the in�nitesimal evolution of suitable

functionals of the solution process { speci�ed by the in�nitesimal characteristics of the

process through its in�nitesimal generator { are determined up to an additive martingale

error term.

In this paper we consider the existence and uniqueness of the solution to the Stroock-

Varadhan [23] martingale problem for Markov semimartingales, i.e. jumping di�usions. The

next section contains notation and preliminaries, after which the statements and proofs

of the main results are given in Section 3. Loosely speaking, these theorems imply that

the in�nitesimal characteristics of a jumping di�usion { drift, dispersion, jump rate and

post-jump measure { together with the requirement that its sample paths be right contin-

uous and left limited, uniquely determine the solution process of the martingale problem.

In Section 4, an illustrative application of this practically important result is given to a

contemporary problem in mathematical �nance. However the techniques developed in this

paper are much more broadly applicable, as is noted in the conclusions of Section 5.

2 Notation and Preliminaries

In this section we review some basic de�nitions and results from Markov process theory

[8, 11, 16, 23].

Throughout the paper (
;F ; P ) denotes a probability space, E is a metric space and

B(E) is the �-algebra of Borel subsets of E. A collection fFtg := fFt; t 2 [0;1)g of

�-algebras of sets of F is a �ltration i� Ft � Ft+s for t; s 2 [0;1). For a stochastic process

X we de�ne FXt := �fXs : 0 � s � tg to be the ��algebra which corresponds to the

information known to an observer watching X up to time t. A �ltration fFtg is said to

satisfy the usual conditions if it is increasing, right-continuous and F0 contains all the
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P-negligible events in F . The process X is Markov i�

PfX(t+ s) 2 BjFXt g = PfX(t+ s) 2 BjX(t)g (1)

for all s; t � 0 and B 2 B(E) .

Let L denote a real Banach space with norm k � k and let M(E) denote the collection

of all real-valued, Borel measurable functions on E. B(E) � M(E) denotes the Banach

space of bounded functions with norm k f k := supx2E j f(x) j. C(E) denotes the sub-

space of B(E) of bounded continuous functions and C0(E) denotes the Banach space of

continuous functions which vanish at in�nity (in terms of the one point compacti�cation

of E) equipped with this norm. P(E) denotes the family of Borel probability measures on E.

Taking into consideration that most of the stochastic processes which arise in �nancial

applications have the property that they have right and left limits at each time point for

almost every sample path, we denote by DE[0;1) the Skorohod space of right continuous

functions x : [0;1) ! E with left limits. We take DE[0;1) to be the path space of all

processes considered here for a suitable space E (usually IRn) and CE[0;1) will denote

the subspace of DE[0;1) containing the continuous functions x : [0;1)! E.

De�ning a metric d on E we can induce a topology on the space DE[0;1). It is proven

in Ethier and Kurtz [11], Theorem 5.6, p.121, that with the topology induced by the Sko-

rohod metric DE[0;1) is a separable space if E is separable and is complete if (E; d) is

complete. The processes of interest to us here will take values in a complete, separable

metric space E and will have sample paths in DE[0;1) equipped with the Skorohod topol-

ogy.

A one-parameter family fT (t); t � 0g of bounded linear operators on a Banach space

L with norm k � k is called a semigroup i� T (0) = I and T (s+ t) = T (s)T (t) for all s; t �

0. A semigroup T (t) on L is said to be strongly continuous i� limt!0 k T (t)f k=k f k

for every f 2 L; it is said to be a contraction semigroup i� k T (t) k< 1 for all t � 0.

We de�ne a semigroup fT (t)g on L to be measurable i� T (�)f is a measurable function on

([0;1);B[0;1)) for each f 2 L.

Let A be a linear operator on L, which is a linear mapping whose domain D(A) is a
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subspace of L and whose range R(A), another subspace, lies in L.

A linear operator A on L is said to be dissipative i� k �f � Af k� � k f k for every

f 2 D(A) and � > 0.

We de�ne for f 2 L

Af := lim
t!0

1

t
[T (t)f � f ] (2)

to be the in�nitesimal generator of a semigroup fT (t)g on L. We also de�ne:

grÂ := f(f; g) 2 L� L : T (t)f � f =

Z t

0

g(s)ds; t � 0g (3)

to be the graph of the full generator Â of a measurable contraction semigroup fT (t)g on

L with extended domain D(Â) � D(A).

