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Abstract

The purpose of this paper is to present evidence in support of the hypothesis
that fast, accurate and parametrically robust numerical valuation of a wide range of
derivative securities can be achieved by use of direct numerical methods in the solu-
tion of the associated PDE problems. Specifically, linear programming methods for
American vanilla and exotic options, and explicit methods for a three stochastic state
variable problem (a multi-period terminable diff swap) are explored and promising
numerical results are discussed. The resulting value surface gives, simultaneously,
valuation for many maturities and underlying prices, and the parameters required
for risk analysis.

1 Introduction

This paper briefly presents evidence accumulated to date in support of the use of direct
numerical methods for the solution of partial differential equation (PDE) type problems as-
sociated with valuation of derivative securities based on one or more underlying securities.
Vanilla and exotic American options on a single underlying and a multi-period terminable
differential swap involving domestic and foreign interest rates and the cross-currency rate
are considered in detail. The numerical methods employed are comparable in accuracy and
speed to alternatives, but can enjoy the added advantage of robustness of these properties
to variation in contract parameters. This is an important property for methods employed
in real-time trading information systems; one which is not possessed by most alternative
methods based on tree structures, closed form multiple integral formulae or series formu-
lae, Monte Carlo techniques or iterative numerical methods. Another important property



possessed by all PDE solution methods for the derivative security value surface is the im-
mediate recovery from the calculations of estimates of the partial derivatives of value with
respect to the contract parameters [Carr 1993] needed for risk management, via simple
difference approximations.

In the next section of the paper, the fundamental relationships amongst the abstract
variational inequality, complementarity [Jaillet et al 1990] and linear programming (LP)
[Dempster & Hutton 1995] formulations of the American put valuation problem are pre-
sented in terms of the Black-Scholes partial differential operator. Finite difference ap-
proximation is applied to this operator in §3 to yield an ordinary LP which is solved by
time-stepping decomposition. Results are presented — using IBM’s Optimization Sys-
tems Library (OSL) [IBM 1992] on an IBM RS6000/590/AIX3.2.5 workstation — which
support the hypothesis of the abstract. This approach is extended in §4 to valuation of
lookback and Asian options, with both continuous and discrete sampling [Wilmott et al
1993], and some computational results are presented. Section 5 outlines a PDE-based val-
uation technique for a multi-period terminable diff swap under a cross-currency extended
Vasicek model [Babbs 1990,1993,1994], while §6 presents numerical results on a 10 year
quarterly terminable contract. To our knowledge this represents the first numerical valua-
tion of a cross-currency derivative based on a full term structure-consistent model. In §7,
conclusions are drawn and directions for further work indicated.

This research was supported in part by the University of Essex, the EPSRC (UK)
and HSBC Markets. The reader should consult [Hutton 1995 and Dempster and Hutton
1995] for more details. It is a pleasure to acknowledge both the general advice of M.J.P
Selby and the extensive involvement of S.H Babbs in the research presented in §6. We are
grateful to J.N.Dewynne who kindly made his PSOR C codes available to us to enable the
comparative numerical results of §3.

2 Valuation of American options by LP

We consider the interesting case of an American put option with strike price K on an
underlying security with geometric Brownian motion price process S with constant volatility
o and riskless rate r over the life of the option, under the Black-Scholes assumptions. Then
on [0, 7] the arbitrage-free price process X is given by

X(t) =ess supIE [e T (K — S¢)t | F (1)

TE'E,T

where 7,1 denotes the set of stopping (exercise) times 7 with respect to the current in-
formation field F; of the price process, IE [. | 7] denotes conditional expectation with re-
spect to the risk-adjusted probability (equivalent martingale) measure and (K — S¢)* :=
(K — S+) A0, the pointwise minimum of (K — S¢) and 0. Moreover, for hedging pur-
poses, this price process possesses on [0, T'] a perfectly replicating (continuously rebalanced)
portfolio of the form

