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Abstract

Multistage stochastic programming { in contrast to stochastic control { has found
wide application in the formulation and solution of �nancial problems characterized by
a large number of state variables and a generally low number of possible decision stages.
The literature on the use of multistage recourse modelling to formalize complex portfolio
optimization problems dates back to the early seventies, when the technique was �rst
adopted to solve a �xed interest security portfolio problem. We present here the CALM
model which has been designed to deal with uncertainty a�ecting both assets (in either
the portfolio or the market) and liabilities (in the form of scenario dependent payments
or borrowing costs). We consider as an instance a pension fund problem in which port-
folio rebalancing is allowed over a long-term horizon at discrete time points and where
liabilities refer to �ve di�erent classes of pension contracts. The portfolio manager, given
an initial wealth, seeks the maximization of terminal wealth at the horizon, with in-
vestment returns modelled as discrete state random vectors. Decision vectors represent
possible investments in the market and holding or selling assets in the portfolio, as well
as borrowing decisions from a credit line or deposits with a bank. Computational results
are presented for a set of 10-stage portfolio problems using di�erent solution methods
and libraries (OSL,CPLEX,OB1).The portfolio problem with an underlying vector data
process which allows up to 2688 realizations at the 10 year horizon is solved on an IBM
RS6000/590 for a set of twenty four large scale test problems using the simplex and bar-
rier methods provided by CPLEX (the latter for either linear or quadratic objective),
the predictor/corrector interior point method provided in OB1, the simplex method of
OSL, the MSLiP-OSL code instantiating nested Benders decomposition with subproblem
solution using OSL simplex and the current version of MSLiP.

Keywords: Asset-liability portfolio management, pension fund management, dynamic

stochastic programming, linear programming, quadratic programming, simplex method,

interior point method, nested Benders decomposition
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1 Introduction

In this paper we develop a generic model for the integrated dynamic management of �nan-
cial assets and liabilities { the computer-aided asset/liability management (CALM) model
{ which we feel certain will provide a basis for ubiquitous model-based corporate �nancial
planning within a decade or so. Such planning will be brought about by the realistic
nature of models of this type, rapid advances in software tools and computer hardware
capability, and a universal requirement to model and more tightly control �nancial risks
in modern global corporations, from banks to manufacturers, employing a wide variety of
technologies from low to high.

The CALMmodel has been developed from dynamic stochastic programming research
which began over two decades ago with the seminal work of Bradley and Crane [8] and
Lane and Hutchinson [48]. A partial list of subsequent related works includes [10, 23, 47,
58, 68], some of which will be treated in more detail in x3.
Perhaps the most important of these papers are those of Bradley and Crane [8] { who
introduced the inventory approach to modelling �nancial decisions in which each asset
or liability in the model has an initiate, hold and terminate variable in each period, an
invaluable aid to realistic detailed modelling { Dempster and Ireland [24] { who explored
the modern information system context required for such models { and Cari~no et al.

[10] { who developed the �rst genuine commercial application of dynamic stochastic pro-
gramming in spite of the fact that most of their predecessors were involved in prototype
applications with �nancial institutions.

To indicate the current state-of-the-art we present computational results for an in-
stance of the CALM model { the Watson model { which is specialized to a pension fund
manager's dynamic integrated asset/liability management problem in a single currency.
Comparisons are made of current approaches to the numerical solution of such problems
utilizing a contemporary high end workstation and the question of adequate representa-
tion of �nancial uncertainties in the models is addressed.

In the next section (x2) we review the multistage recourse formulation of dynamic
portfolio management problems. Section 3 introduces the CALM and Watson integrated
asset/liability management models. (A detailed presentation of the CALM model is
given in the appendix.) Multistage recourse models are very complex large-scale linearly
constrained problems whose constraint structure grows in size linearly with the number of
data paths or scenarios representing the uncertainties facing the decision maker. Hence
practical models must be handled with software tools which generalize - and utilize { linear
programming (LP) modelling languages such as GAMS, AMPL and MODLER (used
here). This is the topic of Section 4, which describes briey the STOCHGEN subroutine
library [14] developed by our research group. Section 5 reviews current LP and QP
solution solution techniques and software { of simplex, interior point and decomposition
type { with emphasis on their features relevant to the solution of large scale �nancial
planning models. Our comparative computational results { showing the clear overall
superiority of the nested Benders decomposition technique for these large scale portfolio
management problems { are presented in Section 6. Section 7 contains conclusions and
directions for further work.
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2 Multistage recourse formulation of dynamic portfolio management

We consider a stochastic programming problem in the form of a multistage recourse
problem (cf. Dempster [21], Ermoliev & Wets [31]) (here boldface denotes random):

min
x12IR

n1

�
f1(x1) + IE!2

[min
x2

(f2(x2) + : : :+ IE!T j!T�1 [min
xT

fT (xT )])]
	

s:t: A1x1 = b1
B2x1 + A2x2 = b2 a:s:

B3x2 + A3x3 = b3 a:s:

. . .
...

BTxT�1 + ATxT = bT a:s:

(1)

l1 � x1 � u1

lt � xt � ut a:s:; t = 2; : : : ; T :

In (1) the separable objective is de�ned by the period functionals ft, for t = 1 up
to the horizon T ; A1 2 IRm1�n1 and b1 2 IRm1 de�ne deterministic constraints on the

�rst stage decision x1, while, for t = 2; : : : ; T , At : 
 ! IRn2t ; Bt : 
 ! IRn
2
t�1 and

bt : 
 ! IRmt de�ne stochastic constraint regions for the recourse decisions x2; : : : ;xT ;
and IE!tj!t�1 denotes conditional expectation of the state !t of the data process ! at
time t with respect to history !t�1 of the process up to time t, where the data process !
may be regarded as a random vector de�ned in a canonical probability space (
;F ; P ),
with !t := (�t;At;Bt;bt) in which �t is the random parameter in the objective functional
given by ft(�t; xt).

The recourse formulation (1) shows explicitly the dependence of the optimal policy
or decision process x0 := (x01;x

0
2; : : : ;x

0
T ) on the realizations of the vector data process

! := (!2; : : : ;!T ) in (
;F ; P ), with the sample space de�ned as 
 := 
2�
3� : : :�
T

and the �ltration F1 := f0;
g � F2 � F3 � : : : � FT := F ; where Ft := �f!tg is the
�-�eld generated by the history !t of the data process ! for t = 2; : : : ; T and P is a
probability measure on this space.

This model embodies the main features of a decision problem under uncertainty:-

� The objective in this nested representation formalizes a sequence of optimization
problems corresponding to di�erent stages: at time 1 the decision maker has to
select a decision whose outcome completely depends on the future realizations of
the underlying multidimensional stochastic data process. Solution of this problem
is sometimes referred to as the here and now problem.

� Thereafter, for each realization of the history !t of the data process up to time t,
a recourse problem is considered in which decisions are allowed to be a function of
the observed realization (xt�1; !t) only.

