
Parallelization and Aggregation of Nested Benders

Decomposition

M.A.H. Dempster and R.T. Thompson

Department of Mathematics

University of Essex

Wivenhoe Park

Colchester

England CO4 3SQ

mahd@essex.ac.uk and thomro@essex.ac.uk

Abstract

Dynamic multistage stochastic linear programming has many practical applications for
problems whose current decisions have to be made under future uncertainty. There are a
variety of methods for solving these problems, including nested Benders decomposition. In
this method, recently shown to be superior to the alternatives for large problems, the prob-
lem is decomposed into a set of smaller linear programming problems. These problems can
be visualised as being attached to the nodes of a tree which is formed from the realizations of
the random data vectors determining the uncertainty in the problem. The tree is traversed
forwards and backwards, with information from the solutions to each nodal linear program-
ming problem being passed to its immediate descendants by the formation of their right
hand sides and to its immediate ancestor in the form of cuts. Problems in the same time
period can be solved independently and it is this inherent parallelism that is exploited in our
parallel nested Benders algorithm. A parallel version of the MSLiP nested Benders code has
been developed and tested on various types of MIMD machines. The di�ering structures of
the test problems cause di�ering levels of speed-up. Results show that problems with few
variables and constraints per node do not gain from this parallelization. Stage aggregation
has been successfully explored for such problems to improve their parallel solution e�ciency
by increasing the size of the nodes and therefore the time spent calculating relative to the
time spent communicating between processors.

Key Words: Linear programming, dynamic stochastic programming, nested Benders de-
composition, parallel algorithms, aggregation, MIMD computers

1

1 Introduction

Stochastic programs have many practical applications for problems where a decision has to
be made now, but where the e�ectiveness of the decision is dependent on future uncertainty.
In these models the future is revealed in time stages t. For practical purposes it is assumed
that the number of stages is �nite and the problem data sample space
 has a �nite number
of elements. A �ltration F :=fFt : t = 1; : : : ; Tg is de�ned on
, where each �{algebra Ft

consists of the data events which have been revealed by period t. A random vector ! can
be de�ned on the sample space as the trivial map: ! ! !; ! 2
. The sample space and
�ltration, combined with a probability measure, de�ne a �ltered probability space for the
model data.

Within this framework a variety of models have been developed. For an overview of
stochastic programming see [18, 19, 25, 31, 22]. One such model is the dynamic or multistage

stochastic linear programme with recourse. This model has been applied to natural resource
management [51, 45, 41], portfolio management [10, 29, 35, 20, 21, 39, 12, 13] , and resource
acquisition [6]. The multistage stochastic linear programming model can be written as

min
x1
fc01x1 + IE!2

fmin
x2

c02x2 + IE!3j!2
fmin

x3

c03x3 + : : :+ IE!T j!2;:::;!T�1
fmin

xT

cTxTgg

s:t: A1x1 = b1
B2x1 + A2x2 = b2 a:s

B3x2 + A3x3 = b3 a:s:
. . .

...
BTxT�1 + ATxT = bT a:s:

(1)

l1 � x1 � u1
lt � xt � ut t = 1; ::; T ;

where !t = (bt; ct;At;1; : : : ;At;nt;Bt;1; : : : ;Bt;nt); t = 2; :::; T , are random vectors in some
canonical probability space (
;F ;P). The subindexes of the matrices B, A, and the vectors
c, x ,b refer to the stage of the problem. Once the realized values are observed at a stage t,
the information required to decide the actions at stage t+1 is known.

The size of the problem increases rapidly with addition of both scenarios, i.e. data
paths !t, and stages t = 2; ::; T . Generally this model is solved by taking the deterministic

equivalent problem, either the relatively compact standard form or the extended split variable
form. In the split variable form the non{anticipativity conditions, expressing the fact that
the decisions must be based only on current and past information, are written out explicitly.

