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Abstract

Multistage stochastic linear programming has many practical applications for problems

whose current decisions have to be made under future uncertainty. There are a variety

of methods for solving the deterministic equivalent forms of these dynamic problems,

including the simplex and interior point methods and nested Benders decomposition {

which decomposes the original problem into a set of smaller linear programming prob-

lems and has recently been shown to be superior to the alternatives for large problems.

The Benders subproblems can be visualised as being attached to the nodes of a tree

which is formed from the realisations of the random data vectors determining the un-

certainty in the problem. Parallel versions of the nested Benders algorithm involve two

obvious techniques for parallelising the associated tree structure for multiprocessors

or multicomputers { subtree parallelisation or a nodal parallelisation { both of which

utilise a farming approach. The nodal parallelisation technique is presented in this

paper, as it balances load more e�ciently than its alternative. Di�ering structures of

the test problems cause di�ering levels of speed{up on a variety of multicomputing

platforms: problems with few variables and constraints per node do not gain from this

parallelisation. Stage aggregation has been successfully employed for such problems

to improve their parallel solution e�ciency by increasing the size of the nodes and

therefore the time spent calculating relative to the time spent communicating between

processors. A parallel version of an importance sampling solution algorithm based on

local EVPI information has been developed for extremely large multistage stochas-

tic linear programmes which either have too many data paths to solve directly or a

continuous distribution of possible realisations. It utilises the parallel nested Benders

algorithm and a parallel version of an algorithm designed to calculate the local EVPI

values for the nodes of the tree and achieves near linear speed{up.

Key Words: Linear programming, dynamic stochastic programming, nested Benders

decomposition, parallel algorithms, aggregation, MIMD computers



1 Introduction

Stochastic programming is the extension to the �eld of mathematical programming

obtained by introducing uncertainty into the problem data and decision process.

Such models are necessary when the e�ectiveness of current decisions is dependent

on future events. Fields in which stochastic programming models arise include

economics, �nancial planning [7] and telecommunications; many examples can

be found in [14, 21]. Given an appropriate probability space (
;F ;P) where 


is a sample space with sample points !, F is the �{�eld of subsets of 
 and P

is a probability measure, and taking the (von Neumann{Morgenstern) expected

utility of the problem objective, leads to a general formulation for stochastic

programming.

Two main approaches to static stochastic programming have been developed:

the chance constrained and recourse formulations. The recourse formulation or

two-stage stochastic programming problem has a later second stage that is de-

pendent on the decision vector from the �rst stage. This model can be extended

to the multistage case, when a set of decisions fx1; x2; : : : ; xTg are to be made

over time, up to the horizon T . The sequence of random vectors !1;!2;: : : ;!T

yield the discrete time (data) stochastic process: ! := (!1;!2;. . . ;!T ) and

the notation !t := (!1;!2;. . . ;!t) is used to represent this stochastic process

up to time t. In the multistage problem an observation is made then a deci-

sion is taken, followed by another observation and another decision and so on:

�1 ; x1; �2 ; x2; : : : ; �T�1 ; xT�1; �T ; xT . The �rst observation and decision

are usually deterministic in these models. A �ltration can be used to introduce

nonanticipativity of the decisions into the recourse model.

If the stochastic process is discrete state the expected criterion is a summation

and if all the problem functions are linear (and therefore separable) we obtain

the linear multistage recourse problem model
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minx1 fc0
1
x1 +Q(x2) : A11x1 = b1g

(LMRP) where Q(xt) := IE!t
fminxt

c0txt +Q(xt+1) :
Pt

�=1At;�x� = bt a:s:g

and Q(xT+1) is speci�ed

l1 � x � u1

lt � xt � ut a:s: t = 2; : : : ; T: (1)

Here all constraints involving random variables hold almost surely (a.s), i.e. with

probability one. There are several overviews of the stochastic programming liter-

ature which contain information on chance constrained methods, approximating

schemes and problems with in�nite horizons, see [14, 21, 15, 27]. Dupacova [18]

has recently surveyed the multistage stochastic programming literature.

The deterministic equivalent of problem (1) can be taken by replacing the

expectations by probability weighted summations over the �nite number of data

paths and writing deterministic constraints for each path. The size of the asso-

ciated constraint matrix increases exponentially with the number of time stages

and the number of outcomes for each random vector !t. Each of the data paths

! := f!1; !2; : : : ; !Tg is referred to as a scenario. The large{scale deterministic

equivalent form of problem (1) can be solved by the simplex or interior point

method. Alternatively decomposition methods such as augmented Lagrangian

decomposition [15, 32] or Benders decomposition [3, 36, 4, 23] can be employed.

Benders decomposition is more suitable for decomposing stochastic linear pro-

grammes than Dantzig{Wolfe decomposition [12] and was �rst developed by Van

Slyke and Wets [36] into a cutting plane algorithm for the two{stage problem.

This has been extended to the nested decomposition method by Birge [4] and

Gassmann [23] for linear multistage recourse problems.

Sampling methods are required to reduce the large dimensionality of realistic

deterministic equivalent problems, while parallel programming allows problems

to be solved more quickly or more detailed problems to be treated. In Section 2

nested Benders decomposition is reviewed and the associated algorithm explained.
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Section 3 gives an outline of the MSLiP nested Benders code, while Section 4

describes the parallel version of the code and gives parallel results. Section 5

explains the concept of expected value of perfect information (EVPI) [15, 16, 10]

and its calculation while Section 6 contains the EVPI{S sampling procedure [9].

The parallelisation of the EVPI algorithms is found in Section 7 which includes

numerical results, and conclusions are drawn in Section 8.

2 Nested Benders decomposition

In the discrete case, the data sample path (scenario) space is partitioned into sets

At 2 At � AT := 
. The sets At contain realizations which are identical up to

period t and are distinct at the horizon T , so that the stochastic process can be

represented by a tree structure. There is a 1-1 mapping between the outcomes

of the random variables !t and the nodes of the tree at stage t for t = 1; : : : T .