At each stage previous decisions a�ect current problems through the stochastic
matrices Bt; t = 2; : : : ; T , with the decision sequence:
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decide observe decide observe decide
x1 ; !2 ; x2 ; � � � ; !T ; xT :

The recourse decisions depend on the current state of the system as determined
by previous decisions and by random events. Each decision thus is required to be
adapted to the �-�eld generated by the process implying nonanticipativity in these
decisions.

� The data process ! in (
;F ; P ) is de�ned as a discrete-time, possibly autocor-
related, vector stochastic process and �nds a convenient representation as a sce-

nario tree : each scenario corresponding to a trajectory of the process !T :=
(!1;!2; : : : ;!T ) at the horizon T . It is this branching structure of data paths
that ensures that all decisions are made in the face of uncertainty.

� In (1) { as is generally the case in �nancial planning problems { both the RHS and
LHS of the constraint set are scenario-dependent. The generation of the sample
data paths for the problem represents a crucial step for a correct speci�cation of the
stochastic optimization problem. (We will consider briey in x3 some of the impli-
cations of the so-called investment model (A.D.Wilkie [65]) that has been adopted
for this purpose in the WATSON portfolio problems.)

Dynamic portfolio problems are easily formulated as dynamic recourse problems (DRP).
This approach to model-based portfolio management was �rst adopted by Bradley and
Crane [8] in 1973 for a portfolio problem restricted to �xed interest securities. Other
applications of DRP for �nancial planning are reported in Lane and Hutchinson [48],
Kallberg, White and Ziemba [43], Kusy and Ziemba [47], Dempster and Ireland [24],
Mulvey and Vladimirou [58], Dantzig and Infanger [19], Zenios [68], Cari~no et al [10, 11].

In many of these examples uncertainty takes the form of future rates of return on
market investments and funding sources, as well as cash ow misalignments, and the
objective function is typically characterized in terms of the expected value of a linear or
nonlinear utility function of wealth at the horizon and sometimes beyond.

Problem (1) may be given a more compact dynamic programming representation
which takes advantage of the structure exhibited by the set of constraints (here Markovian,
but more generally lower triangular or staircase). For each t = 1; : : : ; T � 1, we have

min
xt

[ft(xt) + vt+1(!
t; xt)] (2)

s.t.
Btxt�1 + Atxt = bt ;

where vt+1 expresses the optimal expected cost for the stages from t + 1 to T , given
the decision history xt := (x1; : : : ; xt) and the realized history of the random process
!t := (!1; : : : ; !t). Speci�cally,

vt+1(!
t; xt) := IE!t+1j!t [min

xt+1

(ft+1(xt+1) + : : :+ IE!T j!T�1 min
xT

(fT (xT ))] ; (3)

where the minimizations are taken subject to the appropriate constraints which will be
discussed further in x5.
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Correspondingly, at the end of each time period on the basis of the current information
a portfolio manager selects an optimal decision in the face of the uncertainty that (s)he is
now facing. This decision needs to be feasible with respect to the constraints induced by
the future values of the random data process and is inuenced by the current composition
of the portfolio.

Due to the convexity of vt+1(!
t; xt) with respect to xt, problem (2) can be also

formulated in the form:

min
xt

ft(xt) + �t (4)

s.t.
Btxt�1 + Atxt = bt

vt+1(!
t; xt) � �t :

The adoption of a cutting-plane algorithm for the solution of (1) is based on the simple
decomposition (4) by approximating the value function at t + 1 by a set of hyperplanes
of the form

d0xt � �t ;

see [6, 32, 26]. Actually, some of these are used to enforce constraints on current decisions
which ensure later recourse actions are feasible.

3 The CALM and the Watson models

Multistage stochastic programming techniques, unlike typical stochastic control formula-
tions, allow the representation and solution of �nancial problems characterized by a large
number of state variables and a generally low number of possible decision stages.

Recent applications of multistage stochastic programming techniques for �nancial
planning con�rm the possibility of solving large problems with complex structure. The
Russell-Yasuda Kasai model [10] and the Towers Perrin investment system for pension
plans [57] are important examples.

In the sequel we discuss the formulation and solution of a long-term portfolio problem
with uncertainty a�ecting price processes, interest rates and liability payments. The
CALM model (Dempster, 1993, see the appendix) represents a general formulation of
an asset-liability model as a linearly constrained problem with an objective function
explicitly taking into account the risk attitude of the portfolio manager. It is based
on well-established �nancial theory and addresses a multicurrency portfolio problem with
randomness a�ecting rates of return and liabilities in domestic and foreign terms.

The general CALM model assumes a portfolio manager possessing a utility function
from a general class which expresses his or her attitude to possible distributions of the
terminal wealthWT . This class of isoelastic utility functions u characterizes a risk-averse
portfolio manager possessing an Arrow-Pratt relative risk measure which is inverse a�ne.
Logarithmic utility functions, as well as certain exponential and polynomial utilities,
belong to this class and a well-established theory is available with theoretical results
for the case of portfolio problems formulated as dynamic programming problems under
uncertainty (see e.g. [4]).
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A practical dynamic portfolio management theory requires, as well as an accurate
representation of the risk attitude of the portfolio manager, fast and accurate solution
techniques for a decision problem involving large numbers of decision variables { so far
impossible to handle in a dynamic programming framework, but currently practical for
the scenario-based multistage stochastic programming DRP formulation.

For this reason and given the current state of algorithm development for large-scale
nonlinear problems, we have considered an objective in linear and quadratic form and
we shall restrict ourselves to these two cases in the numerical experiments that follow,
although piecewise linear/quadratic forms are also computationally tractable [46]. Specif-
ically:

IEu(WT ) :=

�
IEWT in the linear case

IE(WT � ~W )2 in the quadratic case,
(5)

where ~W denotes a target determined a priori by the portfolio manager and the expec-
tation is taken with respect to the probability measure assigned at the horizon to each
scenario.

The Watson model { named after Watson & Sons Consulting Actuaries who have
provided the set of �nancial data for the parameter speci�cation of the problem { repre-
sents a particular instance of the CALM model for the case of pension fund management
with uncertainty a�ecting assets, either in the portfolio or in the market, and liabilities,
in the form of scenario dependent pension payments or borrowing costs.

We consider two possible ways of generating scenarios for the test-problems which
are both based on the Wilkie investment model [65] regarded as a complex nonlinear
predictor of real and nominal returns for �ve asset classes and pension payments on an
equal number of pension schemes.

In particular, either:-

1. We take the simulations as provided by Watson & Sons, a set of 10 year inde-
pendently generated sample paths and generate a scenario tree by "imposing" a
tree-structure (as explained in x4) which largely destroys the temporal stochastic
properties of the underlying data process, or

2. By modifying the generator as originally supplied, we generate data paths in condi-
tional mode, correctly representing paths from Wilkie investment model in the form
of a scenario tree.

Our computational results show that the two procedures have di�erent implications
for the nature of the optimization problem and the performance of a solution method
based on nested Benders decomposition.

Wilkie's model is based on actual data from the U.K. for the period 1924-1991 and
is formulated as a set of simultaneous autoregressive equations of up to the third order
in Wold recursive form, all dependent on an underlying ination process. It generates
simulations for annual returns in the UK market on (see Figure 1):
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(1) ordinary shares
(2) �xed-interest irredeemable bonds
(3) bank deposits
(4) index-linked securities
(5) real estate,

together with predictions of annual pension payments and an estimated reassurance-to-

close representing future payment liabilities discounted to the horizon. All these are used
to calculate the required random coe�cients for the WATSON problems studied in the
numerical experiments.