There are a variety of well{known algorithms for solving the deterministic equivalent
problem: the simplex method, [37, 30, 14, 15, 23, 46], interior point methods [30, 14, 38, 49]
augmented Lagrangian [5, 19, 44] and scenario decomposition methods [44, 3] and nested Ben-
ders decomposition. Benders decomposition [4] is the dual form of the algorithm introduced

1

by Dantzig and Wolfe [17]. The dual form is more appropriate for the matrix structure pre-
sented by the deterministic form of the two{stage stochastic linear programming problem.
This method is a cutting plane algorithm [33] and was proposed by Van Slyke and Wets
[50] and developed into an e�ective algorithm by Kallberg and Ziemba [32]. The algorithm
was extended to the multistage case by Birge, using Benders recursively to give the nested
Benders algorithm. This has been developed into code by Gassmann [27](MSLiP), Birge
et al [9](ND{UM) and King [34](SP/OSL). Improvements to MSLiP have been made by
Thompson [47] with the replacement of the Pfe�erkorn{Tomlin LP code [42] with OSL's LP
solver (MSLiP{OSL).

Recently interest in the development of parallel algorithms for solving the multistage
stochastic linear programming problem has increased. Various parallelization methods have
been applied to the algorithms mentioned earlier. The interior point method can be paral-
lelized e�ciently by vectorizing the Cholesky factorization [36, 53]. Scenario decomposition
methods have a natural parallel decomposition structure [40, 43, 39]. Parallel versions of
Benders decomposition have also been developed [2, 24, 8].

In Section 2 we present the nested Benders algorithm, its implementation in the MSLiP
code and improvements to the default solution time which can be made through sequencing
and cut formation. We introduce aggregation as a method of changing the structure of the
problem by increasing the size of subproblems and reducing the number of stages in Section3.
We present results for a set of test problems, discussing the problem sets, di�culties with
obtaining solutions, solution times, improvements to solution times through aggregation
and the stochasticity of the problems solved. The parallel implementation of the MSLiP
code is described in Section 4 and computational results are reported for the problem sets
on Fujitsu's AP1000 computer [26] . Improvements to the parallelization made by stage
aggregation are also discussed. Section 5 contains the conclusions and suggests areas for
further development.

2 Nested Benders decomposition

Traditionally, multistage stochastic linear programming problems have been solved by taking
the deterministic equivalent form

min

(
c1x1 +

K2X
k2=1

pk2
2
ck2
2
xk2
2
+

K2X
k2=1

K3X
k3=1

pk2
2
pk3
3
ck3
3
x
k2;k3
3

+ : : :+

K2X
k2=1

: : :

KTX
kT=1

pk2
2
: : : pkTT ckTT x

k2;:::;kT
T

)

s:t: A1x1 = b1

Bk2
2
x1 + Ak2

2
xk2
3

= bk2
2

B
k2;k3
3

xk2
2

+ A
k2;k3
3

x
k2;k3
3

= b
k2;k3
1

. . .
. . .

...

B
k2;:::;kT�1
T x

k2;:::;kT�1
T�1 + A

k2;:::;kT
T x

k2;:::;kT
T = b

k2;:::;kT
T

(2)

2

l1 � x1 � u1

l
k2;:::;kt
t � x

k2;:::;kt
t � u

k2;:::;kt
t

kt = 1; : : : ;Kt t = 2; : : : ; T;

in which constraints are written out explicitly for each possible realization of the data process.
In this form the problem can be solved by the simplex method, and more recently by interior
point methods.

The nested Benders method solves problem (2) in a recursive manner. This can be
illustrated by considering a particular node of the decision tree and its descendants. Taking
node n at stage t with parent �(n) and descendants !(n) we can write the corresponding
subproblem as

minfcnt x
n
t +Q(xnt) : An

t x
n
t = bnt �B

�(n)
t x

�(n)
t�1 g

= minfcnt x
n
t + �nt : An

t x
n
t = bnt �B

�(n)
t x

�(n)
t�1 ; �

n
t � Q(xnt)g

(3)

where
Q(xnt) := min

PKt+1
!(n)=1 p

!(n)cnt+1x
!(n)
t+1

s:t: At+1x
!(n)
t+1 = b

!(n)
t+1 � B

!(n)
t+1 x

n
t

lnt � xnt � unt ;

l
!(n)
t+1 � x

!(n)
t+1 � u

!(n)
t+1 ; !(n) = 1; ::; Kt+1:

(4)

For any value ~xnt we can solve the problem Q(~xnt) or its dual equivalent

max
PKt+1

!(n)=1 p!(n)f(b
!(n)
t+1 �B

!(n)
t+1 ~x

n
t)�!(n) + l

!(n)
t+1 �!(n) � u

!(n)
t+1 �!(n)g

s:t: �!(n) � �!(n) + A
!(n)
t+1 �!(n) = c

!(n)
t+1

�!(n) � 0; �!(n) � 0 !(n) = 1; : : : ; Kt+1:

(5)

Both the primal and dual problems can be decomposed into Kt+1 smaller subproblems. The
dual problems are all feasible since �!(n) is unconstrained.