X(t) = ¢1()5(t) + p2(1)S(1), (2)
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where ¢ (t) and ¢2(t) denote the positions at time ¢ in a pure discount bond with maturity
T (of value 3(t) < 1) and the underlying security respectively.
If we define the value P of the option as its arbitrage-free price at time ¢ € [0,7] when
the price of the underlying is x > 0, then
P(x,t):= sup E[e"T (K —Sg)" |S(t) = 2] (3)

TETe,T

The optimal exercise time p is given by
p(t) = inf{s € [t, T] : X(s) = (K — S(5))"}, (4)

i.e. the first time the underlying price process S reaches the optimal exercise boundary
S*(t) given by
S*(t) :=sup{zx : P(z,t) = (K —x)"}. (5)
The determination of this free boundary in [0,00) x [0,T] along with the option value P
is equivalent to the solution of an abstract variational inequality (VI) [Wilmott et al 1993]
involving the Black-Scholes parabolic partial differential operator, as was first observed
in this context by [Jaillet et al 1990]. The problem (VI) has a unique solution by the
Lions-Stampacchia theorem and is easily seen [see e.g. Hutton 1995] to have an equivalent
formulation as an abstract (linear) order complementarity problem [Borwein and Dempster
1989].
Indeed, making a logarithmic change of the underlying price variable, £ = logx, the
Black-Scholes operator becomes the constant coefficient parabolic operator £ + %, with

elliptic part
o? 0? o2\ 0
E“?a_gﬁ(r_?)a_g_r‘ (6)

Denoting the option value in terms of log price by u, and considering u and % as elements
of appropriate (dual Sobolev) Hilbert spaces of functions L? and L3 respectively, yields the
abstract order complementarity problem

uel? %el?
(OCP) u—1>0, L+8 <0 (7)
(L= %) A (u—1)=0.
(OCP) neatly expresses the main features of the option value, namely: u is always at least
equal to the payoff 1/ (:= (K — el) here); before optimal exercise, when it exceeds the
payoff, u satisfies the Black-Scholes PDE; at and after exercise u equals the payoff 1.
It may be shown [Jaillet et al 1990] that the linear operator £ is both coercive, i.e.

(v, Lu)g > a||v||3 Yv € Lg (8)

for some a > 0, where (.,.)o and ||.||p denote the inner product and corresponding norm
on L3 respectively, and of type Z, i.e.

uAv=0=uALy<0 Yu,ve L3 9)
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Extending earlier results of [Cryer & Dempster 1980] from elliptic to parabolic operators,
we have the following theorem [Dempster & Hutton 1995].

Theorem 1 If L is an elliptic coercive type Z operator, then there exists a unique solution
to the equivalent problems (OCP) and the abstract linear programme

(LP) inf(c,v)o s.t. v € F C Lj, (10)

where ¢ > 0 in L is arbitrary and F denotes the constraint set

F:={veli:v>1, EU+%§O}. (11)
|

The proof employs Laplace transforms to show that under the stated conditions on L, the
unique solution u of (OCP) is the coordinatewise least element of the constraint set F' of
(LP) given by (11). Hence minimizing any positive functional ¢ € L2 on F yields v = u.
Upon discretizing the abstract problem (LP) by finite differences — equivalently, finite
elements [Wilmott et al 1993] — over [0,00) x [0,T], an ordinary LP is obtained which
may be solved by state-of-the-art linear programming techniques, to which we now turn.

3 Numerical Methods and Results for Options

By employing standard finite difference approximations on a uniform grid — mplicit,
explicit and Crank-Nicolson — to £ + 2 given by (6) in terms of time T’ — ¢ to maturity,
a (finite dimensional) matrix operator M is obtained of the form

B A

.. , (12)
B A

B A
where A and B are at most tridiagonal matrices of order I — 1 whose entries are simple
functions of the deal and market parameters, and hence C' is an order M (I — 1) square
matrix, where I and M are the number of space and time grid points in the correspond-
ing localised domains [L, U] and [0, 7] respectively. In terms of C', (OCP) and (LP) are

approximated in terms of the vectors of discretised values u, v € R ( _1), with discretised
spatial boundary conditions u(L,.) := ¢ (e") and u(U,.) := 0, as

(OCP") u>1, Cu>0, (Cu—0)A(u—1)=0 (13)
and
(LP") mincv s.t. Co >0 v >, (14)
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where ) is the vector of discretised payoff values and 6 is a vector determined by the
terminal boundary condition (i.e. the payoff) and spatial boundary conditions. For the
full formulation, see [Hutton 1995].