In order to characterize the risk faced by the portfolio manager, we show in Figures 1
and 2 the marginal empirical probability densities for the di�erent returns at the horizon
resulting respectively from the simulation of 1,000 independent data paths and 1,024
conditional scenarios. A comparison shows the impacts of the two procedures on the
marginal distributions at the horizon; with a clear path-dependent "humpy" e�ect in the
case of the conditionally generated scenarios.

The Watson model is an optimal dynamic A/L management problem with linear
constraints with general �nancial and accounting considerations as follows.

a. Cash Balance Constraint

In each period cash inows, due either to borrowing or selling decisions, must be
equal to cash outows, due to pension payments, debt reboursements or other causes.
We consider �ve pension funds, with an estimated payment also required at the horizon
to compensate for all future liabilities.

b. Inventory Balance Constraints

Each decision of the portfolio manager with an impact on the portfolio composition
needs to be accounted for. In the Watson model { following Bradley & Crane [8] and
unlike most of the other models presented in the past { we specify at each stage the
composition of the portfolio for each asset category according to the period in which the
investment has taken place. This is the mechanism by which both tax and regulatory
constraints are easily added to the model.

c. Other Conditions
All decisions are constrained by upper or lower bounds on investment classes, lines

of credit, speci�c corporate and regulatory constraints. In general these conditions have
to be modelled as scenario dependent; in the �rst instance, however, we keep them �xed
over the planning horizon.

d. Terminal Wealth De�nition

Finally, the speci�cation of the terminal wealth that enters the objective function
represents an important aspect of the portfolio problem. In the Watson model, we include
in the de�nition the market values at the horizon of all assets in the portfolio, together
with the position with the bank, net of the terminal reassurance-to-close payments for
the �ve pension funds.
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Figure 1: Return distributions - 1,000 independent simulations
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Figure 3: Non-zero entries in the WATSON coe�cient matrix

Figure 3 shows the sparsity structure of the constraint matrix for the Watson problem.

The constraint matrix exhibits a block-bidiagonal structure as a result of the Markovian
nature of the A/L management decision problem and suggests scope for decomposition
methods.

Given the model formulation and a data speci�cation de�ning its random coe�cients,
the resulting stochastic programming problemmust be generated in standard input format
for numerical solution. A complete speci�cation of the problem also requires the path
probabilities for the di�erent scenarios { here equally likely since they have been generated
by simulation.

4 Model generation

A stochastic programming problem speci�ed for numerical solution is conventionally in
SMPS format (Birge et al. [7]) described in terms of three input �les as:- a time �le

de�ning the dynamic structure of the problem, a core �le supplying all the data along
one scenario path (generally regarded as the base scenario of the problem) and a stoch �le

containing the stochastic information of the problem, in which the scenario probabilities
are also speci�ed. The pro�le and dimension of the stoch �le depends on the number of
stages in the model as well as on the number of realizations allowed at each stage.

The data speci�cation represents an essential step in the formulation of a stochastic
problem. In a one-scenario, i.e. deterministic, problem we remain in the area of linear or
quadratic programming. An MPS �le generator for deterministic problems (MODLER,
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Figure 4: Model generation

AMPL, MIMI, etc.) can be usefully incorporated into the design of an SMPS generator
for the speci�cation of a stochastic version of the problem. This is the approach taken in
the STOCHGEN subroutine library (SSL) recently created by X.Corvera Poir�e [14]. Its
structure is shown in Figure 4.

STOCHGEN takes as inputs a sequence of mps �les generated for each scenario by
the modelling language, here MODLER (Greenberg [38]), together with the speci�cation
of the tree structure for the data process and a set of nodal MPS �les for the base
scenario, and provides the required SMPS �les as output. The SSL library expands the
utilization of current modelling facilities for linear programming to the stochastic case and
provides insight into the understanding of dynamic stochastic programs. It is constructed
to encourage the LP user to approach the �eld of stochastic programming and allows for
the combination of trees and subtrees in an error-checked non-redundant manner.

5 Standard solution techniques

The speci�cation of the probability measure P as discrete for the measurable sample
space (
;F) allows an easy derivation [18] of the deterministic equivalent of a stochastic
program with recourse for numerical solution.

We consider two possible solution procedures for the deterministic equivalent of the
considered dynamic portfolio problem:
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� Direct solution of the deterministic equivalent problem in which conditional prob-
abilities (or, equivalently, path probabilities) for all stages de�ne explicitly the re-
course problem and the related constraint set. Very large linear or quadratic pro-
grams are created that can be solved using respectively standard LP algorithms (i.e.
simplex or interior point methods) or QP algorithms (pivoting, iterative or interior
point based algorithms).

� Alternatively, the original problem may be decomposed into a sequence of subprob-
lems which are computationally closely related across scenarios and nested Benders
decomposition applied. This algorithm passes solution information from subprob-
lems to subproblems forward in time, and feasibility and optimality information in
the form of cuts backward in time.

Assuming for simplicity equal numbers of branches descending from each node of the
decision tree in a time period, together with the speci�cation of the corresponding con-
ditional probabilities as pk2;k3;:::;ktt ; t = 2; : : : ; T , allows the formulation of the certainty

equivalent of (1) in the form

min

�
f1(x1)+

K2X
k2=1

[pk22 f2(x
k2
2 )+

K3X
k3=1

[pk2;k33 f3(x
k2;k3
3 )+ : : :+

KTX
kT=1

[pk2;:::;kTT fT (x
k2;:::;kT
T )]]]

�

s:t:

A1x1 = b1

Bk2
2 x1 + Ak2

2 xk22 = bk22
k2 = 1; : : : ;K2

B
k2;k3
3 xk22 + A

k2;k3
3 x

k2;k3
3 = b

k2;k3
3

kt = 1; : : : ;Kt

t = 2; 3
. . .

. . .
...

B
k2;:::;kT
T x

k2;:::;kT�1
T�1 + A

k2;:::;kT
T x

k2;:::;kT
T = b

k2;:::;kT
T

kt = 1; : : : ;Kt;

t = 2; : : : ; T

l1 � x1 � u1; lt � x
k2;:::;kT
t � ut; t = 2; : : : ; T ; (6)

in which a vector of decision variables is introduced at each node in the decision tree.
In concise matrix notation the multistage linear problem is

min
x̂

ĉ0x̂ s:t: Âx̂ = b̂; x̂ � 0 ;

where
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ĉ := (c01; (p
1
2c

1
2)
0; : : : ; (pK2

2 cK2

2 )0; (p1;13 c
1;1
3 )0; : : : ; (pK2;K3

3 c
K2;K3

3 )0; : : : ; (p1;:::;1T c
1;:::;1
T )0; : : : ; (pK2;:::;KT

T c
K2;:::;KT

T )0)0

x̂ := (x01; x
1
2
0; : : : ; xK2

2
0; : : : ; x

1;:::;1
T

0; : : : ; x
K2;:::;KT

T
0)0

b̂ := (b01; b
1
2
0; : : : ; bK2

2
0; : : : ; b

1;:::;1
T

0; : : : ; b
K2;:::;KT

T
0)0

Â :=

0
BBBBBBBBBBBBBBBBBBBBBBB@

A1 0 : : : : : : 0
B1
2 A1

2 0 : : : : : : 0
...