If the dual problem (5) is unbounded, then the primal problem is infeasible, and thus
there exists (��; ��; ��) such that

��(b
~!(n)
t+1 � B

~!(n)
t+1 ~x

n
t) + ��l

~!(n)
t+1 � ��u

~!(n)
t+1 > 0:

To try to induce feasibility in the primal, we add the constraint

��(b
~!(n)
t+1 �B

~!(n)
t+1 ~x

n
t) + ��l

~!(n)
t+1 � ��u

~!(n)
t+1 � 0; (6)

termed a feasibility cut.
Otherwise, let (��

!(n); �
�

!(n); �
�

!(n)); !(n) = 1; :::; Kt+1; be an optimal solution for (5)
and, by convexity of Q, we have the following inequality

Q(xnt) �
Kt+1X
!(n)=1

p!(n)[��

!(n)(b
!(n)
t+1 � B

!(n)
t+1 x

n
t) + ��l

!(n)
t+1 � ��u

!(n)
t+1] 8 xnt ; (7)

3

where equality holds for ~xnt . This produces one extra constraint in the parent problem, a
single optimality cut.

Then having a collection of dual feasible vectors (�i
1; �

i
1; �

i
1; : : : ; �

i
Kt+1

; �iKt+1
; �i

Kt+1
); i =

1; :::; I, and directions (�j

!(n(j)); �
j

!(n(j)); �
j

!(n(j))); j = 1; :::; J; we obtain the problem

min cnt x
n
t + �nt

s:t: An
t x

n
t = bnt x

n
t �B

�(n)
t x

�(n)
t�1PKt+1

!(n)=1 p
!(n)�i

!(n)B
!(n)
t+1 xnt + �nt �

PKt+1

!(n)=1 p
!(n)[�i

!(n)b
!(n)
t+1 + �i

!(n)l
!(n)
t+1 � �i

!(n)u
!(n)
t+1]

�
j

!(n(j))
B

!(n(j))
t+1 xnt � �

j

!(n(j))
b
!(n(j))
t+1 + �

j

!(n(j))
l
!(n)
t+1 � �

j

!(n(j))
u
!(n)
t+1

lt � xt � ut

l
!(n)
t � x

!(n)
t � u

!(n)
t

(8)

i = 1; :::; I ; j = 1; :::; J ; !(n) = 1; :::;Kt+1:

If �nt � Q(xn�t), the problem is solved . The relaxed problem is solved iteratively, producing
optimality and feasibility cuts until the solution to the original problem is obtained.

There is an alternative method of producing optimality cuts. In the case of the single

cut (7) weighted sums are taken. These can be disaggregated to give a set of constraints in
(8) of the form

�i
!(n(i))B

!(n(i))
t+1 xnt + �

!(n(i))
t � �i

!(n(i))b
!(n(i))
t+1 + �i!(n(i))l

!(n(i))
t+1 � �i

!(n(i))u
!(n(i))
t+1

i = 1; :::; I
(9)

termed multicuts.
It can be seen that the node n passes primal information to its children in the formation

of their right hand sides and the children pass dual information to their parent in the form
of cuts. After solving the node n, nested Benders decomposition decides whether to move
further down the tree or back up the tree. If a node is found to be infeasible, there is no
primal value to pass down the tree, and so information can only be passed back up the tree.

The nested Benders decomposition algorithm can be stated as follows.

Step 0. Solve the root node (�rst stage problem)
Set �nt := �1 8n; 8t and set t := 1; n := 1 Solve the master problem

min c1x1 s:t A1x1 = b1:

If it is infeasible, STOP. The problem is infeasible.
Otherwise set t=t+1.