If, for some real �0, �0 � A := �0I � A is one-to-one, R(�0 � A) = L and (�0 � A)�1 is

a bounded linear operator on L, then �0 is said to belong to the resolvent set of A, and

R�0 = (�0 � A)�1 is called the resolvent at �0 of A.

A set M � B(E) is called separating i� whenever P;Q 2 P(E) and
R
fdP =

R
fdQ,

for all f 2 M we have P = Q. Conversely, if P 6= Q, then there exists f 2 M such thatR
fdP 6=

R
fdQ, i.e. M separates points of P(E).

An operator A on C(E) is said to satisfy the positive maximum principle i� whenever

f 2 D(A), x0 2 E and supx2E f(x) = f(x0) � 0 we have Af(x0) < 0.

A process X is a martingale with respect to the �ltration fFtg i� IE[XtjFs] = Xs a:s:

and a sub (super) martingale according as the equality becomes � (�). If with respect to

fFtg there exists a sequence of stopping times � n %1 such thatX(�)^� n
is a martingale for

all n = 1; 2; : : : , we say that X is a local martingale. All martingales are local martingales,

but not conversely. An adapted process X is a semimartingale i� it has a decomposition

of the form

Xt = X0 +Mt +At;
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where X0 is a random variable with distribution � (we write X0 � �), M is a local mar-

tingale and A has sample paths in DE[0;1) of �nite variation, i.e. of bounded variation

on compact time sets. Local martingales, �nite variation processes, sub- and supermartin-

gales and (for E := IRn) n-dimensional standard Brownian motion W, with uncorrelated

Wiener coordinate processes, are all semimartingales.

By a solution of the martingale problem for A we mean a measurable stochastic process

X with values in E and sample paths in 
 := DE[0;1) de�ned in a probability space

(
;F ; P ), where is the Borel �-�eld relative to the Skorohod topology, such that for each

(f; g) 2 A , i.e. g := Af ,

f(X(t))�

Z t

0

g(X(s))ds (4)

is a martingale with respect to the �ltration FXt for all f 2 B(E). Equivalently, we say

that P solves the martingale problem for A.

When an initial distribution � 2 P(E) is speci�ed for the solution process X and (4)

holds, we say that X { equivalently P { is a solution of the martingale problem for (A; �)

and without loss of generality write (4) in the form

f(X(t))� f(X(0))�

Z t

0

g(X(s))ds: (5)

If a solution of the martingale problem for (A; �) exists and is unique, we say that the

martingale problem for (A; �) is well-posed.

Denoting by � the martingale process X with X(0) � � given by (5), we have for all

f 2 B(E)

f(X(t)) = f(X(0)) +

Z t

0

Af(X(s))ds+�(t); (6)

which is a stochastic version of the fundamental theorem of calculus due to Dynkin [8]

involving the 0-mean martingale error �. Taking expectations conditional on X(0) = x,

using Lebesgue's dominated convergence theorem and di�erentiating with respect to time
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yields the Kolmogorov forward equation for Exf(Xt) as

@

@t
Exf(X(t))� AExf(X(t)) = 0: (7)

Finally, consider the Borel measurable drift vector function b : [0;1)�IRn ! IRn; (t; x)!

b(t; x) and volatility matrix function � : [0;1)� IRn ! IRn2 ; (t; x)! �(t; x) := (�ij(t; x)).

The di�usion matrix function a : [0;1) � IRn ! IRn2 , (t; x) ! a(t; x) := (aij(t; x)) is

de�ned by the di�usion (covariance) coeÆcients

aij(t; x) :=

nX
k=1

�ik(t; x)�kj(t; x):

We de�ne a weak solution of the stochastic di�erential equation (SDE)

dX(t) = b(t;X(t))dt+ �(t;X(t))dW(t) (8)

to be a triple f(X;W); (
;F ; P ); fFtgg where:-

(i) (
;F ; P ) is a probability space.

(ii) fFtg is a �ltration of sub-�-�elds of F satisfying the usual conditions.