. . . : : :
...

BK2

2 0 : : : AK2

2 0 : : : 0

0 B
1;1
3 A

1;1
3 0 : : : 0

...
...

. . . 0

0 B
1;K3

3 : : : : : : 0

B
K2;K3

3 : : : A
K2;K3

3 : : : 0
...

...
...

...
...

B
K2;:::;K4

4

: : :
...

. . . 0

0 0 : : : B
K2;:::;KT

T : : : A
K2;:::;KT

T

1
CCCCCCCCCCCCCCCCCCCCCCCA

In a T -stage problem with �t
s=2Ks nodal problems in stage t with associated (mt�nt)

submatrix dimension, this results in ĉ 2 IRn̂; x̂ 2 IRn̂; b̂ 2 IRm̂; Â 2 IR(m̂�n̂) (see Figure
3), where n̂ := n1+K2(n2+K3(n3+ : : :+KTnT )) and m̂ := m1+K2(m2+K3(m3+ : : :+
KTmT )), generating eventually very large problems as the number of scenarios increases.

The (LP)

min
x̂
fĉ0x̂ jÂx̂ = b̂; x̂ � 0g (7)

and its dual (DLP)

max
�̂
fb̂0�̂ j�̂0Â � ĉ0g (8)

are those considered in the solution with simplex or interior point methods.
The derivation of a complete certainty equivalent linear, or with a simple extension

quadratic, program from the SMPS �les generated by STOCHGEN is achieved with the
STD2MPS utility created by Gassmann [32].

The main problems in solving either (7) or (8) are related to the extremely large di-
mensions that such an LP may attain. In the sequel we consider di�erent algorithms for
the solution of large scale programs and compare the results from state-of-the-art commer-
cially available solvers with the performance of two versions of the MSLiP implementation
of the nested Benders decomposition algorithm.

5.1 Simplex

Modern implementation of the revised simplex method, such as in IBM's OSL Release 2
[42] (1992) and CPLEX simplex [16] (1994), incorporate many of the theoretical results
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of research in this area, making commercially available two excellent versions of this
technique for the solution of LP problems.

The performance of the simplex method, recognized as very e�cient for the solution
of relatively small dense problems, may be considered to depend on:

� the implementation of a scaling procedure, before phase 1 of the algorithm takes
place, and an e�cient basis factorization and update after the dimension of the
original matrix has been reduced by preprocessing,

� the determination of a convenient advanced starting basis through a crash proce-
dure,

� the adoption of an e�cient pricing strategy during the solution phase, possibly with
multiple pricing, in order to determine the pivot direction from the current solution
point.

The scaling procedure generally results in substantial improvements in terms of the pivot
path and numerical stability. The OSL and CPLEX libraries both provide a subroutine
for scaling the original entries of the constraint matrix. In the solution of the WATSON
problems we always make use of the scaling option.

The presolution of LP problems reduces the dimension of the original matrix, say Â of
(7), by eliminating redundant rows and columns; both OSL and CPLEX have quite e�ec-
tive presolvers. However CPLEX, by implementing a two-phase method with a presolver-
aggregator, e�ects substantial reductions of the original matrix. This is the distinguishing
feature of the CPLEX library which improves remarkably the overall solution time for
large problems { for both the simplex and interior point algorithms.

Once the matrix dimension has been reduced and the columns for the basic and
non-basic variables identi�ed, the basis submatrix is factorized and inverted. Complete
refactorization takes place regularly thereafter during the solution of the problem. In this
respect the performance of the algorithm may be a�ected by the number of factor update
iterations allowed between refactorizations of the basis matrix. Levkovitz and Mitra [49]
report that in order to avoid numerical instability, the Markowitz merit count approach,
which guides pivot selection during the basis factorization, can improve the numerical
properties of the solution. The CPLEX library provides a subroutine that enables the
user to select the number of iterations between refactorizations and to �x the Markowitz
tolerance. Similarly, OSL allows the selection of a parameter for the frequency of the
basis refactorization, but no use is made of the Markowitz approach to pivot selection
during basis factorization.

In order to reduce the number of iterations required to achieve the optimum a good
starting basis is essential; this is usually realized by adopting a crash procedure before
the start of the solution phase. In all the test problems we have made use of the crash
subroutines provided by OSL and CPLEX.

Finally, the e�ciency of the algorithm depends on the pricing strategy that has been
adopted in order to select the direction of the step from one vertex to the next. Both
OSL and CPLEX provide a parameter for the choice of a convenient pricing method for
the problem under consideration. Particularly for sparse large problems, DEVEX pricing
(Harris 1973, [40]) turns out to be quite e�ective and can be used with both CPLEX
and OSL; its idea being that the computation of the reduced cost vector for the complete
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set of basic variables is appropriately and e�ciently scaled at each iteration. Examining
the complete set of columns with any pricing method can result in unnecessary extra
work when the coe�cient matrix is large, so that heuristics limiting the reduced cost
computations determining the pivot column may be much more e�cient in this case.

In the implementation of the simplex method with OSL we have used a pricing method
based on pricing a random subset of basic columns with an automatic switch to DEVEX
on the full set. Using CPLEX, the best results have been achieved by selecting DEVEX
pricing for very large problems and allowing the hybrid ordinary reduced cost-DEVEX
pricing method for small and medium problems. Utilizing the work of Goldfarb and
Reid [35], CPLEX has also implemented a steepest edge crossing procedure which can be
thought of as a logical extension of the heuristics introduced by DEVEX pricing. However
in our di�erent tests, we could not �nd evidence of improved solution times utilizing this
method.

5.2 Interior Point method

Interior Point methods have become increasingly popular after Karmarkar's 1984 con-
tribution [44]. We consider a primal/dual barrier method with predictor-corrector. Fol-
lowing Mehrotra's study [55], this algorithm is based on approximation of primal-dual
trajectories in the interior of the feasible region, as was �rst implemented in the OB1
code and then incorporated, with some improvements, in CPLEX. The general theory of
primal/dual interior point (P/D IP) methods is due to Megiddo [54].

The two implementations of the algorithm we used di�er in their coding language {
Fortran for OB1 and C for CPLEX { and signi�cantly in the power of the preprocessing
subroutines, with a very e�ective presolver/aggregator implemented by CPLEX.

The search direction method adopted by both libraries (see Lustig et al. [52]) may
be regarded as an attempt to generate steps in the feasible region according to �rst-order
information, with a following "centralizing" step as a correction.

The primal dual IP method is based on the simultaneous solution of the primal and
dual problems (7) and (8) with a progressive reduction of the duality gap at each iteration.
A good property of P/D IP methods is that the convergence rate for these algorithms in
general is seen to be independent of the problem size.