The realisation !t can thus be used to represent a node of the tree at stage t.

The hierarchical structure of the nodes can be described in the same manner

as a family, with ancestors, descendants, parents, children, siblings and cousins.

The nested Benders method solves the problem in a recursive manner. It can be

illustrated by taking a particular node of the decision tree de�ned by the data

path !t and its descendants:

min fct(!
t)0xt(!

t) +Q(!t; xt(!
t)) : At;t(!

t)xt = bt(!
t)� B(!t; xt(!

t))g =

min fct(!
t)0xt(!

t) + �t(!
t) : At;t(!

t)xt = bt(!
t)�B(!t; xt(!

t))

�t(!
t) � Q(!t; xt(!

t))g; (2)

where

B(!t
; xt(!

t)) :=
t�1X
�=1

At;� (!
�)x� (!

�)
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and Q(!t; xt(!
t)) :=

min
P

!t+1
j!t p(!t+1)ct+1(!

t+1)xt+1(!
t+1)

s:t: At+1;t+1(!
t+1)xt+1(!

t+1) = bt+1(!
t+1)� B(!t+1; xt+1(!

t+1))

lt � xt(!
t) � ut; lt+1 � xt+1 � ut+1:

(3)

Both the corresponding primal and dual problems can be decomposed into

sets of smaller subproblems which can be solved using the simplex method. The

number of these subproblems is equal to the number of descendants of the node

!t. The dual problems are all feasible, since the dual decision yt+1(!
t+1) is uncon-

strained. If the dual problem is unbounded, then the primal problem is infeasible,

and a feasibility cut can be placed in the parent node problem. Otherwise, for an

optimal solution for (3) either a single optimality cut is placed, if weighted sums

are taken, or these can be disaggregated to give a set of cuts, known as multicuts.

Then having a collection of dual feasible vectors (yit+1(!
t+1)0; �i0; �i0) ;

i = 1; : : : ; It(!
t), and directions (yjt+1(!

t+1)0; �j0

; �j0

); j = 1; : : : ; Jt(!
t); we

obtain the problem

min fct(!
t)0xt(!

t) + �t(!
t)g

xt(!
t)

s:t: Att(!
t)xt(!

t) = bt(!
t)�B(!t; xt(!

t))

y
j

t+1(!
t+1)0At+1;t(!

t)xt(!
t) � y

j

t+1(!
t+1)0bt+1(!

t+1) + �j
0

lt+1 � �j
0

ut+1

�yj
t+1(!

t+1)0
P

t�1

�=1
At+1;� (!

� )x� (!
� )

P
!t+1

j!t p(!t+1)yi
t+1(!

t+1)0At+1;t(!
t)xt(!

t) �
P

!t+1
j!t p(!t+1)

�
yi
t+1(!

t+1)0 + �t(!
t)

[bt+1(!
t+1)�

P
t�1

�=1
At+1;� (!

� )x� (!
� )] + �i

0

lt+1 � �i
0

ut+1

o

lt � xt(!
t) � ut

lt+1 � xt+1(!t) � ut+1

i = 1; :::; It(!
t); j = 1; :::; Jt(!

t): (4)

The objective ct(!
t)0xt(!

t) + �t(!
t) gives a lower bound on the optimal objective

value for the nodal problem, while ct(!
t)0xt(!

t) + Q(!t; xt(!
t)) gives an upper

bound. So if �t(!
t) � Q(!t; xt(!

t)), the nodal problem is fully solved for the

right hand side supplied to it. The relaxed problem is solved iteratively, producing

optimality and feasibility cuts until this condition is satis�ed.

4



The nested Benders decomposition algorithm based on the above ideas can be

stated as follows (cf. [4, 24]).

Step 0. Solve the root node (�rst stage problem). At iteration zero, in problem

(4), set �1 := I1(!
1) := J1(!

1) := 0 and take the �rst constraint to be A11x1 = b1.

Set It(!
t) := Jt(!

t) := 0 8 t; !t. If problem (4) is infeasible, stop { the original

problem is infeasible . If �1 � Q(x1), stop | the optimal solution has been

reached. Otherwise set t:=t+1 and let ~x1 be the current solution vector to the

root problem.

Step 1. The formation of the next stage problems can be done by using the

decision vectors xt�1(!
t�1) from ancestors to form the right hand sides of the

constraints for t for all the outcomes of !t whose parents have an optimal solution,

to give the appropriate problem (4). Some nodal problems at this time stage will

not be solved due to the infeasibility of their parent or parent's siblings problems.

If a nodal problem is found to be infeasible, place a feasibility cut in the parent

node problem. This branch of the tree is not explored any further until the parent

node problem is re-solved to optimality. There is the choice to move either forward

to t + 1 and go to Step 1, or backward to t � 1 and go to Step 2. If t = T or

all nodal problems in the current time period are infeasible then go to Step 2.

Step 2. Set �t(!
t) := �1 for all values which have not been previously been

set in this time period. If all the descendant node problems at node !t have

optimal solutions, a single optimality cut may be placed in the node !t problem.

Otherwise, a feasibility cut has been previously placed. In the case of multicuts,

both feasibility and optimality cuts may be placed in the node !t problem. There

is the choice to move either forward to t + 1 and go to Step 1, or backward to

t� 1 and go to Step 2. If t = T or all nodal problems in the current time period

are infeasible, then go to Step 2. If t = 1, go to Step 0.

Problems at any stage need only be re{solved if supplied with a new right

hand side or if �t(!
t) < Q(!t; xt(!

t)), when new cut information is supplied to
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the problem at !t. The sequencing protocol determines whether to descend the

tree further in Step 1 (termed a forward pass) or return to the previous stage of

the tree in Step 2 (termed a backward pass). The fast{forward{fast{back method

[37] suggests continuing in the current direction whenever possible and appears

to be the most e�cient sequencing protocol [24].