(iii) X = X(t); 0 � t <1, is a continuous adapted IRn-valued process and X has sample

paths in C IRn [0;1),

(iv) W := fW(t) : 0 � t <1g is an n-dimensional standard Brownian motion and the

following conditions are satis�ed:

(a) Pf
R t

0
[ jbi(s;X(s))j+�2ij(s;X(s)) ] ds � 1g = 1 holds for every 1 � i; j � n and

0 � t <1, and

(b) the integral version of (8)

X(t) = X(0) +

Z t

0

b(s;X(s))ds+

Z t

0

�(s;X(s))dW(s) 0 � t <1 (9)

holds almost surely.
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2.1 The martingale problem and weak solution of SDEs

The following propositions demonstrate the existence of a unique solution to a martingale

problem for di�usions in IRn and the equivalence of the martingale problem solution and

a weak solution to the corresponding stochastic di�erential equation. A weak solution to

the SDE (8) induces on C IRn[0;1) � D IRn [0;1) a probability measure P which solves

the martingale problem (A; �), for A de�ned for all f 2 B( IRn) by

Af(t; x) :=
@f(t; x)

@t
+

1

2

nX
i=1

nX
j=1

aij(x)
@2f(t; x)

@xi@xj
+

nX
i=1

bi(t; x)
@f(t; x)

@x
; (10)

and conversely.

Proposition 1. Let a(t; x) and b(t; x) be bounded and Borel measurable. Suppose that for

every x 2 IRn and for all � from a given separating set M � C IRn[0;1)

EP1 [�(X(t))] = EP2 [�(X(t))]; (11)

where the probability measures P1 and P2 both solve the martingale problem for (A; �) start-

ing from (s; x). Then P1 = P2, i.e. starting from (s; x) there is at most one solution to the

martingale problem (A; �) with sample paths in CE[0;1).

Proof : See Stroock and Varadhan [23], Theorem 6.2.3, p.147.

The next general proposition shows existence of solution processes X to the martingale

problem in locally compact spaces E such as IRn.

Proposition 2. Let E be locally compact and separable and let A be a linear operator on

C0(E). Suppose that D(A) is dense in C0(E) and that A satis�es the positive maximum

principle. De�ne the linear operator A� on C(E�), where E� := E [f�g is the one-point

compacti�cation of E, by

(A�f)jE := A(f � f(�))jE A�f(�) := 0 (12)

for all f 2 C(E�), so that (f � f(�))jE 2 D(A). Then for each � 2 P(E�) there exists a
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solution of the martingale problem for (A�; �) with sample paths in DE[0;1).

Proof : See Ethier and Kurtz [11], Theorem 5.4, p.199.

Proposition 3. The existence of a solution P on C IRn [0;1) to the martingale problem

(A; �) for A de�ned by (10) is equivalent to the existence of a weak solution f(X;W); (
;F ; P ); fFtgg

to the stochastic integral equation (9) or, formally, the stochastic di�erential equation (8)

with initial condition X(0) � �.

Proof : Since a martingale is a local martingale, we may apply Karatzas and Shreve [16],

Proposition 4.6, p.315, to show the existence of the required weak solution. The converse

follows from Ito's lemma and will be established more generally in Theorem 2 below.

3 Main Results

We de�ne a jumping di�usion to be a solution process X in IRn of the jump stochastic

di�erential equation

dX(t) = b(t;X(t�))dt+ �(t;X(t�))dW(t) + �X(t�); (13)

where the jump saltus �X(�
�

) of X at the jump epoch � has in�nitesimal characteristics

at (t; x) 2 [0;1) � IRn given by �(t; x) and Q(t; x; �). Here � 2 B([0;1) � IRn) is the

nonnegative jump rate function and Q : [0;1)� IRn ! P(IRn) is the post-jump (transition

probability) measure. The term �X(t�) is zero at non-jump epochs t 2 [0;1). The remain-

ing in�nitesimal characteristics of X are the Borel measurable drift b : [0;1)� IRn ! IRn

and volatility matrix � : [0;1)� IRn ! IRn2 as before.

First we state the generalisation of Ito's rule for semimartingales.

Proposition 4. Suppose X is a semimartingale in IRn with decomposition of the form

Xt = X0 +Bt +Mt; (14)
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for B an adapted process of �nite variation andM a local martingale, and let f : IRn ! IR

be twice continuously di�erentiable with bounded �rst and second derivatives. Then

f(Xt) = f(X0) +

nX
i=1

Z t

0

@

@xi
f(Xs�)dXis +

1

2

nX
i=1

nX
j=1

Z t

0

@2

@xixj
f(Xs�)dhXi

c;Xj
cis

+
X
�2(0;t]

(f(Xs)� f(Xs�)) a:s:; (15)

where Xc is the continuous part of X de�ned for t 2 [0;1) as

Xc(t) := X(t)�
X
�2[0;t]

�X(��) (16)

in terms of the jump times � and hXc
i ;X

c
jit is the quadratic covariation, i.e. the instanta-

neous covariance, of Xi
c and Xj

c at time t.

