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1. Introduction

Dynamic stochastic programming (DSP) formulations are particularly

suitable for the solution of strategic portfolio management problems

requiring the consideration of a large set of state variables. By focussing

on a limited set of decision stages, they allow the characterization of

portfolios with a rich set of investment and liability classes [8]. At

each stage the portfolio manager (of a �nancial institution, insurance

company, industrial conglomerate, etc.) takes a decision { in the form

of a portfolio allocation { in the face of uncertainty typically generated

by the random behaviour of market prices.

The solution of this dynamic decision problem depends crucially on

the stochastic process model adopted to describe the behaviour of the

random variables relevant to each stage of the problem. The random

behaviour of the rates of return in stock portfolios was �rst identi�ed

by Markowitz [27] as the main source of uncertainty for the de�nition

of an optimal investment decision in static stock portfolio problems.

In modern applications stock prices provide only one possible source

of risk for the portfolio manager [8, 28]; in many cases the random-

ness of short and long term interest rates, exchange rates, and other

possible factors, needs to be considered for a correct representation of

the problem. The de�nition of a stochastic, possibly multidimensional,

�nancial data process and its inclusion in the generation of a stochastic

optimization problem for numerical solution represents an important

and controversial aspect of applied stochastic programming techniques
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for portfolio management [20, 24, 8, 28].

In x2 we consider a set of related issues concerning scenario gen-

eration in stochastic programming models when arbitrary underlying

models of uncertainty are considered. To this end we introduce a dis-

tinction between a random vector data process, representing a primary

source of uncertainty, and a random coe�cient process, dependent on

the former, which is problem-dependent and whose behaviour gener-

ates the speci�c information upon which the portfolio manager bases

his strategy.

This distinction clari�es the important interaction between scenario

generation and the subsequent problem solution when an importance

sampling criterion based on the Expected Value of Perfect Information

(EVPI) process [14, 10, 16, 9] is introduced, as discussed in x3. The
properties of the EVPI process allow the selection of an enhanced set of

relevant representative data paths in a sequential sampling re�nement

of an original stochastic optimization problem.

In our applications we consider a constrained stochastic optimiza-

tion problem in the form of a dynamic recourse problem (DRP) (cf.

Dempster [13], Ermoliev and Wets [19]) whose canonical formulation is

given by (bold characters denote random elements)

max
x12IR

n1

ff1(x1) + IE�
2

[max
x2

(f2(x2) + : : :+ IE
�
T
j�

T�1 [max
xT

fT (xT )])]g

s.t.

A1x1 = b1

B2x1 + A2x2 = b2 a:s:

B3x2 + A3x3 = b3 a:s:

: : : : : :

BTxT�1 + ATxT = bT a:s:

l1 � x1 � u1

lt � xt � ut a:s:; t = 2; : : : ; T : (1)

In (1) the constraint region is appropriately represented by a set of

linear constraints representing �nancial as well as strategic and reg-

ulatory constraints [8]. The process � in (
�;F� ; P �) is typically de-

�ned as a discrete, possibly autocorrelated, vector process with sample

space 
�. The �ltration F
�

t
:= �f�tg generated in 
� by the history

�t := (�1; : : : ; �t) of the random process � at time t de�nes the infor-

mation set available to the decision maker at the di�erent stages of the

problem. In �nancial planning problems the process � is considered to

be a function, �t := �(!t), of a process ! de�ned in a di�erent prob-

ability space (
;F!; P!) . We refer to � as the coe�cient process and
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! as the data process of the problem.

The objective in (1) is de�ned through a sequence of nested opti-

mization problems corresponding to the di�erent stages. Each decision

xt 2 Xt is required to be feasible with respect to a sequence of stage-

dependent constraints: A1 2 IRm1�n1 and b1 2 IRm1 de�ne determin-

istic constraints on the �rst stage decision x1, while, for t = 2; : : : ; T ,

At : 

� ! IRmt�nt ; Bt : 


� ! IRmt�nt�1 and bt : 

� ! IRmt de�ne

stochastic constraint regions for the recourse decisions x2;x3; : : : ;xT .