3 The MSLiP code

The MSLiP code has been developed over a number of years with the com-

bined e�orts of a variety of programmers [4, 23]. The current version (8.3) is an

improvement on the version described in Gassmann's working paper [24]. The

MSLiP nested Benders decomposition code (see Figure 1) consists of the following

modules:-

1) An LP solver (the NORMAL routine). The LP solver found in the code is

a modi�cation of the Pfe�erkorn{Tomlin LP code [31] which uses the product

form of the inverse. The pricing has recently been improved to include steepest

edge and random pricing, as well as the default most negative cost. It has no

crash{to{feasibility heuristics. Basis, primal, dual and right hand side vectors

are needed from the solution of each nodal problem.

2) The subproblem manager routine (NDCOM) decides which direction in the

tree to move, which is dependent on the sequencing protocol. After a problem is

solved it is marked infeasible or optimal. NDCOM will then decide to place a cut

in the previous time stage and re{solve or form the right hand side for the next

time stage. Each nodal problem is marked if it needs to be re{solved.

3) The cut routines form the optimality (LKHDCT) or feasibility (FEASCT) cuts

to be placed in the appropriate nodal problem. The optimality cuts depend on

whether the user has de�ned single or multicuts in the speci�cation input �le.

The default in MSLiP is single cuts for the two{stage problem and multicuts for
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CODE

LP   SOLVER (NORMAL)

PROBLEM MANAGER

            (NDCOM)

              CUT  PLACER

OPTIMALITY  CUTS

FEASIBILITY  CUTS

INPUT/NDAGGR

OUTPUT

CORE  FILE

TIME   FILE

STOCH  FILE

(LKHDCT)

(FEASCT)

BUNCHING

   (TRICKS)

EVPI CALCULATION

    (EVPIZ)

LOG  FILE

SUMMARY FILE

BASIS FILE

THE MSLiP

COMPUTING

Figure 1: The MSLiP System

multistage problems.

4) The bunching routine (TRICKS) tries to reduce the amount of calculation

done in solving a set of LP problems which di�er only in their right hand sides.

These problems may share bases and pivots, and may even have the same optimal

basis (see [23]).

5) After the solution has been reached there is a routine (EVPIZ) for calculating

the EVPI at each node of the scenario tree. This is an indicator useful in deter-

mining how 'stochastic' the problem actually is. Calculation of the EVPI process

is explained in Section 5.

There are two other Benders based codes which have been developed for solv-

ing multistage SLPs: ND{UM [5] and SP/OSL [28]. Both are based on the IBM

subroutine library OSL [26] which performs the simplex calculations within the

Benders algorithm. The hybrid code MSLiP{OSL [17, 34] has been developed to
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 T
 =