In requiring disk storage for the primal and the dual problem simultaneously, however,
current implementations of P/D IP methods are memory-intensive and this may seriously
compromize the solution of very large problems. In this respect, unlike OB1, CPLEX has
an e�cient dynamic memory allocation system and is able to handle very large problems
{ although not the largest in this study.

The P/D IP method requires the computation at each iteration of the Cholesky
factorization of a matrix of the form ADA0, where D is a diagonal matrix whose nature
is determined by the choice of the algorithm. This factorization absorbs most of the
computational e�ort and the time spent on each iteration is substantially a�ected by
the method used, which needs to be fast and memory requirement minimizing. These
properties are inuenced by the matrix ordering procedure before the Cholesky factor
is actually determined. On the IBM/RS6000 platform used in our computations, the
multiple minimum degree procedure (Liu [50]) has so far proved to be preferable (cf. also
Lustig, Shanno and Marsten [52]) to the minimum local �ll ordering (Du� et al. [27])
which is also available in both the OB1 and CPLEX systems. In this respect, Berger et al.
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[3] have claimed that Liu's procedure { giving rise to considerable �ll-in in the Cholesky
factor { is in general quite ine�cient, particularly for multistage stochastic programs in
split-variable formulation (i.e. with explicit nonanticipative constraints on the decision
variables). This evidence lead to the development of an alternative ordering heuristic
termed tree-dissection. Comparing the above-mentioned methods, however, we have so
far had empirical con�rmation of the superiority for large sparse matrices of multiple
minimum degree, due largely to the fact that solution times for problems formulated with
explicit nonanticipative constraints are in general extremely slow relative to the so-called
compact formulation of (6).

This conclusion also holds in the case of the quadratic problems solved by CPLEX
interior point QP solver which was beta-tested on the Watson test problems. In this case,
despite the increased density of the Cholesky factor and a signi�cant increase in the �ll-in
for the di�erent test-problems, the ordering procedure appears to be very e�ective and
the solution times found in Table 3 are competitive with the performance of the best LP
solvers.

In IP algorithms the determination of a starting point again follows the reduction of
the original coe�cient matrix by elimination of redundant rows and columns. As opposed
to the presolver-aggregator implemented by CPLEX, OB1 bases the preprocessing of the
problem on simple inferences; the reductions achieved by OB1 for the di�erent problems
are generally considerably less than those achieved by the OSL and the CPLEX presolvers.

Levkovitz and Mitra [49] report results of experiments on the determination of an
e�cient starting point by selecting di�erent starting points in the dual space, but this
remains in general an open problem.

5.3 Nested Benders Decomposition

The nested Benders decomposition method implemented by MSLiP (Gassmann [32, 33,
34]) speci�cally applies to the solution of multistage stochastic linear programs in the
DRP form. Unlike the methods considered above, it does not require the simultane-
ous determination of a complete deterministic equivalent problem. It considers instead
an e�cient decomposition procedure by extending to the multistage case the Benders
decomposition method established for the two stage case.

A good introduction to the application of Benders' decomposition to stochastic linear
programs can be found for two or three stage problems in respectively Van Slyke and
Wets [63] and Birge [6] and for the multistage case in Gassmann [33].

The idea behind nested Benders decomposition is to express at each stage t, as the
impact of stages t + 1; : : : ; T , the expected future costs in terms of a variable �t and by
"cuts" { linear necessary conditions for both feasibility and optimality { expressed only in
terms of the current stage variables. It is thus a special type of cutting plane algorithm
in which the convex constraint �t � vt+1 in (4) is replaced by a polyhedral description
which is updated as more information becomes available from the dual problems at the
descendants of current nodes. In the MSLiP implementation each nodal subproblem is
solved with a (1974) simplex subroutine created by Pfe�erkorn and Tomlin [33].

The e�ciency of nested Benders decomposition depends on the number of subprob-
lems to be solved { each one corresponding to a node in the scenario tree, the performance
in solving each subproblem and the order in which the nodes of the tree are visited.

The number of subproblems to solve depends in general on the number of cuts gen-
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erated by dual information. A high number of feasibility cuts is likely to cause numerical
instability and eventually jeopardizes the convergence of the implemented algorithm (see
below). We show in x6 that the performance of the nested Benders cutting plane method
depends critically on the stochastic properties of the problem in terms of the number of
feasibility cuts generated. Scenarios produced in conditional mode lead to a lower level
of stochasticity as measured by the expected value of perfect information (EVPI) value at
the root node of a problem (Dempster and Gassmann [23], Dempster and Thompson [26])
and imply a signi�cant decrease in the number of cuts generated and the overall solution
times.

In order to improve the numerical properties of the algorithm, the OSL Release 2
simplex solver has been implemented in the MSLiP code, introducing the possibility
of preprocessing the subproblems and selecting adequate crash procedures (Thompson
[62]). As shown in the following section, this has improved the stability of the method
without a�ecting solution times. If stages are aggregated to create larger subproblems
more e�ciently solved by OSL simplex considerable speed-ups result with MSLiP-OSL
(see Dempster and Thompson [25, 26]).

Three alternative approaches may be adopted to selecting the sequence of subprob-
lems to solve. In the context of deterministic dynamic problems Wittrock [67] suggested
that the fastest way to pass information between nodal subproblems would be to change
direction as little as possible and to move along the chain until a direction is stopped
either because the horizon has been reached or because an infeasible problem has been
found. This method applied to trees is referred to as the fast forward fast back (FFFB)
approach. Alternatively, a "forward �rst" or "backward �rst" approach as described by
Gassmann [33] may be considered. The FFFB protocol has been shown to give the best
results and has been adopted in our experiments.

6 Computational Results

Results are presented for di�erent solution methods applied to two sets of 10-stage WAT-
SON problems with "independent" and conditionally generated scenarios (see x3). All
problems were run in double precision on an IBM RS6000/590 with 128 MB of main
memory and 2.5 GB of disk running under AIX 3.2.5.

By expanding the sample space 
 := �10
t=1
t of the multidimensional random process,

we can generate successive problems of increasing complexity and derive a comparative
evaluation of the algorithms discussed in Section 5. A check on the actual randomness,
or stochasticity, of the problems is made by computing the relative EVPI (as a ratio with
respect to the objective value) at the root node of each problem (see Table 2).

In Table 1 we give details of the the two sets, of 11 and 13 test problems respectively,
that have been generated by increasing the number of scenarios { both "independently"
and conditionally generated. These 24 problems represent the basis of the comparative
evaluation of the solution algorithms for our long-term portfolio problem. Statistics are
reported regarding the original dimension of the complete deterministic equivalent prob-
lem and the reduction achieved by preprocessing using the di�erent libraries.

Thanks to a very rich set of �nancial data and the reliability of the SSL problem
generator (given the memory and hard-disk constraints of the IBM platform) we have been
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able to generate 10 stage problems with up to 2688 possible realizations of the process at
the horizon. Additional sample paths give increasing con�dence in the representation of
the portfolio problem, for which we eventually wish to study the sensitivity of the optimal
policy to very small variations in the parameters underlying market rates of return and
borrowing conditions.
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Figure 5: WATSON Test problem dimensions

In Figure 5 we depict the almost linear relationship between the dimension of the
WATSON problems (expressed in terms of the number of variables) and the number of
scenarios.