Proof : See Elliott [10], p.132, where the result is obtained for IR. The extension to IRn

is straightforward.

3.1 The martingale problem for time homogeneous jumping dif-

fusions

We consider �rst the time homogeneous case of the martingale problem and de�ne the

bounded post-jump measure Q : E ! P(E) to have the property Q(�; B) 2 B(E) for all

B 2 B(E).

Proposition 5. Let (E,d) be complete and separable and let grA1 � B(E) � B(E), the

jump rate � 2 B(E), Q be a bounded jump measure and A2 be given by

A2f(x) = �(x)

Z
E

(f(y)� f(x))Q(x; dy): (17)

Suppose that for every � 2 P(E) there exists a solution of the CE[0;1) martingale problem

for (A1; �). Then for every � 2 P(E) there exists a solution of the DE[0;1) martingale

problem for (A1 + A2; �).
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Proof : See Ethier and Kurtz [11], Proposition 10.2, p.256.

Proposition 6. Let L be a family of functions which is de�ned on a Borel subset of IRn

and is closed under addition, scalar multiplication and weak-convergence. If L contains

all twice continuously di�erentiable functions with compact support, then L contains all

bounded Borel functions and is separating.

Proof : See Dynkin [8], Lemma 5.12, p.160.

Proposition 6 enables us to make use of the following theorem of Ethier and Kurtz

to show the uniqueness of the solution to the martingale problem for jumping di�usions

by setting the separating set L := B( IRn) � C2
0( IR

n), the space of twice continuously

di�erentiable functions on IRn which vanish at in�nity.

Proposition 7. Let E be separable and let grA � B(E)�B(E) be linear and dissipative.

Suppose there exists a linear operator A0 such that grA0 � grA, R(�0 � A0)=D(A0)=L for

some �0 and L is separating. Let � 2 P(E) and suppose X is a solution of the martin-

gale problem for (A; �). Then X is the Markov process corresponding to the semigroup on

L generated by the closure of A0 and uniqueness holds for the solution of the martingale

problem for (A; �).

Proof : See Ethier and Kurtz [11], Theorem 4.1, p.182.

We now state our �rst essentially original theorem.

Theorem 1. Consider a di�usion process generator A1 on B( IRn), i.e. the weak closure

of

A0
1f(x) :=

1

2

nX
i=1

nX
j=1

aij(x)
@2f(x)

@xi@xj
+

nX
i=1

bi(x)
@f(x)

@xi
(18)

de�ned on C0( IRn) with locally bounded and Borel measurable drift coeÆcients bi and

di�usion coeÆcients aik, and a jump process generator A2 with jump rate � 2 B( IRn) and
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bounded post-jump measure Q, i.e.

A2f(x) = �(x)

Z
IRn

(f(y)� f(x))Q(x; dy) (19)

for f 2 B(IRn). Then there exists a Markov process X which is the unique solution of the

martingale problem for (A=A1 + A2; �).

Proof : In order to �nd a solution to the martingale problem using Proposition 7 we must

have a dissipative operator, so we need to prove that A := A1 + A2 is dissipative. Indeed

for x0 := argmaxf(x) we have that

k �0f � Af k=k �0f � A1f � A2f k� �0f(x0)� A1f(x0)� A2f(x0) � �0f(x0) = �0 k f k

because A1 and A2 both satisfy the positive maximum principle.

The proof now follows directly from Propositions 5, 6 and 7.

So the martingale problem (A; �) in the time homogeneous case is well-posed.

Of course { analogous to the CE[0;1) case { the solution of the martingale problem

(A := A1 +A2; �) in DE[0;1) means the (weak) solution of the jump SDE corresponding

to (�; b; �) with an added jump term with in�nitesimal characteristics � and Q.

Theorem 2. A Markov process X in IRn is the unique solution of the martingale problem

for (A := A1 + A2; �) of Theorem 1 if, and only if, X is the unique weak solution of the

time homogeneous form of the jump stochastic di�erential equation (13) given in integral

form by

Xt =

Z t

0

b(Xs�)ds+

Z t

0

�(Xs�)dWs +

Z t

0

d(Xs �Xc
s�): (20)

with initial condition X(0) � �.