 8 
 K

 =
 14

4  
N =

 42
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 Apr 04 95  12:27:15 

Sce = 144,   p =    0.006944 
Sce = 143,   p =    0.006944 
Sce = 142,   p =    0.006944 
Sce = 141,   p =    0.006944 
Sce = 140,   p =    0.006944 
Sce = 139,   p =    0.006944 
Sce = 138,   p =    0.006944 
Sce = 137,   p =    0.006944 
Sce = 136,   p =    0.006944 
Sce = 135,   p =    0.006944 
Sce = 134,   p =    0.006944 
Sce = 133,   p =    0.006944 
Sce = 132,   p =    0.006944 
Sce = 131,   p =    0.006944 
Sce = 130,   p =    0.006944 
Sce = 129,   p =    0.006944 
Sce = 128,   p =    0.006944 
Sce = 127,   p =    0.006944 
Sce = 126,   p =    0.006944 
Sce = 125,   p =    0.006944 
Sce = 124,   p =    0.006944 
Sce = 123,   p =    0.006944 
Sce = 122,   p =    0.006944 
Sce = 121,   p =    0.006944 
Sce = 120,   p =    0.006944 
Sce = 119,   p =    0.006944 
Sce = 118,   p =    0.006944 
Sce = 117,   p =    0.006944 
Sce = 116,   p =    0.006944 
Sce = 115,   p =    0.006944 
Sce = 114,   p =    0.006944 
Sce = 113,   p =    0.006944 
Sce = 112,   p =    0.006944 
Sce = 111,   p =    0.006944 
Sce = 110,   p =    0.006944 
Sce = 109,   p =    0.006944 
Sce = 108,   p =    0.006944 
Sce = 107,   p =    0.006944 
Sce = 106,   p =    0.006944 
Sce = 105,   p =    0.006944 
Sce = 104,   p =    0.006944 
Sce = 103,   p =    0.006944 
Sce = 102,   p =    0.006944 
Sce = 101,   p =    0.006944 
Sce = 100,   p =    0.006944 
Sce = 99,   p =    0.006944 
Sce = 98,   p =    0.006944 
Sce = 97,   p =    0.006944 
Sce = 96,   p =    0.006944 
Sce = 95,   p =    0.006944 
Sce = 94,   p =    0.006944 
Sce = 93,   p =    0.006944 
Sce = 92,   p =    0.006944 
Sce = 91,   p =    0.006944 
Sce = 90,   p =    0.006944 
Sce = 89,   p =    0.006944 
Sce = 88,   p =    0.006944 
Sce = 87,   p =    0.006944 
Sce = 86,   p =    0.006944 
Sce = 85,   p =    0.006944 
Sce = 84,   p =    0.006944 
Sce = 83,   p =    0.006944 
Sce = 82,   p =    0.006944 
Sce = 81,   p =    0.006944 
Sce = 80,   p =    0.006944 
Sce = 79,   p =    0.006944 
Sce = 78,   p =    0.006944 
Sce = 77,   p =    0.006944 
Sce = 76,   p =    0.006944 
Sce = 75,   p =    0.006944 
Sce = 74,   p =    0.006944 
Sce = 73,   p =    0.006944 
Sce = 72,   p =    0.006944 
Sce = 71,   p =    0.006944 
Sce = 70,   p =    0.006944 
Sce = 69,   p =    0.006944 
Sce = 68,   p =    0.006944 
Sce = 67,   p =    0.006944 
Sce = 66,   p =    0.006944 
Sce = 65,   p =    0.006944 
Sce = 64,   p =    0.006944 
Sce = 63,   p =    0.006944 
Sce = 62,   p =    0.006944 
Sce = 61,   p =    0.006944 
Sce = 60,   p =    0.006944 
Sce = 59,   p =    0.006944 
Sce = 58,   p =    0.006944 
Sce = 57,   p =    0.006944 
Sce = 56,   p =    0.006944 
Sce = 55,   p =    0.006944 
Sce = 54,   p =    0.006944 
Sce = 53,   p =    0.006944 
Sce = 52,   p =    0.006944 
Sce = 51,   p =    0.006944 
Sce = 50,   p =    0.006944 
Sce = 49,   p =    0.006944 
Sce = 48,   p =    0.006944 
Sce = 47,   p =    0.006944 
Sce = 46,   p =    0.006944 
Sce = 45,   p =    0.006944 
Sce = 44,   p =    0.006944 
Sce = 43,   p =    0.006944 
Sce = 42,   p =    0.006944 
Sce = 41,   p =    0.006944 
Sce = 40,   p =    0.006944 
Sce = 39,   p =    0.006944 
Sce = 38,   p =    0.006944 
Sce = 37,   p =    0.006944 
Sce = 36,   p =    0.006944 
Sce = 35,   p =    0.006944 
Sce = 34,   p =    0.006944 
Sce = 33,   p =    0.006944 
Sce = 32,   p =    0.006944 
Sce = 31,   p =    0.006944 
Sce = 30,   p =    0.006944 
Sce = 29,   p =    0.006944 
Sce = 28,   p =    0.006944 
Sce = 27,   p =    0.006944 
Sce = 26,   p =    0.006944 
Sce = 25,   p =    0.006944 
Sce = 24,   p =    0.006944 
Sce = 23,   p =    0.006944 
Sce = 22,   p =    0.006944 
Sce = 21,   p =    0.006944 
Sce = 20,   p =    0.006944 
Sce = 19,   p =    0.006944 
Sce = 18,   p =    0.006944 
Sce = 17,   p =    0.006944 
Sce = 16,   p =    0.006944 
Sce = 15,   p =    0.006944 
Sce = 14,   p =    0.006944 
Sce = 13,   p =    0.006944 
Sce = 12,   p =    0.006944 
Sce = 11,   p =    0.006944 
Sce = 10,   p =    0.006944 
Sce = 9,   p =    0.006944 
Sce = 8,   p =    0.006944 
Sce = 7,   p =    0.006944 
Sce = 6,   p =    0.006944 
Sce = 5,   p =    0.006944 
Sce = 4,   p =    0.006944 
Sce = 3,   p =    0.006944 
Sce = 2,   p =    0.006944 
Sce = 1,   p =    0.006944 

 F
OREST 

 T
 =

 3 
 K

 =
 36

  N
 =

 40
 

 Apr 04 95  12:32:13 

Sce = 36,   p =    0.027778 

Sce = 35,   p =    0.027778 

Sce = 34,   p =    0.027778 

Sce = 33,   p =    0.027778 

Sce = 32,   p =    0.027778 

Sce = 31,   p =    0.027778 

Sce = 30,   p =    0.027778 

Sce = 29,   p =    0.027778 

Sce = 28,   p =    0.027778 

Sce = 27,   p =    0.027778 

Sce = 26,   p =    0.027778 

Sce = 25,   p =    0.027778 

Sce = 24,   p =    0.027778 

Sce = 23,   p =    0.027778 

Sce = 22,   p =    0.027778 

Sce = 21,   p =    0.027778 

Sce = 20,   p =    0.027778 

Sce = 19,   p =    0.027778 

Sce = 18,   p =    0.027778 

Sce = 17,   p =    0.027778 

Sce = 16,   p =    0.027778 

Sce = 15,   p =    0.027778 

Sce = 14,   p =    0.027778 

Sce = 13,   p =    0.027778 

Sce = 12,   p =    0.027778 

Sce = 11,   p =    0.027778 

Sce = 10,   p =    0.027778 

Sce = 9,   p =    0.027778 

Sce = 8,   p =    0.027778 

Sce = 7,   p =    0.027778 

Sce = 6,   p =    0.027778 

Sce = 5,   p =    0.027778 

Sce = 4,   p =    0.027778 

Sce = 3,   p =    0.027778 

Sce = 2,   p =    0.027778 

Sce = 1,   p =    0.027778 

Figure 2: Aggregation of FOREST.8.144

give a more stable and accurate solution to each nodal LP problem, as well as to

allow the possibility of crash{to{feasibility and presolve procedures.

An additional routine NDAGGR has been added to the MSLiP and MSLiP{

OSL codes, which allows stages to be aggregated, see [17, 34, 35] for more details.

An illustration of stage aggregation can be seen in Figure 2. The aggregation

scheme for this example combined the �rst three stages, then the next three and

�nally the last two. This takes a 144 scenario problem down to a 36 scenario

problem.

CPU time reduction can be obtained through stage aggregation. This may

not be the case with MSLiP, where larger LP problems take an extremely long

time to solve. With MSLiP{OSL however, restructuring so that the earlier stages

have larger nodal dimensions, especially the �rst time stage, can both reduce the

computational time considerably and increase the stability [17]. The nodal di-

mensions of the subproblems at other stages is dependent on the stochasticity;

with higher stochasticity more information is required from iteration to iteration

and the nodal dimensions can be larger, with lower stochasticity the nodal di-
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mensions can be lower. Stage aggregation also reduces the number of iterations

and cuts needed to reach a solution.