We have tested the performance of the preprocessing subroutines provided by OSL,
OB1, and CPLEX for the di�erent problems. Both OSL and CPLEX achieve a signi�ca-
tive reduction in the dimension of the original problems, but the presolver/aggregator of
CPLEX proves to be extremely e�ective, with a remarkable impact on solution times.

From a numerical viewpoint, long term portfolio decision problems such as the WAT-
SON problems result in stochastic programs whose general form is characterized by:-

� A very sparse coe�cient matrix with entries representing �nancial returns and cash
inows and outows per unit of value.
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Number of scenarios 16 32 64 128 256

Tree branching structure 2415 2514 2613 2712 2811

Number of nodes 111 191 319 511 767

Original Matrix 4573 � 8401 8413 � 15553 15101 � 28097 26237 � 49153 43517 � 82177

Entries 21; 368 39; 848 72; 648 128; 648 218; 888

Density 0:0556% 0:0305% 0:0171% 0:00997% 0:00612%

OSL Reduced matrix 2886 � 5961 5318 � 10953 9478 � 19465 16134 � 33033 25606 � 52233

Entries 15; 359 28; 511 51; 359 88; 863 144; 927

Density 0:0893% 0:0489% 0:0278% 0:01667% 0:01083%

OB1 Reduced matrix 3970 � 7062 7362� 8430 13314 � 23366 23298 � 40326 38914 � 65798

Entries 19; 525 36; 437 66; 389 117; 269 198; 421

Density 0:06964% 0:05871% 0:02134% 0:01248% 0:00775%

CPLEX Reduced matrix 837 � 3897 1630� 7230 3101 � 13025 5981� 22753 11517 � 37889

Entries 16; 669 30; 799 55; 099 94; 255 154; 475

Density 0:5119% 0:2613% 0:1341% 0:0693% 0:0354%

Number of scenarios 512 768 1024 1152

Tree branching structure 29 31 28 41 28 32 27

Number of Nodes 1023 1534 2045 2299

Original Matrix 67069 � 128001 100598 � 191994 134127 � 255987 150869 � 287949

Entries 351; 228 516; 784 689; 156 775; 288

Density 0:00406% 0:00267% 0:002007% 0:001784%

OSL Reduced matrix 35846 � 72713 53768 � 109067 71690 � 145421 80642 � 163577

Entries 244; 765 367; 140 489; 515 550; 653

Density 0:00939% 0:00626% 0:00469% 0:004174%

OB1 Reduced matrix 60418 � 97798 90624 � 146692 120830 � 195586 135918 � 220006

Entries 314; 389 471; 572 628; 755 707; 285

Density 0:00532% 0:00354% 0:00266% 0:002365%

CPLEX Reduced matrix 21757 � 58113 32636 � 87167 43513 � 116221 48950 � 130733

Entries 239; 403 359; 106 478; 801 538; 650

Density 0:0189% 0:0126% 0:00941% 0:00842%

Number of scenarios 1536 1920 2304 2688

Tree branching structure 41 31 27 51 31 27 61 31 27 71 31 27

Number of Nodes 3065 3831 4597 5363

Original Matrix 201155 � 383927 251441 � 479905 301828 � 575983 352114 � 671961

Entries 1; 033; 268 1; 292; 258 1; 578; 528 1; 841; 528

Density 0:001338% 0:001071% 0:0009073% 0:000778%

OSL Reduced matrix 107522 � 218101 134402 � 272626 out of memory out of memory

Entries 734; 199 917; 745 ��� ���

Density 0:003131% 0:002504 ��� ���

OB1 Reduced matrix 181222 � 293338 226526 � 366652 out of memory out of memory

Entries 943; 039 1; 178; 193 ��� ���

Density 0:001774% 0:001418% ��� ���

CPLEX Reduced matrix 65266 � 174309 81582 � 217886 out of memory out of memory

Entries 718; 193 897; 750 ��� ���

Density 0:00631% 0:00505% ��� ���

Table 1: De�nition of WATSON Test Problems
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� A generally small feasible region, with most of the constraints speci�ed by upper
and lower bounds on borrowing and investment decisions binding at each stage,
e�ectively reducing the size of the set of feasible policies to be a direct function of
the initial wealth of the decision maker.

� At each stage the information provided by the possible subsequent realizations of
the random data process strongly a�ects the state of the system (in the Watson
case identi�ed with the current portfolio value process).

Interior point methods are particularly e�cient in this setting. For the di�erent test
problems, CPLEX barrier converges to the solution in a number of iterations which is
independent of the size of the problem. This property { generally attributed to P/D
IP methods { is also possessed by MSLiP and MSLiP-OSL; in both cases the number
of iterations is computed on the basis of the number of times the master (root-node)
problem is solved in the course of the solution procedure.

A major advantage of nested Benders decomposition is that a negligible amount
of memory needs to be allocated during the solution procedure as opposed to P/D IP
methods. The WATSON.10.1920 problem, for instance, has not been solved by OB1
because of lack of memory space, whereas CPLEX barrier, thanks to it's dynamic memory
allocation, has succeeded in �nding an optimum although requiring roughly 85% of the
total memory (128MB) available. On the other hand, MSLiP and MSLiP-OSL needed
for the same problem only about 21% of the memory to be allocated.

OSL simplex has been tested up to the solution of the 512-scenario problem and
CPLEX simplex up to 768 scenarios; at these points the sizes of the problem made
simplex already very ine�cient. All other problems, up to system sustainability, have
been tried with MSLiP, MSLiP-OSL, CPLEX barrier and OB1.

The numerical results shown in Table 2 refer to the complete set of "independent"
problems generated with the original Watson simulator. Solution accuracy agreement of
the various methods is displayed in the number of decimal places shown for each problem
in the objective value (at least 2 decimal places) (see also Table 3).

All solution methods have been tested on the "independent" problems shown in Table
2, while only the more e�cient solvers are considered in the case of problems shown in
Table 3 with scenarios generated in conditional mode.

There are evident variations in the values of both the objective and the relative EVPI
which appear to be independent of the number { but clearly not the nature - of randomly
generated scenarios. A priori we expect more conservative strategies and lower terminal
wealths as a result of increasing number of scenarios! Decomposition methods, unlike
solution methods based on the complete certainty equivalent problem, are a�ected by the
stochastic properties of the underlying random process.

Tables 2 and 3 show the impact of the relative EVPI values at the root node on the
di�erent procedures: reduced randomness of the conditional problems improves speed
of the solution and stability of the decomposition method making MSLiP much faster
then CPLEX barrier. Very large problems { previously unsolved by MSLiP { can be
solved with conditionally generated scenarios since the number of feasibility cuts needed
decreases.