Step 1. Solve the appropriate nodes in the current time stage t.
Some nodes in this time stage will not be solved due to the infeasibility of their parent or

4

parent's siblings. If a node is found to be infeasible, place a feasibility cut (6) in the parent
node. This branch of the tree is not explored any further until all the other nodes are re{
solved to optimality.

Step 2. Place cuts and move to the previous time stage, or form new right hand sides
and move to the next time stage. For nodes which are feasible, the primal values of the
subproblems can be passed to their descendants to form their right hand sides, or single (7)
or multiple (9) optimality cuts can be placed in the parent node problem. If the current
stage is T , the horizon, optimality cuts must be placed in the parent node problems. The
order in which the tree is traversed is decided by the sequencing protocol. Depending on the
sequencing protocol and feasiblity of nodes, either set t := t + 1 or t := t� 1 . If there are
no new cuts or right hand sides produced, go to 3.
Go to 1.

Step 3. The problem is solved. The optimal value is given by the root node. This node's
primal decisions give the present decisions to be taken, while nodes at other time stages give
the decisions to be taken after the realizations of the stochastic data process up to that time
stage.

There are several implementations of nested Benders decomposition: MSLiP [28], ND{
UM [9], and SP/OSL [34]. We have been working with variants of the MSLiP FORTRAN
code.

MSLiP

The MSLiP code consists of the following modules:

1. An LP solver. The LP solver found in the code is a modi�cation of the Pfe�erkorn{
Tomlin LP code [42]. It uses the product form of inverse, which tends to be relatively
slow compared with the more modern factorizations based on permuting either the
lower or upper Hessenberg matrix (such as the Forest{Tomlin and Bartels{Golub
factorizations). The pricing has recently been improved to include steepest edge and
random pricing, as well as the default most negative cost. It has no crash{to{feasibilty
heuristics.

2. The 'brain' of the code decides whether and how to place cuts at the previous time
stage, and whether to move forward or back in the tree.

3. The cut routines form the optimality or feasibility cuts to be placed in the appropriate
nodal problem.

4. The trickling routine tries to reduce the amount of calculation done in solving a set
of LP problems which di�er only in their right hand sides. These problems may share

5

bases and pivots, and may even have the same optimal basis, see [27].

5. After the solution has been reached there is a routine for calculating the expected

value of perfect information (EVPI). This is a useful indicator in determining how
'stochastic' the problem actually is. It has recently been used in the formulation of an
extremely e�ective sampling algorithm [11], which can reduce the size of the problem
to be solved dramatically and hence either save computational time or make tractable
previously intractable problems.

The sequencing protocol is very important in minimizing the number of LP subproblems to
be solved to obtain the solution of the original problem. Wittrock's fast{forward{fast{back
method [52] developed for deterministic dynamic problems appears to be the most e�cient
way of traversing the tree. This method states that once stage t is solved either:

1. explore stage t-1, if the current direction is backwards,

2. or explore stage t+1, if the current direction is forwards.

A particular problem is only re{solved when new information is available to it. If a subprob-
lem is infeasible when single cuts are being placed, the subproblems which have the same
parent are not solved. Other methods of traversing the tree are fast{forward and fast{back

(see [9, 27]).
Further details of MSLiP can be found in Gassmann [27, 28] and Birge et al [9]. The

main weakness with the MSLiP code is its LP solver. This has serious problems with large
nodal subproblems, especially when many cuts are produced. The ND{UM code, a hybrid
code MSLiP{OSL [47] and the SP/OSL code [34] have all overcome this di�culty by using
IBM's OSL simplex code. The ND{UM code has the added bonus of being written in C and
can use C's dynamic memory allocation to save space. The crash and presolve facilities of
MSLIP{OSL can be switched on for problems where there are large numbers of cuts, some
of which may be nearly parallel. Other hybrid codes [14, 23] formed with MSLiP were found
to be less stable and less accurate than MSLiP{OSL.

3 Problem aggregation

An additional routine has been added to the MSLiP and MSLiP{OSL codes, which allows
stages to be aggregated.

Proposition 3.1 Converting a three{stage stochastic linear programming problem to a two{

stage stochastic linear programing problem by either combining the �rst two stages or by com-

bining the last two stages, proves that aggregation can be applied to any multistage stochastic

LP problem using recursion.