It has been shown [8, 34] that MSLiP outperforms the simplex and interior

point methods for large sparse problems. This , as well as the inherent parallel

properties of nested Benders decomposition and the associated sampling scheme,

lead the authors to implement a parallel version of the MSLiP code.

4 Parallel MSLiP

Before explaining the parallel nested Benders decomposition method employed in

this paper, a summary of other parallel methods is given. Parallelisation of the

interior point method in e�ect means parallelisation of the Cholesky factorisation

of the compound matrix used in calculating the iterative step. This has been

done in a number of ways, by vectorising the procedure, by making use of the

elimination tree to distribute the columns of the matrix to processors [29], by

using a block Cholesky factorisation and distributing the blocks [11] and by using

the dual Sherman{Morrison decomposition formulation for multistage recourse

problems of stochastic programming due to Birge{Qi [38]. Parallelisation of the

simplex method on the other hand is extremely di�cult [22].

The augmented Lagrangian decomposition method has been parallelised by

Ruszczynski [33], while the similar row-action equivalent to this method used

by Nielsen and Zenios [30] again decomposes by scenarios. Speed{up has been

achieved for the two-stage problem on Thinking Machine's CM-2. Dantzig et al

[13] have a parallel implementation of their importance sampling based Benders

decomposition code, while Ariyawansa and Hudson [2] parallelised the two-stage

problem in a similar manner to the Dantzig method { the main di�erence being

that each processor is assigned a subset of the second stage nodal problems.

Hiller and Eckstein [19] have produced a Benders-based decomposition scheme as
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a subsystem to a portfolio selection algorithm. Speed{up by a factor of 32 was

obtained for the Benders-based portion of this algorithm on a CM-2 with 16,000

processing elements.

A parallel nested Benders decomposition which uses a farming strategy has

been formed from the ND{UM code of Birge et al [6]. The master processor

starts the computation and initialises the slave processors. A subtree is solved on

each slave processor, with the root node of the subtree lying in a stage (not the

�rst) of the whole tree structure. The master solves the portion of the tree up

to the root node of the subtree. Slave processors do not branch from other slave

processors.

A parallel version of MSLiP has been implemented on Fujitsu's AP1000 and

IBM's SP2. See [17] for a description of the AP1000. The SP2 had 16 IBM

RS6000 390 Power 2 processors, with 128 Mbytes DRAM and double precision

peak performance of 250 M
ops. Any speed{up achieved is from a level which

is faster than most sequential computers. The host workstation was an RS6000

PowerPC processor running under MPI and the theoretical peak for communica-

tion bandwidth was 40 Mb/s.

The parallel algorithm described below is more similar to the methods of

[2, 20, 13] than to that of [6]. The idea is to achieve load balancing which can

not be achieved by splitting the tree into a set of subtrees at the possible expense

of communication overhead. It uses the farming technique, with a master and

a number of slaves decided by the user. The master sends LP information to a

slave processor when that slave becomes available. The method can be described

for a multicomputer attached to a host processor as follows.

Host

Step H: 0 Send master module to processor 0. Send slave module to processors

s = 1; 2; : : : ; S: Send data to processor 0.

Step H: 4 Receive optimal solution from processor 0.
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Master processor

Step M: 0 Receive module from host. Receive data from host.

Step M: 1 Solve master problem, obtaining trial solution.

Step M: 2 Assuming there are m � S nodes to be solved in the current

time stage, send information for the �rst S subproblems to slave processors

s = 1; 2; : : : ; S.

Step M: 3When an optimal solution is returned from a processor s�f1; 2; : : : ; Sg,

send the information to solve another nodal problem to processor s unless there

are no problems left to be sent. If there are no nodal problems remaining to be

sent, go to Step M: 4. If an infeasible solution is returned from a processor go

to Step M: 4. If there is only one nodal problem left to be sent and there is

only one slave, this problem is solved on the master processor.

Step M: 4

When all nodal problems have been solved or a problem is found infeasible,

the master determines whether to move forward or backward in the tree. The

master forms the cuts for all nodes.

On reaching the �rst stage in the tree and �nding there are no more subproblems

to be solved in the tree, the optimal solution has been reached. It is returned to

the host, and the slave processors are informed to stop.

Otherwise return to Step M: 2.

Slave processor

Step S: 0 Receive module from host.

Step S: 2 Receive and solve LP problem sent from master.

Step S: 3 Return solution to master and return to Step S: 2.

Step S: 4 Receive message from master to stop and stop.

A slave processor requires new constraints (cuts), new right hand sides and

basis information to be sent from the master processor, while the master processor
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Name Rows Cols Non Obj.val. Tree EVPI MSLiP

CPU

SC205.2.1600 35212 35214 96030 0.0 1600 - 31.25

SCSD8.2.432 8650 60550 190210 25.80 432 0.24 13.73

SCAGR7.2.864 32847 34580 108906 -834446 864 0.01 29.67

SCTAP1.2.480 28830 46128 169068 248.50 480 0.20 25.59

LOUV.2.1280 8962 20484 40968 482.64 1280 9.35 60.34

FOREST.8.384 15667 14927 62795 -43759 42:3:23:1 2.75 32.86

FOREST.8.512 20771 19791 83307 -43869 43:23:1 2.51 40.64

SGPF5.5.625 49202 61759 165570 -5201.282 54 10.84 41.07

WATSON.10.512.I 67069 128001 350728 -1959.63 29 44.63 201.96

WATSON.10.1024.I 134127 255987 701428 -1926.79 4:28 46.53 409.97

Table 1: Problem characteristics - A summary

requires a new primal vector, a new dual vector, basis information and the status

of the LP problem | feasible or optimal { from a slave. The slave processors

operate as LP solvers in an asynchronous manner. A synchronising step occurs

when the master processor changes the stage and forms the new cut information.