In practice, (LP’) decomposes into the time-stepping sequence of tridiagonal LPs,

min1'u™ s.t. Au™ > ¢™ — Bu™ ' m=1,...,.M (15)

where we have arbitrarily chosen ¢ = 1, the (I — 1)-vector of ones. (OCP’) may be
decomposed in a similar manner.

The best iterative algorithm for solving (OCP’) is the projected successive overrelaz-
ation (PSOR) algorithm of Cryer [see Wilmott et al 1993], while the dual simplex algorithm
for (LP’) is best for the type of linear programme in question.

All computation was performed in double precision on an IBM RS6000/590 computer
with 128 Mb of RAM, running under AIX 3.2.5. The LP algorithms used were from IBM’s
Optimisation Systems Library [IBM 1992], namely the simplex routine EKKSSLV. The basis
for the first time step was generated by an initial call to the basis crash routine EKKCRSH
at level 4 and successive time step LP problems were ‘hot started’ from the previous time
step’s optimal basis. Dewynne’s PSOR algorithm C code was used with a relaxation
parameter w = 1.5 and initial value equal to the previous time step’s solution. For both
algorithms convergence tolerance was set to 1072,

Figures 1 and 2 show the value surface and optimal exercise boundary respectively,
computed by solving (LP’) for an American put stock option of maturity 7 = 1 year,
strike K = $1, riskless rate » = .1 and underlying volatility o = .4, with a discretization
of M =50, 1 =50, L =—1.5and U = 1.5. Table 1 shows the accuracies, at current stock
price $1 (i.e. at the money), of Crank-Nicolson and implicit discretization schemes, relative
to the first three terms of the analytic series expansion developed by [Geske & Johnson
1984], against whose computations we compare our solution. Table 2 displays comparative
solution times (shown in Figure 3) for this option with underlying volatilities ¢ = .2 and .4
for the PSOR, simplex and explicit methods with time discretization M = 1000 and varying
spatial discretization I. Times quoted there for PSOR and dual simplex algorithms are for
the Crank-Nicolson scheme, while the explicit scheme is a straightforward recursive matrix-
vector multiplication with a comparison of each value to the payoff function, corresponding
to a choice of discretization such that the matrix A in (15) is diagonal, and equivalent to
running the Cox-Ross-Rubinstein binomial tree algorithm from each spatial grid point
without redundant calculations. With this method, however, in general we must choose
the number of time steps M proportional to the square of the number of space steps
I?, a fact which eventually makes it uncompetitive compared to implicit methods in one
dimension. For the standard Black-Scholes operator, the exact stability condition is that
M > ¢*TI?/(U — L). Note that, while PSOR times increase with volatility, the simplex
solution time remains relatively stable. This robustness to parameter variation in the
simplex method is amply demonstrated for the parameters r and o in Table 3, and the
corresponding Figure 4, which compare PSOR and simplex solution times.

Although the space and time discretizations used here are perhaps higher than those
typically required in practice, the standardization and robustness of the LP method, to-



gether with the even faster computing times provided by either a purpose-written LP code
for tridiagonal problems or the latest commercial simplex and interior point LP algorithms
such as CPLEX, point towards the eventual employment of these methods in trading in-
formation systems. In this regard, it should be borne in mind that accurate estimates of
the standard parameters for hedging and the simultaneous valuation of options of many
different maturities and underlying prices are automatically available from any value sur-
face (i.e. PDE-based) approach. An extra advantage of the LP method is the availability
of standard parametric techniques for fast reevaluation of derivative value surfaces when
strike and volatility parameters change and its direct applicability to time and underlying
price dependent volatilities, however estimated.