IE
�
T
j�

T�1 denotes conditional expectation of the state �
T
of the coe�-

cient process � with respect to the history �T�1. At each stage previous

decisions a�ect remaining optimization problems through the stochas-

tic matrices Bt, t = 2; : : : ; T .

The sequence of random events and decisions is given in Figure 1.

ω=ωt ω=ωt+1

xt+1
tξ(ω ) t+1ξ(ω    )

xt

xT

Tξ(ω   ) T+1ξ(ω      )

ω=ωT ω=ωT+1

1

return compounded

recourse decision

Tt-1 t

x

Figure 1. Sequence of decisions and random events in dynamic stochastic program-

ming

The decision process x := fxtg
T

t=1 is required to be strictly adapted

or nonanticipative, i.e. xt = fxtjF
�

t
g a:s:, with respect to the �ltration

F
�

t
generated by the process. This condition can be imposed in the

model implicitly [8, 7] or explicitly, leading to a stochastic program in

split-variable form [14, 3].

Dynamic portfolio problems are easily formulated as a DRP. Appli-

cations of this approach can be found in Bradley and Crane [4], Lane

and Hutchinson [26], Kusy and Ziemba [25], Dempster and Ireland [15],

Mulvey and Vladimirou [29], Zenios [33], Cari~no et al. [6]. The CALM

model (Dempster [8]) has been formulated as a linearly constrained

mixed integer stochastic programming problem and adopted for the

formulation of a 10 year pension fund asset and liability problem { the

Watson model [8] { with uncertainty generated according to Wilkie's

autoregressive model [32] { and a 20 year asset allocation problem {

the FRC model { with uncertainty generated according to the extended

Brennan and Schwartz model [5]. The CALM-FRC model has been de-
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veloped for a Frank Russell Company sponsored project and is de�ned

with three asset classes: consol bonds, stocks and bank deposits, and

an underlying four dimensional Itô process for the short and long in-

terest rates, the dividend yield and the stock price. Due to its simpler

associated data generator, it is being used as the reference model for

the algorithm development described brie
y in the �nal section.

2. Speci�cation of the data process for dynamic stochastic

programmes

The distinction introduced in x1 between the processes � and ! is both

conceptual and methodological. Unlike � which is constructed as a dis-

crete time path-dependent process in accordance with the DRP formu-

lation of the problem, the data process ! in (
;F!; P!) may be given

di�erent characterizations, all referring to a conceptually underlying

continuous time process. This is the sense in which we refer to dynamic

{ in contrast to multistage { recourse problems. In [5, 17, 20, 28] ! is

an element of the class of real-valued di�usion processes with time set

[1; � ]; � <1 and uncertainty is generated by a (multivariate) Wiener

process Wt.

In [8], following Wilkie [32], ! belongs to the class of autoregressive

processes of the j-th order with continuous state space and discrete time

set T = f1; 2; : : : ; �g, with random behaviour induced by disturbances

et � N (0; �2(!)) and depending on the �nancial variable (e.g. the long

interest rate) we may have an autoregressive equation up to the third

order in the model. In Zenios [33] and Klaassen [24] ! is a discrete

state binomial process.

All these cases may be described in a form suitable for simulation

purposes as

!nt+1 � !nt = �(!)�nt + �(!)"nt ; (2)

for t = 1; : : : ; T and nt = 1; : : : ; Nt up to NT � 1, where �(!) de�nes

the drift of the process, �(!) its volatility, �nt := (nt + 1) � nt, and

each stage of (1) refers to Nt subperiods.

For Nt su�ciently large and "nt � N (0;�nt), (2) describes the dis-

crete version of a di�usion process driven by Wiener noise [20, 28].

For smaller Nt and "nt with arbitrary probability distribution, we typ-

ically have autoregressive models for long term allocation problems or

binomial or trinomial models.