Remark : The last integral in (20) is a generalized Ito integral with semimartingale inte-

grator de�ned by (16). See, for example, Rogers and Williams [20], Chapter 6.
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Proof : Let X be the unique solution of the martingale problem (A; �) and consider an

arbitrary stopping time � <1 a.s.

Suppose �rst that X is the corresponding unique solution of the local martingale prob-

lem for (A; �) stopped at � . Then applying Proposition 4 for the stopped version of the

semimartingale

X = Xc + (X�Xc
�) :=W + (X�W�) (21)

with f(X) := Xi; i = 1; : : : ; r, we obtain (20) for the interval [0; � ]. Taking an increasing

sequence of stopping times � %1 a:s: yields the result.

Conversely, if X is a weak solution of (20) with X(0) � �, then using Proposition 4 we

may conclude for f 2 C2(IRn) \ �C( IRn) that

f(Xt)� f(X0)�

nX
i=1

Z t

0

@

@xi
f(Xs�)dXis �

1

2

nX
i;j=1

Z t

0

@2

@xi@xj
f(Xs�)dhX

c
i ;X

c
jis

�

Z t

0

�(Xs�)

Z
IR

[f(y)� f(Xs�)]Q(Xs�; dy)ds

= f(Xt)� f(X0)�

nX
i=1

Z t

0

@

@xi
f(Xs�)dXis �

1

2

nX
i;j=1

Z t

0

@2

@xi@xj
f(Xs�)dhX

c
i ;X

c
jis

�

Z t

0

d[f(Xs)� f(Xs�)]

+

Z t

0

d[f(Xs)� f(Xs�)]�

Z t

0

�(Xs�)

Z
IRn

[f(y)� f(Xs�)]Q(Xs�; dy)ds

= 0 +

Z t

0

d[f(Xs�)� �(Xs�)

Z
IRn

f(y)Q(Xs�; dy)� [1� �(Xs�)]f(Xs�)]

=

Z t

0

d[f(Xs)� IEf(Xs)]: (22)

Thus the semimartingale increments of the last generalized Ito integral have expectation

0 and hence the integral represents a 0-mean martingale process �, as required. Applying

Proposition 6 yields the result for f 2 B(IRn) and we may conclude from Proposition 7

that X uniquely solves the martingale problem for (A; �).

13



3.2 Time-dependent case

Let us now consider processes whose parameters vary in time { the common situation in

�nancial applications.

In general let grA � B([0;1) � E) � B([0;1) � E). Then a measurable E-valued

process X with X(0) � � is the solution of the martingale problem for (A; �) i� for each

(f; g) 2 A

f(t;X(t))� f(0;X(0))�

Z t

0

g(s;X(s))ds (23)

is a 0-mean martingale with respect to the �ltration FXt . Most of the basic results concern-

ing martingale problems can be extended to the time-dependent case by considering the

space-time process X0(t) := (t;X(t)). It follows that in the time-dependent case the linear

operator A2 for a jumping process with jump rate �(�; �) 2 B([0;1) � E) and bounded

post-jump measure Q : [0;1)� E ! P(E) is given by

A2f(t; x) = �(t; x)

Z
(f(t; y)� f(t; x))Q(t; x; dy): (24)

Specializing to the case E := IRn of the practical interest, the drift and di�usion coeÆ-

cients arising from the SDE (8) now also depend on the time t and de�ne the second-order

di�erential operator (10). This leads to the following result.

Theorem 3. Consider the time-dependent di�usion process generator A1 on B( IR
n) which

is the weak closure of

A0
1f(t; x) =

@f(t; x)

@t
+

1

2

nX
i=1

nX
k=1

aik(t; x)
@2f(t; x)

@xi@xk
+

nX
i=1

bi(t; x)
@f(t; x)

@xi
(25)

de�ned on C2
0 ( IRn) with locally bounded and Borel measurable drift coeÆcients bi and

di�usion coeÆcients aik and the jump process generator

A2f(t; x) = �(t; x)

Z
(f(t; y)� f(t; x))Q(t; x; dy) (26)
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with jump rate � 2 B([0;1) � IRn) and bounded jump transition probability measure

Q : [0;1)� IRn ! P( IRn).