Proof Any number of stages can be combined by combining two stages at a time recur-
sively. Stages can be combined with the previous stage or with the next stage. Therefore
we can aggregate any number of stages in any manner.

6

The deterministic equivalent LP formulation of the three{stage stochastic linear problem
is

min

8<
:c1x1 +

K2X
k2=1

pk22 ck22 xk22 +

K2X
k2=1

K3X
k3=1

pk22 pk33 c
k2;k3
3 x

k2;k3
3

9=
;

s:t: A1x1 = b1

Bk2
2 x1 + Ak2

2 xk22 = bk22
k2 = 1; : : : ;K2

B
k2;k3
3 xk22 + A

k2;k3
3 x

k2;k3
3 = b

k2;k3
2

k3 = 1; : : : ;K3

(10)

l1 � x1 � u1

lt � x
k2;:::;kt
t � ut t = 2; 3:

The upper indices k1; : : : ; kt; t = 2; 3, refer to a mutually exclusive outcome of the random
data variables at stages 2 and 3.

If we take in (10)

d1 :=

0
BBBBBBBB@

b1
b1
2

...

bk2
2

...

bK2

2

1
CCCCCCCCA
; y1 :=

0
BBBBBBBB@

x1
x1
2

...

xk2
2

...

xK2

2

1
CCCCCCCCA
; q1 :=

0
BBBBBBBB@

c1
p1c1

2

...

pk2ck2
2

...

pK2cK2

2

1
CCCCCCCCA

(11)

C1 :=

0
BBBBBBBB@

A1

B1

2
A1

2

...
. . .

Bk2
2

Ak2
2

...
. . .

BK2

2
A
K2

2

1
CCCCCCCCA
D

k2;k3
3

:=

(k2 + 1th col)

(: : : : : : B
k2;k3
2

: : : : : : : : :) ; (12)

then we can rewrite our problem as

min
y1
fq1y1 + IE!3j!2fmin

x3

c3x3g

s:t: C1y1 = d1

D3y1 + A3x3 = b3 a:s: :

(13)

Therefore a three{stage problem can be converted to a two{stage problem by combining
the �rst two{stages.

7

However, if we take

F k2
2

:=

0
BBBBBBB@

Bk2
2

0
...
...
...

1
CCCCCCCA

9>>>>>=
>>>>>;
k3 zero matrices; IEk2

2
:=

0
BBBBBBBBB@

Ak2
2

B
k2;1
3

A
k2;1
3

...
. . .

B
k2;k3
3

A
k2;k3
3

...
. . .

B
k2;K3

3
A
k2;K3

3

1
CCCCCCCCCA
(14)

fk2
2

:=

0
BBBBBBBBB@

bk2
2

b
k2;1
3

...

b
k2;k3
3

...

b
k2;K3

3

1
CCCCCCCCCA

�k2
2
:=

0
BBBBBBBBB@

ck2
2

p1
3
c
k2;1
3

...

pk3
3
c
k2;k3
3

...

pK3

3
c
k2;K3

3

1
CCCCCCCCCA

zk2
2

:=

0
BBBBBBBBB@

xk2
2

x
k2;1
3

...

x
k2;k3
3

...

x
k2;K3

3

1
CCCCCCCCCA

(15)

this leads to
min
x1
fc1x1 + IE�2fmin

z2

�2z2g

s:t: A1x1 = b1

F2z1 + E2z2 = f2 a:s: ;

(16)

another two{stage problem with the last two stages combined. So, a three{stage problem
can be converted to a two{stage problem by combining the last two{stages.

Thus aggregation can be applied to any multistage stochastic LP problem to obtain the
same problem with a di�erent number of time periods and a di�erent size of subproblem.
The original aggregation implementation in MSLiP by Gassmann allowed combining from
the second stage to the end with a constant number of time stages being aggregated. This
has been generalised to allow combining of any set of adjacent time stages together.