If the nodal subproblems are large enough this algorithm should have reason-

able load balancing properties, though there may be a communications bottleneck

while slave processors try to communicate with the master.

Figure 3 plots speed{up against the number of slave processors. Problems

throughout this paper are labelled in the following way: Prob.Per.Scen where

Prob gives the problem name, Per gives the number of periods and Scen gives the

number of scenarios in the problem. Table 1 gives the deterministic equivalent

dimensions of the problems presented here, the objective value, the associated

tree structure, the stochasticity (this is de�ned in Section 5) and their sequential

solution times on the SP2. Only a subset of the problems tested are given in
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this paper, but they show the general pattern of parallel performance [35]. It

is noticeable that the parallel algorithm generally performs better on two stage

problems than on multistage problems. Near linear speed-up is obtained on the

two{stage SCSD8 and SCTAP1 problem sets, while speed{up was achieved on

both the multistage SGPF and WATSON problem sets. The nodal problem

sizes for the SGPF and WATSON problems are larger than for the FOREST

multistage problems which have poorer parallel performance. It should be noted

that for two{stage problems our algorithm is equivalent to both the Birge et al

and Dantzig et al parallelisation techniques [6, 13].

While Amdahl's Law would indicate that the speed-up obtainable is less for

multistage problems than for two stage problems, the theoretical speed-ups are

not achieved. This is partly due to the tree structure; multistage problems can not

be totally parallelised in later stages as there are not enough processors, while

in the earlier stages there may be more processors than nodal problems to be

solved, resulting in some processors remaining idle. In the multistage problems,

cuts have to be passed from master to slave, and on large problems where many

cuts may be created, this increases the communication time signi�cantly. If the

communication to calculation ratio becomes too high, a bottleneck develops, with

too many slave processors attempting to communicate with the master processor.

To reduce the communication to calculation ratio for multistage problems,

stage aggregation has been employed. Bigger nodal subproblems will lead to

larger intervals between communication. A reduction in the number of cuts

formed by the master should also ensue from this aggregation, reducing the num-

ber of sequential operations. The second graph in Figure 3 compares aggregated

speed{ups with the non{aggregated equivalent. The aggregated problems always

perform better and it can be seen that for both the FOREST and WATSON prob-

lem sets, greater speed{ups can be achieved. The parallel algorithm is reasonably

e�cient on up to 8 processors for the SP2.
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Anomalous e�ects have occurred with certain problem sets where feasibility

cuts have been placed. With more than one slave, a di�erent ordering in the return

of nodal subproblems may lead to a di�erent solution path. Possible anomalies

are classi�ed as acceleration anomalies, deceleration anomalies and detrimen-

tal anomalies. Acceleration anomalies occur when the solution time achieved

is quicker than expected, while deceleration anomalies are exactly the opposite.

Detrimental anomalies are severe deceleration anomalies where the solution time

achieved is slower than the sequential solution time. A similar observation has

been made by Hajian et al [25]. (FOREST.8.512 does not experience a detrimen-

tal anomaly | there is no speed{up because the communication to calculation

ratio is too high.)

5 EVPI

For a multistage recourse problem each node of the tree has an associated expected

value of perfect information value, called the local EVPI, de�ned as:

EVPIt(!
t) := �t(!

t)� �t(!
t)

where �t(!
t) denotes the optimal value of the problem with root node de�ned by

!t and

�t(!
t) := IE!j!t�t(!)

is the expected value of having perfect information about the future { i.e the opti-

mal value �t(!) along each data path ! from time t onwards from the data history

path !t. The local EVPI values form a stochastic process fEVPI(!t) : t = 1; : : : ; Tg

which is a supermartingale. This leads to the following observations about the

EVPI process:{

1) If the EVPI at a node is zero, all its descendant nodes have zero EVPI.
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2) A node in the tree whose descendants have no branching has zero EVPI.

3) At the root node, the deterministic process value is the EVPI problem.

4) The local stochasticity of a node of the tree is the local EVPI normalised by

the optimal value of the whole problem.

For each path which branches at or after the node !t the optimal value is

calculated with all nonanticipativity conditions ignored. These paths are all in

the set At(!
t) 2 At � P(
); the set of all subsets of scenarios, at time t. The

local EVPI value at a node of the tree at stage t is calculated by solving to �nd

�t(!) for all ! 2 At(!
t). Each �t(!) is an LP problem conditional on !t�1 with

all the data from !t along the path !. This is multiplied by the conditional

probability at !t for each path before the sum over ! 2 At(!
t) is taken to obtain

�t. This value is then subtracted from the actual optimal value �t(!
t) at the

node to give the local EVPI.

To calculate the values of the EVPI process, this procedure has to be repeated

for every node of the tree except for those in the last period.

This procedure is performed in MSLiP as follows:{

Step 1 De�ne an array, called EVPI say, with length equal to (or exceeding) the

number of nodes in the tree. Set all values in the array to zero.

Step 2 Take the �rst scenario in the tree and set t := T � 1.

Step 3 Calculate the optimal value of the current path by a call to the LP solver

and multiply it by the conditional probability of the occurrence of this path at

the current node. Add this value to the corresponding position for this node in

the EVPI array. Set t := t� 1. If t < 1 go to Step 4, otherwise repeat Step 3.

Step 4 Find the next path of the tree, set t := T � 1 and go to Step 3. If all

paths of the tree have been traversed, go to Step 5.

Step 5 These calculations lead to the position where for each node !t; t < T;

the value �t(!
t) has been calculated in the array EVPI, i.e. EVPI t(!

t) = �t(!
t).