Then there exists a Markov process X in IRn which is the unique solution of the mar-

tingale problem for (A=A1 + A2; �).

Proof : The proof follows directly from Theorem 1 using the space-time process X0(t)

de�ned above.

Finally, we state without proof the straightforward generalization of Theorem 2.

Theorem 4. A Markov process X in IRn is the unique solution of the martingale problem

for (A := A1 + A2; �) of Theorem 3 if, and only if, X is the unique weak solution of the

jump stochastic di�erential equation

dX(t) = b(t;X(t�))dt+ �(t;X(t�))dW(t) + �X(t�) (27)

given in integral form by

Xt =

Z t

0

b(s;Xs)ds+

Z t

0

�(s;Xs)dWs +

Z t

0

d(Xs �Xc
s�) (28)

with initial condition X(0) � �.

4 Application to Fixed Income Derivatives

As a typical application of the above results to contingent claims analysis we consider the

Babbs and Webber [3] model for �xed income derivative valuation in the presence of central

bank rate changes. They modelled the term structure of interest rates as involving two

correlated state variables : the oÆcial short rate r and the market short rate or state of

the economy X.

We suppose given a probability space (
;F ; P ) and the �ltration Ft generated by a

real-valued Wiener process W. The �-algebra Ft represents the information available to

15



the �nancial markets at time t and the �ltration satis�es the usual conditions. Note that

the authorities may possess greater information at time t than is embodied in Ft. Trade

takes place in a �xed �nite time interval [0,T ].

Our version of the model involves two processes: the oÆcial short rate r and a di�usion

process X in IRn�1. The vector process X represents the state of economy { including

the market short rate { which, together with the oÆcial short rate r, drives the market's

assessment of the likelihood of the authorities changing the level of r.

We have a savings account whose initial value is continuously compounded at interest

rate r by the factor

P0(t) = exp

�Z t

0

r(u)du

�
: (29)

Babbs and Webber characterise the spot (instantaneous) oÆcial interest rate r as a

pure jump process with jumps of �xed sizes. At each point in time the probability of a

jump of size cj occurring in the next in�nitesimal time interval Æt is given by a generalized

Poisson process Nj with state-dependent intensity �j := �j(X) as �jÆt + 0(Æt).

The process r satis�es

dr =

JX
j=1

cjdNj; (30)

where c1; c2; : : : ; cJ represent the jump sizes andNj is a point process counting the number

of jumps of size cj since time zero and possessing a predictable intensity �j.

Bounds are needed for both r and the �j's. Namely, there exists a lower bound rlower

and an upper bound rupper such that each �j vanishes when r + cj 62 [rlower; rupper] and

there exists a constant k such that

P [ sup
0�t�T

max
j=1;2;::: ;J

�j(t) � k] = 1:
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In our version of the Babbs-Webber model the oÆcial change of the short rate is assumed

to be driven both by its own level r and the state of the economy X { including the market

rate { and the joint evolution of r and X is assumed to be Markovian. The dynamics of

X are given by

dX(t) = b(t; r(t�);X(t�))dt+ �(t; r(t�);X(t�))dW(t); (31)

where W is vector standard Brownian motion in IRn�1 and b(�; �; �) and �(�; �; �) are locally

bounded and Borel measurable. The evolution of r is given by a pure jump stochastic

di�erential equation

dr(t) = �r(t�) (32)

with suitable in�nitesimal characteristics �(t; r; x) and Q(t; r; q; x) allowing arbitrary jump

saltae.

A unique weak solution of the vector jump stochastic di�erential equations (31)-(32)

exists.

Theorem 5. Let b and � be locally bounded and Borel measurable and let � 2 P( IRn).

Then there is a unique weak solution of the vector jump stochastic di�erential equation (31)-

(32) corresponding to (�; b; �; Q; �) if, and only if, there exists a unique solution of the

DIRn[0;1) martingale problem for (A; �), where A is given by the weak closure of

A0f(t; r; x) =
@f(t; r; x)

@t
+

1

2

nX
i=1

nX
k=1

aik(t; r; x)
@2f(t; r; x)

@xi@xk
+

nX
i=1

bi(t; r; x)
@f(t; r; x)

@xi

+ �(t; r; x)

Z
(f(t; q; x)� f(t; r; x))Q(t; r; q; x): (33)

Proof : This result is a direct application of Theorem 4.