Serial computation

MSLiP and MSLiP{OSL have been tested on a number of problem sets | all expressed in
SMPS format [7]| see Tables 1, 2 and 3. These tables give the number of time periods, and
the number of scenarios followed by the number of columns, rows, and non{zero elements in
the deterministic equivalent problem. The last three columns of the tables give the optimal
objective value, the branching structure of the tree (starting from the root node), and the
EVPI value in terms of percentage of the optimal objective value, termed stochasticity. The
EVPI values for a large number of these problem sets are extremely small, suggesting that
these problems are not truly stochastic (SCSD8, SCAGR7, SCTAP1, SCFXM1, PLTEXP
and STORM). There are other problem sets with more reasonable EVPI values (LOUV,
FOREST, SGPF). The WATSON problem set has fairly high EVPI, while the SC205 set
has extremely high EVPI, an artifact of the optimal value being 'close' to zero.

8

The branchings of the trees show unusual structures in some cases as well (the multi-
stage versions of SC205, SCSD8, SCTAP1, SCFXM1). It is to be expected that either the
branching at each stage of the tree should be fairly constant, or initial branching should be
greater than later branching, as in practical problems the information which is closer to the
initial time period is more relevant than that further into the future. Table 4 gives the nodal
dimensions of subproblems.

Solutions have been obtained for all the problems by MSLiP{OSL and for the majority
by MSLiP. Further experimentation with WATSON, the portfolio management test set can
be found in [13], where nested Benders decomposition is compared favourably with both
the simplex and interior point methods. Results for an IBM RS6000/590 with 128 MB of
RAM running under AIX.3.2.5 are shown in Tables 5 and 6. The default setting for both
MSLiP and MSLiP{OSL is single cuts for a two{stage problem and multicuts for multistage
problems. The tables give the number of cuts and iterations taken to reach the solution
when solving with MSLiP. The number of cuts and iterations taken by MSLiP{OSL is
similar, although usually slightly greater due to the increased accuracy of the solver. The
bunching routine was switched o� in these experiments, to give a fair comparison of the
solvers. With bunching switched on, problems such as PLTEXP can be solved much faster.
This again suggests that many nodes have the same optimal basis, and therefore the problem
has very low stochasticity. It should be noted that the stochasticity must be only in the
right hand side of the problem if bunching is to be applicable. Truly stochastic problems
such as �nancial portfolio management problems usually do not have this structure.

MSLiP has di�culties with multistage problems where many cuts are produced, and with
problems with large nodes in their tree, such as STORM. The quickest solution time for the
STORM set was obtained with MSLiP{OSL, with the presolve (PRESOLVE 3) switched
on. Generally, however, presolving slows the solution time because the OSL presolver writes
to disk, and the nodal problems are not large enough to warrant presolving. All the other
MSLiP{OSL results presented are with the presolver o�.

We have experimented with the nodal problem size for the multistage sets, in order to
test the e�ects of having larger nodes and less stages on:

1. the solution time,
2. the e�ectiveness of obtaining a solution with nested Benders.

Aggregation results for the WATSON and FOREST problem sets, solving with MSLiP{
OSL, can be found in Table 7, where it can be seen that larger nodal subproblems and fewer
stages can improve the solution time for problems where the original nodes are extremely
small. The time to solve WATSON.10.256 can be reduced from 143.8 seconds to 77.9 seconds
for example. More information is gained from each node, so less cuts and iterations are
needed to �nd the solution. If however, too many stages are combined, the solution time
will be slowed. It appears that there is a preferable nodal subproblem size. An estimate of
the nodal sizes would be between 100 | 300 rows and columns and this should decrease in
size as the tree is descended. Problems, such as WATSON, in which later stages have larger
subproblems than earlier stages appear to be more di�cult to solve. (The Pfe�erkorn{Tomlin

9

LP solver is extremely slow at solving these larger nodal subproblems and aggregation may
not be e�ective with the MSLiP code. Modern LP solvers will not have the same di�culties
as the Pfe�erkorn{Tomlin LP solver.)

Changing the initial wealth of the WATSON problem set (see [13]) makes the feasiblity
region small, and therefore creates a di�cult problem for nested Benders decomposition to
solve. Aggregation was tested on the e�ectiveness of obtaining solutions for such problems.
Results for two problems, one with 1152 scenarios and the other with 256 scenarios, show
how the structure of the problem may change the ease with which a problem is solved (Table
8).

These serial results show that nested Benders decomposition is a fast and e�ective method
for solving multistage linear stochastic programming problems. An e�ective code needs a
modern LP solver, such as OSL [30], CPLEX, [14], FORTMP [23] or XPRESSLP [15].
Changing the data structure of the problem through stage aggregation favouring earlier
stages has been shown to lead to signi�cant speedups in this algorithm.

4 Parallel algorithm and experiments

The parallel algorithm described below is more similar to the methods of [2] and [24] than
to that of [8]. Other parallelization approaches to stochastic programming problems may
be found in [16, 40]. It uses the farming technique, with a master and a certain number of
slaves, decided by the user. The method can be described as follows

Host

Step H: 0 Send master module to processor 0.
Send slave module to processors s; s = 1; 2; : : : ; S:
Send data to processor 0.
Step H: 4 Receive optimal solution from processor 0.

Master processor

Step M: 0 Receive module from host.
Receive data from host.
Step M: 1 Solve master problem, obtaining trial solution.
Step M: 2 Assuming there are m � S nodes to be solved in the current time stage, send
information for the �rst S subproblems to slave processors s; s = 1; 2; : : : ; S.
Step M: 3 When an optimal or infeasible solution is returned from a processor k; k 2

1; 2; : : : ; S, send the information to solve another node to processor k unless there are no
nodes left to be sent.
Step M: 4When all nodes have been solved, the master determines whether to move forward
or backward in the tree. The master forms the cuts for all nodes.

10

On reaching the �rst stage in the tree and �nding there are no more subproblems to be
solved in the tree, the optimal solution has been reached, which is returned to the host, and
the slave processors are informed to stop.
Otherwise return to Step M: 2.

Slave processor

Step S: 0 Receive module from host.
Step S: 2 Receive and solve LP problem sent from master.
Step S: 3 Return solution to master and return to Step S: 2.
Step S: 4 Receive message from master to stop.

If the nodal subproblems are large enough this algorithm should have reasonable load{
balancing properties, though there may be a communications bottleneck while slave proces-
sors try to communicate with the master.

The information required by a slave processor from the master is :{

1. New constraints (cuts).

2. New right hand side. (The master forms the right hand side).

3. Basis information.

The information required by the master processor from a slave is :{

1. New primal vector.

2. New dual vector.

3. Basis information.

The new constraints formed by the master are broadcast to all slaves, while all other infor-
mation is passed directly between a slave and the master. Although this algorithm naturally
load{balances, which is an advantage it has over the Birge et al method [9] (where unnec-
essary computation may be done on a processor) the amount of communication is relatively
high, compared to calculation, when the nodes of the tree are relatively small, i.e the amount
of communication in the Birge et al method is much less. The aggregation routine has been
added to the parallel version of the MSLiP code in order to reduce the communication to
calculation ratio, and reduce the number of cuts formed by the master. By Amdahl's law
[1] a reduction in serial computation should increase the maximum possible speed{up.

As with the serial code, when a nodal problem is found to be infeasible and single cuts
are being placed, no more sibling problems are solved. This is the case in the parallel code
for multicuts as well. However the parallel code may lead to a di�erent solution path. When
a nodal problem is found to be infeasible, some of its siblings may be solved in the parallel
algorithm which were not solved in the serial algorithm and this may lead to di�erent cut
information.

The above algorithm has been implemented by parallelizing the MSLiP code.

11

Parallel results

The algorithm has been tested on a Meiko T800 Transputer array [48], on a network of IBM
RS6000 25Ts using PVM and on a Fujitsu AP1000. The AP1000 processors are 5{7 MFLOP
chips with 16MB of RAM. The communication bandwidth is between 5.6{25 Mb/s.

Parallel results for a subset of the problem sets are shown in Table 9 for the AP1000.
Speed{up is de�ned to be the ratio of serial solution time to parallel solution time. Denoting
the time to solution on p processors by T (p) and the speed{up on p processors by S(p), then
S(p) := T (1)=T (p). E�ciency E(p) is the speed{up divided by the number of processors:
E(p) := S(p)=p . It can be seen that parallelization is e�ective for some problems while for
others it has essentially no e�ect. This is dependent on the structure of the tree and the
size of its nodes. The parallelization technique is more e�ective on problems which have the
higher branching earlier in the tree and larger nodes.