For all nodes reset the value in the EVPI array by subtracting the calculated
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value from the nodal optimal value, i.e. in programming notation

EVPI t(!
t) := �t(!

t)� EVPI t(!
t):

The values �t(!
t) are stored in the same vector as the EV PIt(!

t) values to

save memory. This implementation applies to both the MSLiP and MSLiP{OSL

codes.

6 EVPI{S sampling

Corvera{Poir�e and Dempster [15, 9, 10] developed a method which is largely based

on arti�cial intelligence ideas to approximate the true EVPI and therefore the

optimal solution of the problem, using sequential importance sampling heuristics

which push the approximations towards the true optimal value. The heuristics can

be used in a variety of ways to give a whole family of EVPI{sampling algorithms,

which are termed EVPI{S.

The sampling method employed by the EVPI{S algorithms tries to represent

the data path tree T associated with the problem by choosing a sequence of trees

T1; T2; : : : ; Tn, where Tn is always more representative of T than Tn�1.

The data scenario{subtree is formed and the corresponding problem is con-

verted to the standard format SMPS using STOCHGEN (see [9]). It can then be

solved with MSLiP or MSLiP{OSL and its EVPI values EVPIt(!
t) computed.

Given that the problem corresponding to Tn�1 has been solved and its local EVPI

values computed, one of the following may occur at each node of the tree Tn�1 to

form Tn:{

1) Where the nodal EVPI is above a certain zero tolerance level and its descen-

dents have not been considered previously (there was no branching from them

in the tree Tn�1), the tree is expanded { to a depth of one or more stages { by

independent sampling conditional on the appropriate nodal data so that more

multiple branches to descendent nodes are considered in Tn.
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2) At nodes where the local EVPI value is below the zero tolerance, a new path

is taken by resampling the set of paths conditional on the path to the particular

node, with or without replacement. The true local EVPI value may not be zero

and so the local EVPI is thus re{estimated.

3) At nodes where the local EVPI value is found to be repeatedly below the zero

tolerance over a sequence of iterations the tree is collapsed. It becomes more

certain with each iteration that this local value is indeed zero or very small. This

collapsing is in fact resampling of a single path done from the parent node of the

node found to have near zero local EVPI. An iteration number increment before

which EVPI values below the zero tolerance are not allowed to lead to collapsing

is required. The increment can be changed at each iteration.

In [9] the ratio of local EVPI to root optimal value { which corresponds to the

local stochasticity { is the tolerance criterion used (1 or 5 percent). The algorithm

can be stated as follows:{

Step 1 Set the number of iterations to be performed, N say. (Alternatively a

termination condition could be used, such as when the rate of increase in EVPI

decreases below a certain threshold.) Set n := 1.

Step 2 Sample a scenario{subtree Tn based on the current EVPI information

carried by Tn�1.

Step 3 Generate the corresponding SMPS �les for the problem corresponding

to the tree Tn, using STOCHGEN.

Step 4 Solve the multistage recourse problem de�ned by the SMPS �les with

MSLiP or MSLiP{OSL and obtain the nodal EVPI values.

Step 5 If n < N; set n := n+1. (In the �nite scenario case, transfer the sample

EVPI information from Tn to the full tree T ). Otherwise stop, the sampling has

terminated and an estimate of the optimal solution obtained.

The set of sampling procedures which are de�ned as above can greatly reduce

the size of the problem to be solved so that more detailed problems, or problems
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with a continuous distribution of data paths, may be solved.

7 Parallel EVPI

In producing a fast EVPI{S sampling system unbiased in the small sample the

solution times of the nested Benders decomposition and EVPI calculations are

highly important. Therefore a parallel EVPI method has been developed for

MSLiP. As the parallel EVPI is within the parallel MSLiP system, the algorithm

is presented below as a continuation of the nested Benders parallel algorithm.

The host processor is as before with Step H: 4 relabelled as Step H: 7. It

receives all the EVPI information.

Master processor

Step M: 0{Step M: 3 As before.

Step M: 4 When all nodes have been solved, the master determines whether to

move forward or backward in the tree. The master forms the cuts for all nodes.

On reaching the �rst stage in the tree and �nding there are no more subproblems

to be solved in the tree, the optimal solution has been reached. Send message to

slaves to perform EVPI calculation and go to Step M: 5. Otherwise return to

Step M: 2.

Step M: 5 Take the �rst scenario in the tree and set t := T � 1. Assuming

there are m � S paths in the tree, send information de�ning the �rst S paths to

slave processors s = 1; 2; : : : ; S.

Step M: 6 When a solution for each LP de�ned along the path has been

returned from a processor s 2 f1; 2; : : : ; Sg, add the value of each node in the

path to the corresponding position for each node in the EVPI array. Send the

information de�ning the next path to processor s unless there are no paths left

to be sent. If there are no paths left to be sent go to Step M: 7.

Step M: 7 The EVPI for each node in the tree is calculated by subtracting
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Name Slaves

Serial 1 2 3 4 5 6 7 8

WATSON.10.512.I 1.00 0.97 1.95 2.92 3.81 4.84 5.80 6.77

WATSON.10.1024.I 1.00 1.00 2.02 3.03 4.01 5.03 6.04 6.99 7.97

Table 2: SP2 EVPI results

the appropriate EVPI array value from the nodal optimal value.

The optimal solution has been reached and the EVPI values calculated for

nodes of the tree. This information is returned to the host, and the slave proces-

sors are informed to stop.

Slave processor

Step S: 0{Step S: 3 As before.

Step S: 4 Receive message from master to perform EVPI calculation.

Step S: 5 Receive path information or termination condition from the master.

If the termination condition has been received then stop. Otherwise calculate

the optimal value of this path, multiply by the conditional probability of the

occurrence of this path at the current node and store the value. Let t = t � 1

and repeat Step S: 5. Otherwise go to Step S: 6.

Step S: 6 If t < 1 the set of optimal values, one for each node (apart from the

leaf node) along the path are sent to the master processor. Return to Step S: 5.