In particular the stochastic di�erential equation (31) has a weak solution X in the

probability space (CIRn[0;1);B(CIRn[0;1)); P ) where P is Wiener measure.
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Corollary 1. A unique weak solution of the Babbs-Webber jump stochastic di�erential

system [3] exists.

Proof : For the Babbs-Webber model the jump rate is given by

�(t; r(t�);X(t�)) :=

JX
j=1

�j(t; r(t�);X(t�) (34)

and the discrete jump transition measure is given by

�j(t; r(t�);X(t�)

�(t; r(t�);X(t�))
for r(t) = cj + r(t�); j = 1; : : : ; n; (35)

and 0 otherwise.

A yield curve can be represented in terms of the prices of zero coupon (pure discount)

bonds of all maturities � 2 (0; T ]. Babbs and Webber [3] represent the price of a pure

discount bond in terms a partial di�erential-di�erence equation { a special case of an

integro-partial di�erential equation { which the values of the bond must satisfy. We give

here a more general result { �rst for the case n := 2 for comparison with [3].

Let B[t; �; r;X] to be the price of a pure discount bond at time t maturing at time

� 2 (0; T ].

Theorem 6. For X a scalar process the pure discount bond prices B satisfy the integro-

partial di�erential equation

@B[t�; �; r; x]

@t
+ b�(t; r; x)

@B[t�; �; r; x]

@x
+

1

2
�2(t; r; x)

@2B[t�; �; r; x]

@x2

+ �(t; r; x)

Z
IR

fB[t; �; q; x]� B[t�; �; r; x]gQ�(t�; r; dq; x)

= B[t�; �; r; x]r(t�) (36)

where b� := b� �0� and Q� is the risk-adjusted post-jump measure under any appropriate

equivalent martingale measure ~P .
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Proof: This is a consequence of Theorem 5 and the Kolmogorov forward equation (7)

applied to the present value f(t; r; x) := e�r(t�)B[t�; �; q; x] of the price of the discount

bond maturing at � .

Note that �0 is the market price of risk and that under Q� the original oÆcial short

rate process r is replaced by rt �
R t

0
�(s; rs;xs)

R
IR
r Q(s; rs; dr;xs)ds, a martingale. ~P

could be taken to be the minimal equivalent martingale measure in the sense of [11] for

the incomplete market caused by the unpredictability of oÆcial short rate jumps. In this

case under ~P the process r2 � hr; ri, centred by its quadratic variation compensator hr; ri

[10, 20], is a martingale and expected squared losses due to oÆcial short rate jumps are

minimized.

Extending Theorem 6 to the vector process X for arbitrary n, equation (36) must be

replaced by

@B[t�; �; x]

@t

+

nX
i=1

b�i (t; x)
@B[t�; �; x]

@xi
+

1

2

nX
i=1

nX
j=1

nX
k=1

�2ik(t; x)�
2
kj(t; x)

@2

@xi@xj
B[t�; �; x]

+ �(t; x)

Z
IRn
fB[t; �; y]�B[t�; �; x]gQ�(t�; x; dy)

= B[t�; �; x]r(t�); (37)

where we now consider the pure jump process r to be the �rst coordinate of X.

Finally, we note that this generalization remains valid when applied to an appropriate

version of the general vector jump stochastic di�erential equation (27) or (28) in the state-

ment of Theorem 4. This allows any of the last n�1 coordinates ofX to be di�usions, pure

jump processes or jumping di�usions with arbitrary time and state dependent correlation

structure as might be required for �nancial modelling purposes.
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Conclusion

In this paper we have given a rigorous path to the derivation of the integro-PDE satis�ed

by the value of contingent claims based on semimartingale { i.e. jumping di�usion { price

or rate processes. Our approach through the unique solution of the Stroock-Varadhan mar-

tingale problem is equivalent to unique weak solution of the corresponding jump stochastic

di�erential equation which expresses the �nancial analysts' intuition. Applications to claim

valuation and hedging are numerous for underlyings which include jumping equity indices,

oÆcial short rates, credit spreads, catastrophe risks, etc. Note that the results we have

presented { unlike those in the previous literature [24, 15, 9, 18, 21] { allow the correlated

�nancial variables underlying the models to be an arbitrary combination of di�usions, pure

jump processes and jumping di�usions with time and state varying correlation. In a forth-

coming paper we will present some computational results for such processes.
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