4 Valuation of American exotics

In this section we demonstrate the generality of the LP approach to American option pricing
by briefly outlining its straightforward extension to continuous and discretely sampled
American lookback and (arithmetic average) Asian put options. These have path dependent
strike prices given at exercise time 7 by

SBaX.— sup S; or max S, 16
T te[OB’] ! t:€[0,T] i (16)
and -
Sr ::/ Syds/T or > Sy /#{ti€[0,7]}. (17)
0 £:€[0,T]

respectively. Hence they make the corresponding arbitrage-free option value depend on
a second state variable y representing the current value of (16) or (17). For notational
simplicity, we let y denote the value of the running sum in (17), rather than the average
itself.

Consider the first case of the (somewhat artificial) continuously sampled American look-
back put. Making the similarity transformation & = log(y/x) > 0, originally introduced
by Babbs in the context of binomial tree valuation [Babbs 1992], this 2-state variable
problem (where the value function solves (LP) with the usual non-transformed Black-
Scholes operator and y entering as a parameter of the payoff) can be reduced to (LP) in &
and ¢, with the slightly modified elliptic part of the partial differential operator given by
L= "7233—;2 - (r + %2) a% , and the Neumann spatial boundary condition g—’g((),t) =0 (i.e.
a discrete condition u{' = u]" for m = 1,..., M). This boundary condition arises because
if £ =0, i.e. y = x, the probability that y is the final maximum is zero, and hence the
option value is insensitive to small changes in y/z.

Figure 5 shows the value surface for such a deal, computed by the LP method for a 6
month stock option with riskless rate r = .05 and volatility ¢ = .5 , with Crank-Nicolson
discretization M = I = 100 and £ localized to [0, 1]. Table 4 shows this scheme’s accuracy
and solution time for varying space steps I, and the limiting modified binomial tree value
computed in [Babbs 1992] is given there for comparison. Note that the accuracy is slightly
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degraded by the crude first order approximation to the Neumann boundary condition,
and would be improved by a second order approximation, but this is an artifact of the
discretization, not the solution algorithm.

The discretely sampled American lookback put option may be solved over the triangular
domain y < x in the original variables. As for the continuous case, between sampling
dates the value function P(z,y,t) solves (LP) with the standard non-transformed Black-
Scholes operator, and y as a parameter of the payoff. Thus we may solve (LP’) in each
intra-sampling interval [t;,¢;.1), using parametric simplex method to rapidly recompute
the solution at each time step for varying y, and then pass the initial value back to the
preceeding intra-sampling interval [t; 1,%;) as a terminal condition via the jump condition
[Wilmott et al 1993] at sampling date ¢; given by

P(z,y,t;—) = P(x,max{z,y},t;). (18)

It has been shown by [Wilmott et al 1993] that the continuously sampled arithmetic
average Asian option has a value of the form

v(z,y,t) = zu(y, 1), (19)
where u satisfies the parabolic partial differential inequality
o2 0% %\ Ou ou

e — —— = - — <0 20

28y2+<r 2>ay et =Y (20)

together with v > 1), where

vyt = (1-4)" 1)

t
on [0,00) x [0, 7], which upon suitable localization and finite difference discretization once
again gives an instance of (LP’). For the discretely sampled case, we may solve the same
recursive sequence of intra-sampling date problems, with a similar jump condition

at sampling dates t;, where the current running sum value y varies over the same localisation
interval [L, U] as x, to give terminal conditions in each period.

The four path-dependent exotic American options considered have all been reduced
from a two state variable problem to at worst a dynamic programming type backwards se-
quence of parametric LP problems in one state variable, and further numerical investigation
of these techniques is in progress. We turn now to a complex European (i.e. Bermudan)
option in 3 state variables for which no such reduction is possible.

5 Valuation of complex differential swaps

In this section, following [Babbs 1990,1994a,1994b], we consider the numerical valuation of
a cross-currency interest rate-sensitive 10 year differential (diff) swap deal with 3-monthly
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deferred payments in terms of current rate differentials at successive intervals, together
with the option to terminate the deal at payment dates at the cost of a penalty payment
in foreign currency. The valuation of this multistage swap deal stretches current PDE and
computer technology, involving, as it does, three underlying correlated stochastic state vari-
ables, namely ‘domestic’ and ‘foreign’ rates and the exchange rate, plus the time variable,
and with multiple decision points.

Specifically, then, in a typical 3-month period [t;_1,%;), 7 = 1,... N, of the swap deal the
market maker receives (per unit of notional principal) the foreign (3 month LIBOR) rate
L(t;_1,t;), the counterparty receives the domestic rate L,(t;_1,;), unless the counterparty
chooses to terminate for cost X in foreign currency. So, at each 3-monthly decision point
tj_1, the counterparty either:

a) pays the market maker X.S(¢;_1) units of domestic currency to terminate, or

b) agrees to pay the market maker p; = (Lg(tj_1,t;) — m — Lg4(tj—1,1;))d units of
domestic currency in 3 months time, at ¢;, to continue in the deal.

Here, S denotes the prevailing exchange rate, m is a fixed margin and ¢ is an appropriate
quarterly interest accrual factor.

The value V/(Lg, Ly, S, t) (per unit of notional principal) of the deal to the market maker,
after imposing a particular functional form on the bond price volatility term structure
o(t,T) [Babbs 1993], may be expressed as V' (X4, Xf, Xg,t) in terms of three state variables
Xy, Xy and Xg driven by three independent Wiener processes through a linear relationship
involving parametrically specified functions [Babbs 1994b]. This volatility specification
gives rise to an extended Vasicek-type short rate process in each economy. After division
by a suitable numeraire Py(t, H), namely the domestic pure discount bond price maturing
at the end-date H of the economy, the normalized value V*(t) := V (t)/P4(t, H) must be
a martingale under the risk-adjusted probabilities. It therefore follows from Ito’s lemma
that within a period [t;_1,¢;) i.e. between cash flows, V* must satisfy a parabolic PDE in
the three state variables of the form

ovr

2

%VA(t)(VV*)’ -

where the gradient operator is given by

g 0 0
Vi= <8Xd’ 0X;’ 8X5>’ (24)

the coefficient (covariance) matrix

X, HY H
A@y=| HY X3 HS |(1) (25)
HdS HfS (HSS)Z

is a function of time only, and prime denotes transpose.



At the end of the penultimate period [ty_s,tx_1), the value function V' satisfies the
jump condition
V(thl) = XS(thl) A\ Pd(thla tN)pN, (26)

reflecting the counterparty’s choice of the least cost option between making the swap
payment and paying to terminate. Then (26) is a terminal condition for the value function
PDE in the penultimate period. Solving this penultimate period problem provides terminal
conditions for the the preceeding period via the general jump condition

V(tj1—) = XSt 1) A [Palty1, t)p; + V(E5)], (27)

which is the same as the penultimate period’s condition (26) but with the additional con-
tinuation value of V' (¢;). These jump conditions enable us to solve for the entire discounted
value surface V* by a period-by-period dynamic programming backwards recursion similar
to that described for discretely sampled lookback and Asian options in §4. For further
model details see [Hutton 1995].

6 Numerical Methods and Results for Swaps

After choosing a suitable localisation of the spatial domain as £3 standard deviations of the
three underlying state variables (illustrated by Figure 6) from the starting pont (0, 0,0) and
the corresponding boundary values there, finite difference discretization of the parabolic
PDE (23) allows us to solve the valuation problem numerically in each period [t;_1,¢;), by
solving the linear system Cu = € defined analogously to (12). Again, in practice this is
solved in the time stepping form

solve Au™ = ¢™ — Bu™ ' m=1,..., M, (28)

where m is the discretization of time remaining to the end of the period. The matrices A
and B are in general order (I —1)? nested tridiagonal matrices, with 19 bands of non-zero
entries (see Figure 7).

Use of implicit-type finite differences such as Crank-Nicolson necessitates the solution
of the linear system (28) at each time step, i.e. solution of an (I — 1)? linear system. This
was attempted initially via banded matrix LU decomposition but proved infeasibly slow
— at each time step m the decomposition uses O(I”) operations, and the time-dependent
PDE coefficients mean that one must recompute the LU decomposition at each time step.
Furthermore, this must be repeated for each period. For this problem, the fastest of the
standard finite difference methods is the explicit scheme, where the matrix A reduces
to diagonal, and hence each time step requires only a matrix vector multiplication. The
disadvantage of the explicit method, as described in §3, is that one must choose the number
of time steps M proportional to the square of the number of space steps I? to give a stable
scheme (the exact stability condition is not known here), but in three dimensions this is
more than compensated for by the speed of each time step relative to implicit schemes,
and overall results in an O(I°) algorithm.



Some of the data supplied to the model are plotted in Figures 8 and 9. Table 7 shows
computed values of the normalized deal value at launch for termination payments X = 1%
and X = 10,000% (i.e. effectively non-terminable) of nominal. Clearly accuracy of within
a basis point (.01%) is achieved in both cases in a solution time of 47s. The choice of
time steps M in Table 7 illustrates the afore-mentioned stability condition. Figures 10,
11 and 12 show comparable two-dimensional cross-sections through the value surface of
the terminable deal in periods 39, 20 and 1 respectively. The termination option is clearly
shown in the capping of the value surface at the termination cost at the end of the period,
and the surface moves as one expects with respect to the underlying state variables. The
trough-shaped nature of the projected value surface in the exchange rate canonical variable
X in period 20 (Figure 11) is due to the values chosen for the fized variables which evaluate
the four dimensional value surface close to the counterparty termination point.

Further work will be directed towards speeding up the solution. A relatively cheap im-
provement could be obtained by an adaptive time step explicit method, where the time step
varies according to the (as yet unknown) stability condition. In addition, a nested tridiag-
onal LU decomposition could be tried on the full implicit scheme. Ultimately, however, it
seems that some form of multi-grid method on a parallel computer is necessary to achieve
high accuracy in a reasonable time, or indeed reasonable accuracy in reasonable time for a
higher dimensional model, such as two factor interest rate term structures. Furthermore, it
would be interesting to extend the linear programming approach to American interest rate
derivatives, such as an American swaption. Clearly, a full implicit method will run into the
same problem as encountered in the European case, but an Alternating Direction Implicit
(ADI) discretization method, with a simplex solver adapted for tridiagonal matrices used
to solve the implicit steps, could prove a powerful approach.

7 Conclusions

This paper has investigated the application of novel direct numerical methods to the val-
uation of both vanilla and exotic American options — with both continuous and discrete
sampling — as well as to a multi-period terminable differential swap with three stochastic
state variables. Further numerical investigation of discretely sampled exotics is required,
and there is much scope for speeding up all algorithms implemented here. In general nu-
merical solution of PDEs by direct methods is fast, robust and flexible, with the added
advantage of giving instant risk-management parameters using the appropriate difference
approximation from the values computed on the discretization mesh. The use of these
methods in real-time trading systems seems to us inevitable.
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Risk- | Vola- | Geske & Crank- Implicit Crank-
free | tility | Johnson Implicit | Nicolson error | Nicolson error
rate 0 | Pan(1,0) | PLp(1,0) | Prp(1,0) (x107%) (x107%)
125 b 1476 1475 .1479 -1 3
.080 4 1258 1255 1256 -2 1
.045 3 .1005 .1001 .1004 -4 -1
.020 2 0712 .0708 .0710 -4 -2
.005 1 0377 .0374 .0375 -3 -2
.090 3 .0859 .0858 .0861 -1 2
.040 2 .0640 .0637 .0639 -3 -1
.010 1 .0357 .0354 .0355 -3 -2
.080 2 .0525 .0525 .0526 0 1
.020 1 .0322 .0319 .0320 -3 -2
.120 2 .0439 .0439 .0440 0 1
.030 1 .0292 .0289 .0290 -3 -2
1 I
(S =9] (e)? =6