The communication required between the master and slave processors when

there are more than two stages is much less for this algorithm than for the nested

Benders algorithm. The load balancing property observed in the nested Benders

parallel code is maintained with each newly available processor receiving the latest

information. The results reported here are for the SP2 implementation running

under MPI. Large problems were again run on the SP2 on up to 8 slaves. Solution

of two-stage problems does not gain from the addition of extra processors and,

as EVPI is appropriate only for multistage problems, results are not shown here.
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Figure 4: EVPI speed{up on the SP2

The algorithm appears to perform reasonably on three stage problems and is

approximately 50% e�cient on 8 slave processors. For problems of more than

three stages its e�ciency and speed{up are high (>90% e�ciency) especially

for the FOREST, WATSON.I and SGPF problems sets, see Figure 4. Table 2

shows the speed-up on 1 to 8 slaves for the problems WATSON.10.512.I and

WATSON.10.1024.I. It can be seen that they both nearly achieve linear speed{

up. Amdahl's e�ect can be seen in the e�ciency increase for the larger problem.

On the AP1000 up to 35 processors were used to test the performance of the

parallel EVPI implementation. FOREST.8.288 achieved a speed{up of 29 on 35

slaves, an e�ciency of 83%. A large SGPF problem achieved speed{up of 18 on

24 slaves, an e�ciency of 75%. The WATSON problem set required too much

DRAM to be solved on the Fujitsu machine.
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The e�ciency of the EVPI calculation suggests the use of parallelisation for the

EVPI{S sampling technique. The EVPI takes a signi�cant proportion of the com-

putational time for the multistage problems for which the sampling technique was

designed. An example is shown in Figure 5 for the parallel MSLiP code. The three

iterations of the parallel EVPI{S procedure have di�erent parallel performances;

as the size of the problem increases (Tn > Tn�1) the parallelisation improves.

Since MSLiP{OSL performs the EVPI calculation much faster than MSLiP, it

is to be preferred in a sequential sampling algorithm. The parallelisation of the

MSLiP{OSL code would lead to lower speed{up for the WATSON.10.1024.I prob-

lem shown in Figure 5, since the solution time of the EVPI calculation would play

a smaller part in the overall solution time. (Unfortunately this has not been per-

formed as the OSL software has not been installed on either parallel machine.)

However, as the solution of a whole set of problems is needed when sampling,

which can require a large amount of CPU time, even lower speed{ups can still be

extremely useful. The problem shown can be solved in parallel by EVPI{S on the
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SP2 with 8 processors in � 9.1 min versus solution in parallel of the full problem

(with EVPI calculation) in � 11.5 min. The full problem is solved serially in

� 75 min (parallel speed{up 6.5/8). For much larger problems the advantage of

the parallel EVPI{S algorithm will be still further highlighted.

8 Conclusions

As nested Benders decomposition for linear multistage recourse stochastic pro-

gramming problems compares favourably with both interior point and simplex

methods and can be stabilised for di�cult problems by the use of stage aggre-

gation, it appears to be a sensible method to parallelise, especially as there is a

sampling procedure which utilises this method. This paper has mainly be con-

cerned with the parallelisation of nested Benders decomposition and the EVPI

calculation within the MSLiP code. These algorithms are integrated into the

EVPI{S sampling algorithm for solving linear multistage recourse problems with

large, unknown, stochastic structures.

Along with most coarse grain parallel algorithms for solving multistage re-

course problems this parallel nested Benders algorithm uses a farming strategy,

as does the parallel EVPI algorithm. Each slave processor solves an LP problem,

with the master processor directing operations. This type of algorithm has good

load{balancing properties. Results on a variety of multicomputing platforms show

that as with other parallel decomposition strategies, the performance of the algo-

rithm is problem dependent. It is particularly dependent on the communication

to calculation ratio of the particular platform.

The problem sets on which the parallel algorithm performs best { with near

linear speed{up on up to 8 processors { had larger nodal LP problems to solve.

The length of time spent communicating between processors, is critical to the

performance of the algorithm, as is the tree structure and the percentage of the
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total time spent forming cuts. Through the use of aggregation, a reduction in

the time spent forming cuts and an increase in nodal problem dimensions can be

achieved so that higher levels of speed{up can be achieved. The algorithm may

be prone to both detrimental and acceleration anomalies due to di�erent solution

paths occurring in the parallel algorithm.

As the communication to calculation ratio is critical to performance, and

the data needs to be replicated on each processor, a further improvement to

the algorithm may be made by converting the algorithm to the multiprocessing

environment. Shared memory machines will generally have large amounts of

centralised RAM and communication will generally be much faster, improving

both the parallel nested Benders and parallel EVPI algorithm.

Further methods which could improve the parallel algorithm are:{

1) A hybrid parallel code could be attempted which is a cross between the parallel

algorithm presented here and the Birge et al [6] parallel algorithm, with a slave

processor solving a node and its children, say, before returning a solution to

the master processor. There may however be a problem with transferring cut

information to the appropriate processor in this case.

2) A slave processor could solve a set of LP problems at the same stage before

returning solutions to the master. This resembles the parallel EVPI calculation.

The load{balancing property of the algorithm can be maintained by not allocating

all the LPs to be solved to the slave processors initially.

4) A semi{distributed load balancer could be employed with more than one pro-

cessor forming cuts. Depending on the node, a particular processor may form the

cut and broadcast the information to other slave processors.

The penultimate section of this paper concentrates on the EVPI{S sampling

algorithm. For a further reduction in solution time and to make the whole sys-

tem viable in a practical setting, the parallelisation of the EVPI calculation was

needed. This is a much simpler operation than that of the parallelisation of nested
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Benders decomposition and has very small percentage of sequential calculations

in the multistage case. Near linear speed{up was achieved on most problems

with more than three stages. The parallel EVPI{S algorithm shows reasonable

speed{up on up to 8 processors.
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