The IP-QP solver of CPLEX (which was made available to us by CPLEX for beta-
testing) appears to be competitive with respect to the other solvers (cf. Table 2) and
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Number of scenarios 16 32 64 128 256 512

Obj ($m) 2158.7519 1866.398 2310.51 1637.8125 2000.838 1959.635

Relative EVPI 12.64% 28.31% 30.43% 42.75% 36.63% 44.63%

OSL simplex 11.6" 47" 188" 707" 2253" 6510"

n.iterations 1141 2696 5721 11747 23089 45457

OB1 pred./corr. 12.1" 27.1" 63.4" 128.2" 210.7" 394.9"

n.iterations 41 52 68 80 73 85

CPLEX simplex 6.37" 17.6" 56.4" 196.1" 674.7" 2600.2"

n.iterations 2257 4623 10623 20126 36315 50512

CPLEX barrier 5.77" 11.79" 26.27" 58.9" 125.8" 248.8"

n.iterations 23 26 35 44 50 63

CPLEX QP barrier 5.1" 16.3" 28.6" 74.3" 113.3" 400.4"

n.iterations 19 31 28 46 34 67

MSLiP-OSL 9.87" 20.03" 43.5" 83.0" 157.9" 204.6"

n.iterations 6 7 9 11 12 12

MSLiP 9.93" 19.5" 37.6" 65.2" 131.2" 202.9"

n.iterations 6 8 11 12 22 12

Number of scenarios 768 1024 1152 1536 1920

Obj ($m) 1813.105 1926.787 1687.92 1790.276 1778.954 |

Relative EVPI 45.33% 46.53% 63.45% 61.86% 62.13%

OB1 pred./corr. 658.6" 1002.2" 1111.1" 2280.7" n.a. |

n.iterations 96 111 108 123 |

CPLEX simplex 5380.5" | |- | | |

n.iterations 72206

CPLEX barrier 397.5" 573.6" 591.5" 833.4" 1137.6" |

n.iterations 66 70 63 67 73

CPLEX QP barrier 510.1" 735.7" 926" 2135.8" n.a. |

n.iterations 55 60 67 90 |

MSLiP-OSL 303.1" 413.8" 937.9" 876.25" 1079.74" |

n.iterations 10 12 7 15 18

MSLiP 304.4" 402.4" unsolved unsolved unsolved |

n.iterations 7 15 | | |

Table 2: WATSON numerical results - Independent scenario generation
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Number of scenarios 16 32 64 128 256 512 768

Obj ($m) 2401.875 2167.624 2027.4293 1879.432 1841.2985 1787.1977 1780.126

Relative EVPI 10.47% 13.85% 19.51% 24.85% 28.19% 32.87% 30.26%

CPLEX barrier 5.89" 10.94" 25.71" 60.37" 120.34" 245.52" 389.55"

n.iterations 28 27 33 45 48 62 63

MSLiP 10.23" 18.28" 35.92" 66.44" 118.08" 184.47" 261.93"

n.iterations 9 8 9 12 11 10 10

MSLiP-OSL 12.48" 21.42" 37.51" 64.58" 113.28" 182.14" 238.01"

n.iterations 8 8 9 8 9 11 9

Number of scenarios 1024 1152 1536 1920 2304 2688 |

Obj ($m) 1791.176 1725.53 1693.474 1769.45 1664.66 1679.921 |

Relative EVPI 39.20% 33.83% 45.37% 37.04% 47.48% 45.00% |

CPLEX barrier 618.20" 647.71" 898.54" 1305.74" | | |

n.iterations 75 74 74 82

MSLiP 367.94" 411.30" 557.71" 704.03" 933.69" 1006.59" |

n.iterations 11 11 12 12 16 15

MSLiP-OSL 347.85" 389.23" 557.41" 758.85" 1192.18" 1070.84" |

n.iterations 10 10 11 12 17 13

Table 3: WATSON numerical results - Conditional scenario generation

becomes relatively slow only for extremely large problems. The WATSON.10.1920 prob-
lem could not be solved again because of lack of memory. The target terminal wealth
~W , for a utility function of the form (W � ~W )2 has been de�ned for all test problems to
be slightly higher then the corresponding linear optimal value, in order to make sensible
comparisons between solution times. The solution times reported in Table 2 thus refer
to a set of problems that have been run in order to have explicit comparisons with LP
solution times. In general, for problems with a quadratic objective and the same num-
ber of scenarios as with a linear objective, a reduction of the target value Ŵ implies a
decrease in solution times and in some cases an IP-QP solution time even lower than the
corresponding LP solution time by the CPLEX IP-LP solver.

The speed of convergence of MSLiP (either version) to the optimum depends in
general on the number of subproblems to solve and this, in turn, may depend on the
number of cuts generated before the algorithm terminates. The original version of MSLiP
has proven unable to solve very large problems because of looping due to the excessive
generation of feasibility cuts. On the other hand MSLiP-OSL, thanks to the accuracy of
the subproblem solver, proves a fast and e�cient solver on such problems. Table 4 allows
more insight into the comparative performance of the two implementations of nested
Benders decomposition in the two cases of scenarios conditionally or unconditionally
generated.

Summarizing, we see that for nested Benders decomposition a reduced level of stochas-
ticity, regardless of the implementation considered, results in:

(i) a lower number of feasibility cuts generated throughout the solution procedure,
(ii) a signi�cant reduction of the number of subproblems solved,
(iii) faster CPU times with an almost linear relationship between solution time and

problem dimension.
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Number of scenarios 128 256 512 1024 1536 1920

MSLiP

solution time:
- Independent scenarios 65.16" 131.07" 202.88" 402.42" unsolved unsolved

- Conditional scenarios 66.44" 118.18" 184.47" 367.94" 557.71" 704.03"

no. iterations:
- Independent scenarios 12 22 12 15 | |

- Conditional scenarios 12 11 10 11 12 12

optimality cuts/total:
- Independent scenarios 1697/1699 2842/2887 3762/3795 7375/7469 | |

- Conditional scenarios 1549/1549 2403/2405 2973/2977 5922/5922 8652/8652 10756/10763

no. of subproblems:
- Independent scenarios 7398 19696 15605 35247 | |

- Conditional scenarios 7805 10090 12503 25988 38134 51646

MSLiP-OSL

solution time:
- Independent scenarios 82.99" 157.9" 204.64" 413.76" 876.25" 1079.74"

- Conditional scenarios 64.58" 113.3" 182.14" 347.85" 557.41" 758.85"

no. iterations:
- Independent scenarios 11 13 12 12 15 18
- Conditional scenarios 8 9 11 10 11 12

optimality cuts/total:
- Independent scenarios 1474/1474 2262/2273 2855/2855 5723/5729 8726/8880 10942/11153

- Conditional scenarios 1365/1365 2043/2043 2577/2577 5330/5330 7595/7595 9734/9734

no. of subproblems:
- Independent scenarios 6708 11700 13977 27936 59570 77657

- Conditional scenarios 5104 8290 12741 23570 41874 52299

Table 4: Performance of MSLiP and MSLiP-OSL on selected test problems { Independent
vs Dependent Scenario Generation
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7 Conclusions

We have shown how a dynamic portfolio problem can be conveniently represented as a
discrete time linearly constrained stochastic optimization problem which can be formu-
lated as a dynamic (multistage) stochastic program with recourse in which the principal
decisions correspond to portfolio rebalancing over time.