Table 1: Accuracy of two American vanilla put finite difference schemes
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Volatility o = .2

time steps M = 1000 Explicit
space PSOR Simplex M = max{1000, Mmin }
steps I | time (s) | iterations | time (s) | iterations M time (s)
75 .83 17, 13 2.04 0,3 1000 .05
150 1.56 17,12 3.81 0,6 1000 1
300 2.69 17, 11 7.53 0, 13 1200 2
600 3.50 16, 7 15.2 0, 27 4800 .61
1200 5.87 15, 6 31.3 1, 55 19200 4.9
2400 33.3 17, 16 66.2 7,114 76800 37.0
4800 214 62, 47 144 17,232 | 307200 317.0
9600 1270 | 214, 134 323 | 36, 468 | 1228800 5770

Volatility o = .4

time steps M = 1000 Explicit
space PSOR Simplex M = max{1000, My, }
steps I | time (s) | iterations | time (s) | iterations M time (s)
75 9 18,14 2.11 0,9 1000 .05
150 1.55 18, 13 3.98 0, 18 1000 1
300 1.99 18, 8 7.85 0, 38 1600 .32
600 3.29 18, 6 16.4 2,78 6400 2.46
1200 19.1 20, 20 34.5 8, 59 25600 19.9
2400 122 72, 60 76.6 21, 323 102400 149
4800 807 | 250, 188 178 | 45,650 | 409600 1280
9600 5080 | 831, 559 430 | 94, 1304 | 1638400 10500

Table 2: Comparative solution times for PSOR, simplex and explicit finite difference algo-
rithms for varying space steps
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Figure 3: Comparative solution times versus number of space steps for volatilities 0 = 0.2
and 0.4
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Risk- Risk-
free Volatility o free Volatility o
rate r | .05 1 .2 4.8 rate r | .05 1 .2 4 .8
05]3.82]981 (329 | 127 | * .05 | 24.7 1 26.6 | 31.0 | 41.7 | 46.1
11326(19.15(326| 122 | * 11248 127.0)30.3|382]|514
21213 |7.04 284 | 114 | * 21248 1253|259 32.8|44.9
411641380 |21.1| 101 | * 412381247256 29.2 | 38.1
811121296 |11.2| 719 * 812341243256 26.8|33.1

Table 3: PSOR and Simplex times for varying riskless rate r and volatility o (* = failure
to converge in 2000s)
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Figure 4: PSOR and simplex times for varying r
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Volatility ¢ = .2, M = 1000

space PSOR Simplex
steps I | time (s) | time (s) | value Pp(0,.5)
75 .76 1.60 .1091
150 1.36 2.85 .1054
300 2.11 2.52 .1036
600 3.63 114 .1026
1200 17.0 24.4 .1022
2400 102 04.9 .1020
4800 632 131 .1018
9600 3330 324 1018
Binomial value 1017

Table 4: PSOR and Simplex results for the American lookback put with varying space
steps
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Figure 6: Bounds on Gaussian state variables X4(t), X;(¢) and Xg(?)
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Figure 7: Bitmap of nested tridiagonal diff swap matrix A: shaded regions represent non-
zero matrix elements
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discretization | X = 10000 | X = .01
MxIxJxK V V time (s)
20 x 63 -.086798 -.124087 0.21
20 x 103 -.086293 -.129086 0.57
20 x 203 -.085919 -.123529 3.90
20 x 403 -.085815 -.123216 31.29
40 x 803 | -.085750 | -.123057 | 411.12
100 x 1603 -.085721 -.122993 | ~ 7300.00
true value -.085712

Table 5: Diff swap deal value with varying discretization, just-stable explicit method.
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Figure 12: Solution for the first period 1
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