The di�erent discretization schemes are all made consistent with

a (DRP) characterization of the decision problem by introducing a

compound return function de�ned by
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�t := �
(Nt�1)
nt=1

(1 + !nt)� 1 t = 1; : : : ; T ; (3)

which gives at the end of period t the return of a monetary unit in-

vested at the beginning of the period; where for each t each ending

cash position is carried over to the position at the �rst index of the

next period.

The history !t of the data process, for t = 1; 2; : : : ; T , enters a

speci�c portfolio problem as parameters �t = �(!t), required for the

recourse decision xt, as described in Figure 1. The decision maker is

assumed to follow the behaviour of the price processes over time, while

recourse decisions are allowed only at the end of every period consistent

with the nonanticipativity requirement. Inhomogeneous time stages are

easily accomodated in this framework and alternative stochastic models

as described above can be adopted as individual inputs for the de�nition

of the discrete vector process ! := f!tg
T

t=1.

The speci�cation of !t is the output of a data generator datagen,

in terms of a set of random functions with coe�cient estimates for its

mean and volatility functions, and a random number generator of the

type described brie
y in x2.2.
Datagen takes as inputs the initial state of the process together

with a nodal partition matrix identifying the associated tree structure.

It is interfaced with the generator of the random coe�cients of the

problem { the scenario generator scengen { needed for the de�nition of

the stochastic program for numerical solution. Scengen takes as input

the complete data process speci�cation along the scenario tree and

generates, as output, the scenario-dependent coe�cients required by

the mathematical formulation of the problem.

2.1. Datapath generation

We consider in this section an iterative procedure, interfaced with the

data simulator, for the correct generation of data paths in the form of

a scenario tree.

The de�nition of a scenario tree nodal partition matrix as a two-

dimensional array, with number of rows equal to the number of sce-

narios of the problem and number of columns equal to the number of

stages, is at the core of the conditional simulator. The matrix identi�es

uniquely the tree structure for the associated stochastic program and

is used by the data generator in order to derive the states of the data

process in conditional mode, and by the model generator STOCHGEN

[10, 8] for the de�nition of the corresponding SMPS �les [1] necessary

for the numerical solution of the problem [8].

Figure 2 provides an example of the matrix speci�cation associated
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with an arbitrary tree structure.
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Figure 2. De�nition of the nodal partition matrix

Following the matrix order, conditional simulations are run, com-

pound annual rates of return computed and initial conditions passed

consistently along the tree. Consistent with the time partition of the

planning horizon, the generator runs over the Nt subperiods for t =

1; : : : ; T and the �nal state !Nt
(see eq. 2) for one simulation is adopted

as initial state for the following run. The nodal partition matrix allows

both the conditional run of the data generator { with one run for ev-

ery increment in the matrix entries, columnwise { and the consistent

updating of the initial seeds { rowwise. The stage-oriented nodal la-

beling order is convenient in view of the sequential generation-solution

procedure described in x3.

In the FRC problem below a simulator has been constructed for a

4-dimensional di�usion system driven by a Wiener process with state

variables representing stock return, short and long interest rate and

dividend yield processes and based on estimated instantaneous mean

vector and correlation matrix [5]. In this case the Wiener noise was

generated by implementing a congruential method based on the Park

and Miller minimal standard method [30] for the generation of normal

unit deviates � � N (0; 1) and applying the transformation Wt = �dt

leading to Wt � N (0; dt).

The set of data paths generated by datagen permits estimation of the

joint probability distribution of the return at the horizon of a portfolio

which initially invests equal amounts in each asset. Based on 1; 024

data paths an estimated joint probability distribution generated at the

horizon by the multidimensional conditional generator for the FRC and

the Watson problems is displayed in Figure 3. In the case of the Watson

problem the generation of the normal random variates from Wilkie's

model was based on Marsaglia's polar method [32].
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FRC Data Generation - Joint Probability Distribution
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Figure 3. FRC and Watson problems empirical balanced portfolio return probability

distributions generated by datagen.

The accuracy of the sequential procedure described in x3 relies on

the possibility of an unbiased approximation of the form displayed in

Figure 3 of the continuous probability density generated by the random

process underlying the optimization problem. This density, as shown

in Figure 3, is in general not consistent with the usual assumptions of

normality or log-normality made in �nance theory.

2.2. Coefficient process specification

The distinction between the data process ! in (
;F!; P!); ! :=

f!nt : nt = 1; : : : ; Nt; t = 1; : : : ; Tg and the corresponding coe�cient

process � in (
�;F�; P �); � := f�t : t = 1; 2; : : : ; Tg with �t := �(!t)

is motivated by the following considerations in formalizing �nancial

planning problems:-

� Recent DRP formulations of asset and liabilitymodels have adopted

a characterization of uncertainty based on complete market arbi-

trage free models of interest rates and price processes developed

and well-established in the �nancial literature [2, 23, 32]. These,

however, explain only in part the risk embedded in �nancial posi-

tions of investors operating worldwide and across di�erent markets

[8, 28].

� The speci�cation of an optimal policy in recourse models gener-

ally relies on the de�nition of complex hierarchical forecasting and

model generation systems [28, 8] for the de�nition of a set of (coef-

�cient) scenarios derived in a cascade structure from the speci�ca-

tion of a set of underlying core random processes possibly de�ned
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in di�erent probability spaces.

The �ltration F
�

t
generated for t = 1; 2; : : : ; T by the histories of the

coe�cient process � contains the information necessary for the solution

of the corresponding dynamic portfolio problem. In general F!
t
� F

�

t
.

Important examples of data and coe�cient process speci�cation and

generation within portfolio management tools are the two instances of

the CALM model { Watson and FRC, the Towers-Perrin model of

Mulvey [28], the general asset and liability model of Klaassen [24], the

MBS model of Zenios [33] and the Yasuda-Kasai model of the Frank

Russell Company [7]. All these applications require the derivation from

the relevant data generator of a large set of coe�cients which are needed

for the mathematical speci�cation of the problem.

This step, which generally results in the de�nition of ad hoc, problem

dependent, valuation criteria has an impact on the properties of the

stochastic program �nally generated [9].

In (1) the process � is de�ned by �t := (�t;At;Bt;bt), with �t denot-

ing a random parameter in the objective functional given by ft(�t; xt).

The speci�cation of the random coe�cient matrices At;Bt and bt in

(
�;F� ; P �) refers to the generation of the complete information struc-

ture necessary for the solution of the portfolio problem.

The steps required by conditional scenario generation may be brie
y

summarized as:-

� Initially the number of scenarios and stages, with associated stage

discretization nt = 1; : : : ; Nt, for t = 1; : : : ; T , are de�ned.

� The nodal partition matrix is then speci�ed in order to de�ne the

complete tree structure for the problem (note that one simulation

here corresponds to one complete data path along the event tree).

Then recursively:-

� the vector of initial conditions is de�ned and datagen is run,

travelling the tree forward from the root node to the terminal

node;

� for each such simulation the compounded returns are com-

puted;

� the simulations are associated with the stages according to

the nodal partition matrix and the complete set of conditional

data paths speci�ed;

� for every trajectory of the data process, scengen is run, the

corresponding set of model coe�cients de�ned and
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� a set of scenarios are generated and interfaced with a matrix

generator (e.g. MODLER [22]).

Given the model formulation and the generation of the model coef-

�cients, the resulting stochastic programming problem is now de�ned

in standard input format for numerical solution [1]. In our system the

SMPS format is generated using STOCHGEN [10].

3. Information 
ows and the resolution of uncertainty

We consider a stochastic programming system for the solution of �nan-

cial planning problems based on:-

1. The representation of the decision problem in dynamic recourse

form with implicit or explicit characterization of the nonanticipa-

tivity condition [14, 9, 18].

2. A data path simulator for an underlying continuous data vector

process ! in (
;F!; P!) representing the core uncertainty of the

portfolio allocation problem.

3. A scenario generator for the speci�cation of the vector stochastic

process � in (
�;F�; P �) de�ning the coe�cients of the model and

interfaced with this simulator.