The main steps in the formulation and solution of such decision problems have been
described, with an emphasis on both the �nancial assumptions implied by the represen-
tation adopted and the extended numerical work needed for correct model generation
and solution of the resulting stochastic optimization problem. Many sophisticated tools
are available for generating, solving, analyzing and simulating such models, eventually
resulting in representing the full corporate and regulatory environment in them (as, for
example, is the case in the Russell-Yasuda Kasai model [10]).

We conclude with some directions for future research under active pursuit by our
group at the time of writing:-

� The EVPI value computed at each node of the scenario tree [23, 26] provides a
useful measure of the randomness embedded in the remaining stochastic decision
problem at each stage. An EVPI-based sampling procedure interfaced with the
STOCHGEN subroutine library has been designed by Dempster and Corvera Poir�e
[13, 14, 15] which can be e�ective in the solution of �nancial planning problems
typically characterized as highly stochastic systems. A marginal EVPI-based [22]
sampling procedure is also under development.

� The two implementations of nested Benders decomposition (MSLiP and MSLiP-
OSL) tested provide very e�cient solvers in the case of linear problems. An ex-
tension of the method to handle nonlinear objectives has been developed which
can signi�cantly extend the applicability of the method to general linearly con-
strained decision problems with convex objective functions representing arbitrary
utility functions { i.e. attitudes to risk { in �nancial planning problems.

� The solution of these very large and complex problems needs to be followed by
a detailed computer-based analysis of the results in order to supply conveniently
represented information to the decision maker. This is a necessary step towards the
implementation of a user-friendly decision support system and can be expected to
make extensive use of visualization and other sophisticated software tools [24].

� The general implications and advantages of the DRP formulation studied here rela-
tive to other portfolio management paradigms { such as the well-established static
Markowitz representation which still dominates the �nancial services community or
the dynamic stochastic control formulation with continuous rebalancing [9] { also
represents an area of increasing interest. We shall shortly be in a position to report
on such a comparative study conducted under the auspices of the Frank Russell
Company.
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APPENDIX - The CALM MODEL

Notation

T horizon

s; t = 1; : : : ; T + 1 time periods

i = 1; : : : ; I asset type

j = 1; : : : ; J liability type

k = 1; : : : ;K riskless instrument type

! = 1; : : : ; j
j data paths (scenarios)

t all distinct paths at time t (
 := 
T ):
!t data path history to the beginning of period t:

Decision variables

x+it(!
t) amount purchased of asset i in period t:

xist(!
t) amount held of asset i in period t which was purchased

in period s � t:

x�ist(!
t) amount sold of asset i in period t which was purchased

in period s < t:

y+jt(!
t) amount incurred of liability j in period t:

yjst(!
t) amount held of liability j in period t which was incurred

in period s � t:

y�jst(!
t) amount discharged of liability j in period t which was

incurred in period s < t:

z+kt(!
t) amount held of riskless asset k in period t:

z�kt(!
t) amount owed of riskless asset k in period t:

�
x
+

it

(!t); �
x
�

ist

(!t) binary action of buying (selling) asset i in period t (s < t):

�
y
+

jt

(!t); �
y
�

jst

(!t) binary action of incurring (discharging) liability j

in period t (s < t):
w net wealth at the beginning of period T + 1:
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Parameters

rist(!
t) cash return in period t on asset i purchased in period s < t

and held in period t� 1:
sjst(!

t) unit cost in period t of liability j incurred in period s < t

and held in period t� 1:
r+kt(!

t) return in period t on riskless asset k held in period t� 1:
r�kt(!

t) unit cost of borrowing riskless asset k in period t� 1:
eit(!

t); ejt(!
t) lump sum transaction cost of purchasing (incurring)

asset i (liability j) in period t:

fit(!
t); fjt(!

t) unit cash outflow (inflow) upon purchasing (incurring)
asset i (liability j) in period t:

gist(!
t); gjst(!

t) unit cash inflow (outflow) upon selling (discharging)
in period t asset i (liability j) bought (incurred) in period s < t:

hist(!
t); hjst(!

t) lump sum transaction cost of selling (discharging)
in period t asset i (liability j) bought (incurred) in period s < t:

�it(!
t); �jt(!

t); exchange rate appropriate to asset i (liability j)
�kt(!

t) (riskless asset k) held in period t� 1:
�is(!); �js(!) market value at the horizon (T + 1) of asset i (liability j)

purchased (incurred) in period s � T:

Xit; Xit limits on investment on asset i in period t:

Yjt; Yjt limits on incurring liability j in period t:

Zkt short position limit on riskless asset k in period t:

X+
t ; Y

+
t maximum new investment (liabilities) in period t:

Yt maximum liability in period t:
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Objective

max IEu(w) (expected utility of terminal wealth)

u 2 C2(IR) u0(w)
�u00(w)

:= aw+ b:

Constraints

PT

s=1 [
PI

i=1 �isxisT �
PJ

j=1 �jsyjsT ] +
PK

k=1[(1+r
+
k(T+1)

)z+kT � (1+r�
k(T+1)

)z�kT ] =

w (terminal wealth):

PI

i=1 �it[�eit�x+
it

� fit bfx
+
it +

Pt�1
s=1(ristxis(t�1) + gistx

�

ist � hist�x�
ist

)]

�
PJ

j=1 �jt[ejt�y+
jt

� fjty
+
jt +

Pt�1
s=1(sjstyjs(t�1) + gjsty

�

jst + hjst�y�
jst

)]

+
PK

k=1 �kt[(1 + r+kt)z
+
k(t�1)

� (1 + r�kt)z
�

k(t�1)
� z+kt + z�kt] = 0

(cash balance) t = 1; : : : ; T + 1:

xitt �x+it = 0 (asset purchase inventory balance)
yjtt �y+jt = 0 (liability incurrence inventory balance)

i = 1; : : : ; I j = 1; : : : ; J t = 1; : : : ; T:

xist �xis(t�1) +x�ist = 0 (asset sale inventory balance)
yjst �yjs(t�1) +y�jst = 0 (liability discharge inventory balance)

i = 1; : : : ; I j = 1; : : : ; J s = 1; : : : ; t� 1 t = 1; : : : ; T + 1:

x+
i(T+1)

= 0 y+
j(T+1)

= 0 (no horizon decisions)

x�
is(T+1)

= 0 y�
js(T+1)

= 0

i = 1; : : : ; I j = 1; : : : ; J s = 1; : : : ; T:

Xit�x+
it

� x+it � Xit�x+
it

(investment limits by type)

Yjt�y+
jt

� y+jt � Yjt�y+
jt

(liability limits by type)

i = 1; : : : ; I j = 1; : : : ; J t = 1; : : : ; T:

0 � z+kt

0 � z�kt � Z
�

kt (short position limit by type)
k = 1; : : : ;K t = 1; : : : ; T:

PI

i=1 x
+
it � X+

t (maximum new investments)PJ

j=1 y
+
jt � Y +

t (maximum new liabilities)PJ

j=1

Pt

s=1 yjst � Yt (maximum liability per period)

t = 1; : : : ; T:

NB : Boldface denotes random entities: All constraints hold almost surely;

i:e: with probability 1:


