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Solving dynamic portfolio problems using stochastic programming

We consider a dynamic stochastic programming problem (MRP) in multistage recourse form in which the portfolio

manager seeks the maximization of terminal wealth under a set of linear constraints:
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is a discrete, autocorrelated random data process, representing �nancial returns and

borrowing conditions, de�ned in a canonical probability space (
;F ; P ). The time set is �nite with horizon T ,

and the decision process x := fxtg
T
t=1 takes values in X � IRn, for X := �Tt=1Xt; Xt � IRnt ; n :=

P
T

t=1
nt

and is adapted or nonanticipative, i.e. xt = fxtjFtg a:s:, with respect to the �ltration Ft := �f!tg de�ned by

the data process histories !t := (!1; : : : ;!t), t = 2; : : : ; T + 1. Here !t := f(�s; Bs; As; bs) : s = 1; : : : ; tg, with

ft : 
�Xt ! IR a suitable map, and At 2 IRmt�nt ; Bt 2 IRmt�nt and bt 2 IRmt .

Applying the dynamic programming recursion to (MRP), for t = 1; 2 : : : ; T , yields a set of nodal stochastic programs:
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where for each t = 1; : : : ; T we have a so called here-and-now problem at the node de�ned by the data path history

!t. Notice that from (2) it follows that �t = f�tjFtg a:s:. The nonanticipative condition can be relaxed to perfect

foresight in order to derive the corresponding set of distribution problems:
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We de�ne in this way the local expected value of perfect information (EVPI) (cf. [6,8]) as �t(!
t) := �t(!

t)��t(!
t),

for each t = 1; : : : ; T . For the important properties of this process, adopted in [6,8] as an importance sampling

criterion for the selection of a sample set of relevant representative datapath (scenarios) in a sequential sampling

procedure, we refer to [6]. The EVPI sampling procedure discussed in [6,8], by concentrating only on criterion-

relevant scenarios, allows the solution of very large problems by implicitly taking very large numbers of scenarios

into account { an important consideration for con�dence in the calculated solutions of �nancial planning problems.

We report here a pension fund manager's annual planning problem over a ten year horizon with four investment

categories (ordinary shares, consol bonds, index-linked securities, real estate) and �ve funds. The returns on these

investment categories and the pension payments at the end of every year are random, with a set of recourse portfolio-

rebalancing decisions associated with each realization.

An integrated stochastic programming system for the solution of complex �nancial-planning problems requires:-

� A correct representation of the decision problem, as in the multistage recourse form (MRP), with implicit or

explicit characterization of the nonanticipativity condition [2].

� A scenario generator for the simulation of the vector stochastic process ! in (
;F ; P ) representing the coe�-

cient data of the model [2].

� The generation of the stochastic program for numerical solution, for which we use here the STOCHGEN library

[4] incorporating H.J. Greenberg's MODLER [10].

Table 1 presents a set of results for the 10-year horizon asset-liability problem with an increasing number of scenarios

based on the following solution methods:-

� Direct solution of the deterministic equivalent problem by a primal-dual interior pointmethod (CPLEX Version

3.0, 1992).



Number of scenarios 1024 1536 1920 2304 2688

Tree structure 41 28 41 31 27 51 31 27 61 31 27 71 31 27

Matrix dimension 134K � 256K 201K � 384K 251K � 480K 302K � 576K 352K � 672K

Entries 689; 156 1; 033; 268 1; 315; 528 1; 578; 528 1; 841; 520

Density 0:002007% 0:001338% 0; 001089% 0; 0009073% 0; 000778%

Objective 1791:18 1693:47 1769:45 1664:66 1679:92

Root EVPI 39:2% 45:4% 37% 47:5% 45%

CPLEX barrier 618:200 898:5400 1305:700 unsolved unsolved

No of iterations 75 74 82

MSLiP 367:9400 557:7100 704:0300 933:6900 1006:5900

No of iterations 11 12 12 16 15

MSLiP-OSL 347:8500 557:4100 758:800 1192:1800 1070:8400

No of iterations 10 11 12 17 13

EVPI sequential sampling (3 iterations, 15 independent trials)

Average selected scenarios 584 845 961 1183 2015

Average bias in the obj 1:7% 0:2% 3:8% 4:6% 0:8%

Average solution time 52900 80800 89700 124000 214100

Table 1: Numerical results for a long term asset-liability problem

� Taking advantage of the particular structure of the deterministic equivalent problem of (1), the original problem

is decomposed into a sequence of subproblems and solved with nested Benders decomposition (MSLiP and

MSLiP-OSL Version 8.3, 1995).

� The problems are sequentially approximated using the expected value of perfect information attached to nodes

of the associated data scenario tree. The EVPI sampling algorithm is interfaced { so far in a non-optimized

manner { both with the STOCHGEN model generation library to generate sampled problem estimates from

pregenerated data scenarios, and with the decomposition algorithm (MSLiP-OSL) for their solution.

The numerical results are obtained on an IBM RS6000/590 with 256MB of RAM running under AIX 4.1.

MSLiP-OSL instantiates nested Benders decomposition with the OSL simplex solver and provides an accurate and

stable solver for large and very large problems with high EVPI such as those reported in the table (see also [3,8]). It

is compared with Gassmann's original MSLiP solver and with CPLEX barrier which proved to be the best available

interior point algorithm for large problems with sparse structure.
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