4. Generation of the SMPS format, for which we use the STOCHGEN

library [11] incorporating Greenberg's MODLER [22], required for

the numerical solution of the stochastic programming problem.

5. The solution of the problem either by a primal-dual interior point

(IP) method (CPLEX 4.0, 1996) [12], or by nested Benders decom-

position (MSLiP-OSL, Version 8.3, 1995) [21, 31].

We intend to show here how the phases 2, 3, 4 and 5 are integrated,

based on the valuation of the information generated by the coe�cient

data process, when the sample space approximation of this process is

sequentially re�ned using estimates of the EVPI process(es) below.

Consider problem (1) in the more compact dynamic programming

representation which takes advantage of the Markov structure exhibited

by the set of constraints. For each t = 1; : : : ; T we have the set of nodal

problems

�t(�
t) := maxxt2Xt

IEfft(�
t; xt�1;xt) + vt+1(�

t;xt) j F
�

t
g

s.t.

Btxt�1 + Atxt = bt a:s:;

(4)
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where vt+1 expresses the optimal expected value for the remaining op-

timization problem for the stages from t + 1 to T . At the horizon

vT+1(�
T ;xT ) := 0. In (4) the dependence of the decision vector xt

on the �ltration F
�

t
is expressed explicitly.

The expected value of perfect information (EVPI) process [14, 10, 16]

is de�ned by

�t(�
t) := �t(�

t)� �t(�
t) t = 1; 2; : : : ; T; (5)

where �t(�
t) corresponds to the set of distribution problems associated

with the relaxation of the nonanticipativity condition to the case of

perfect foresight

�t(�
t) := IE[ max

xt2Xt

fft(�
t; xt�1;xt) + vt+1(�

t;xt) j F
�

T
g] : (6)

Based on the behaviour of �t we can both assess the level of stochas-

ticity of the DRP problem [8, 10] and de�ne a sampling procedure for

the selection of a sample set of relevant representative data paths in a

sequential procedure. From the de�nition of the EVPI process we have

at the horizon, by construction, �T+1 := 0. For the properties of the

� process which justi�es its adoption as an importance sampling crite-

rion for selection of a sample set of objective-relevant sample paths we

refer to [14, 10, 9, 16]. Of particular importance is the characterization

of the process as a nonnegative supermartingale [14] which re
ects the

nonnegative and increasing value associated with early resolution of

uncertainty.

This property has two impacts useful in de�ning a sampling pro-

cedure: when the EVPI value is zero at one node in the tree, say �t,

it will remain null in all descendant nodes. Furthermore, if �t(�
t) = 0

for some �t, then there is a decision xt optimal at t for all subsequent

nodes. The future uncertainty is thus irrelevant and the local problem

can be replaced by a deterministic problem.

The same properties of the EVPI process are shared by the marginal

EVPI, �-EVPI, or shadow price of information process [14] de�ned by

the dual variables of the stochastic programming problem associated

with the nonanticipativity constraints of the model in split variable

form. Unlike (4) we now consider an explicit characterization of the

nonanticipativity condition in conditional expectation form:

xt(�
t) =
X

^�
t

p(�̂
t

)xt(�̂
t

) t = 1; 2; : : : ; T; (7)

where �̂
t

denotes, at each stage t, the set of scenarios descending from

the current node �t. Accordingly p(�̂
t

) denotes the probability of each
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such scenario occurring conditional on the fact that the process is in

state �t at time t. De�nition (7) is referred to as the nonanticipativity

condition in conditional expectation projection form (cf. [14]).

The nonanticipativity condition (7) leads to the speci�cation, for

t = 1; 2; : : : ; T , of a sequence of stochastic dynamic programs in the

form

maxxt2Xt
IEfft(�

t; xt�1;xt) + vt+1(�
t;xt) j F

�

t
g

s.t.

Btxt�1 +Atxt = bt a:s:

(It ��t)xt = 0 a:s: :

(8)

The programme (8) has associated Lagrangean given by

L(xt; y
0
t
; �0
t
) := IEf[ft(�

t; xt�1;xt) + vt+1(�
t;xt)]+

y0
t(Btxt�1 +Atxt � bt) + �0

t(It ��t)xt jF
�

t
g :

(9)

The marginal EVPI process � := f�tg
T+1
t=1 is thus the dual process

associated with the nonanticipativity condition in conditional expecta-

tion form. At the optimum the �-EVPI coe�cients provide a measure of

the value generated by a perturbation of the constraint. Unlike the full

EVPI process, the marginal process is de�ned at every node of the tree

up to and including the last stage. This property makes the criterion

suitable for the solution of two stage problems by �-EVPI sampling. At

present the estimation of the �-EVPI process requires the generation

and solution of the complete deterministic equivalent problem [8, 3]

with explicit nonanticipativity constraints.

We are now in position to sketch a sequential procedure based on

the solution of the stochastic optimization problem with either the

MSLiP-OSL solver [31] or the Cplex IP solver [12]. The two solvers are

interfaced respectively with the EVPI sampling algorithm developed

by Dempster and Corvera-Poir�e [10, 11] and the �-EVPI sampling al-

gorithm currently under development.

Based on the EVPI information, the sampling procedure allows the

sequential re�nement of an original tree structure according to the pro-

cedure outlined in Table 1.

In both sampling procedures the permanence after resampling of the

nodal EVPI values in the neighbourhood of 0 leads to a deterministic

optimization problem over the remaining periods up to the horizon.

Each iteration with either importance sampling criterion requires:

the generation of the data paths for the data process, the derivation

of the coe�cient scenarios, the de�nition of the standard input SMPS

format and the solution by nested Benders decomposition or the IP
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Table I. EVPI-Sampling Algorithm

de�ne number of iterations in the algorithm: J

de�ne initial scenario tree structure: T1

The Algorithm

j = 1

while j � J

1. construct a tree Tj based on EVPI information

2. solve problem Tj and compute its nodal EVPI

3. if EVPI near 0, resample

4. else if EVPI near 0 after resampling

take one sample scenario

5. else if EVPI > 0, increase branching at the node

6. j = j + 1

CONTINUE

method including the current estimates of the nodal EVPI values. Se-

quential re�nement of the previous tree structure is based on an anal-

ysis of the current EVPI process { full or marginal { and the de�nition

of a new nodal partition matrix that allows datagen to run again, as

described in the inner loop of Figure 4.

The adoption of the full, as opposed to the marginal, EVPI sampling

criterion has been previously reported [10, 8, 16]. Results have been

presented in the case of a sampling procedure independent of the phase

of scenario generation considered in x2.

4. Conclusions and further research

The sequential procedure outlined in Figure 4 calls for a few �nal re-

marks.

The system under development relies on the de�nition of a master

program that calls at every iteration of the sampling procedure the

subroutines for the data process generation { datagen, the coe�cient

process generation { scengen, the model generator { STOCHGEN and

the solver, analyzes the EVPI estimates and derives the nodal partition

matrix for the next iteration. The same framework is adopted for the

use of the marginal EVPI importance sampling criterion derived from

the solution of the problem with an IP method.

The e�ciency of the sequential solution procedure relies heavily on
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Figure 4. EVPI based sequential solution procedure

the speed and accuracy of the model generation. This step is currently

based on MODLER [22] which was not originally designed for sequen-

tial matrix generation. We will shortly be in position to integrate the

recursive MPS generator AIMS into our system with a very positive im-

pact on the speed and e�ciency of the sequential solution procedure.

In previous work [9, 16] we have established the accuracy of the

EVPI sampling rule as a criterion for the approximation of large scale

stochastic problems with an EVPI-based selection of scenarios sam-

pled from a pregenerated �nite population. In this paper the sampling

framework has been extended to a dynamic procedure in which the

sample of the random process generating the uncertainty in a portfo-

lio allocation problem is associated with an increasingly representative

stochastic sample problem.
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