Larger problems have not been solved due to the limited memory of the AP1000 proces-
sors. This unfortunately meant that the largest WATSON problem that could be solved had
only 16 scenarios. Aggregation was attempted on the FOREST problem with 144 scenarios,
but was again limited by memory, and therefore only the last few stages of the problem were
aggregated. This, as previously noted, is not an e�cient tree structure (in that the latter
stages have larger nodal subproblems than earlier stages) and the serial solution time was
slowed. The aggregation did however, have a signi�cant e�ect on speed{up and e�ciency
(Table 10).

The three graphs in Figures 1 to 3 show the speed{up against the number of slave pro-
cessors. Initially speed{up may be linear, but as the number of slave processors increases the
increase in speed{up falls o�, i.e. the e�ciency of the method is poorer for more processors.
On fewer processors the e�ciency of the method is improved. This is due to:{

� A communications bottleneck developing, when slave processors try to return informa-
tion to the master and receive another subproblem from it.

� The amount of time spent solving the root node and forming cuts on the master
processor reducing the amount of speed{up possible (Amdahl's law).

The graphs can give an idea of the e�ciency of the method on a certain number of
processors. Where the speed{up is linear the e�ciency is 1 (or alternatively 100 %).

Results for the transputer array [48] generally showed better levels of speed{up for the
problems solved (the processors only had 4MB of RAM). This though is due to the fact that
the calculation is very slow (3 MIPS) and therfore communication is less frequent. Problem
sets such as LOUVEAUX showed impressive speed{up, whereas no speed{up was achieved
for this problem set on the AP1000. Results on the network of workstations were poor, as
the communication speed was slow in comparison to calculation. This greatly increased the
solution time when parallelizing on one slave processor. Although the solution times then
decreased as more slave processors were added, signi�cant speed{ups were seldom achieved.

12

5 Conclusions and further work

This paper discusses nested Benders decomposition and its implementation in the MSLiP
code as well as in the hybrid code MSLiP{OSL. It has been shown to be an e�ective solution
method for multistage stochastic linear programming problems, which have many real ap-
plications, especially in �nance. This decomposition method has been shown to outperform
other solution methods for portfolio mangement problems [13].

In this paper, further improvements to the method have been made through aggregation
and parallelization. The structure of the tree and the size of the nodes of the tree have
been shown to be critical to improvements in solution time. An optimal structure may be
constructed through stage aggregation for a particular model. Parallelization of the MSLiP
code can improve the solution time too. This e�ect is again dependent on the nodal problem
size as well as the feasibility tightness in terms of the number of iterations and cuts required.
Aggregation was shown to be capable of improving parallelization e�ciency further.

However aggregation has not been tested fully on the problem sets available and needs to
be tried on more multistage problems. In order to achieve this, a parallel system with more
RAM per processor is needed. We are currently experimenting with an IBM SP2 which has
16 nodes, each containing an RS6000 390 chip with 128 MB of RAM, and a total of 4GB
of hard disk. The bandwith for this machine has a theoretical peak of 40Mb/s which is
expected to reduce communication problems. The processors, at 128 MFLOPS (peak for
double precision), are considerably faster than the AP1000 as well.

Speed{up can be improved by performing the formation of right hand sides and cuts
on the slave processor, as this reduces the time spent in the serial mode of the algorithm.
However, in the case of cut formation this would increase communication due to the need
to broadcast cuts to ancestor subproblems running on undesignated processors. Other ideas
for improving the algorithm are:{

� Solving more than one node at a time on a slave processor

� Solving a node and its children on a slave processor.

The second idea can be seen to be a cross{over between the method employed in this algo-
rithm and that used by Birge et al [8]. Some of the above suggestions may be extremely
di�cult to implement in the MSLiP code and we are currently designing a new nested
Benders code to overcome these di�culties.

Parallelization of the EVPI routine of MSLiP is currently in progress and should improve
its calculation time dramatically in the multistage case, as this routine parallelizes more
e�ciently than nested Benders decomposition. Once this is achieved a parallel version of
the Corvera{Dempster EVPI{based sampling algorithm [11] may be implemented which
promises to make previously intractable �nancial portfolio management problems tractable
(see [13]).

13

6 Acknowledgements

We are grateful to Dr. A. C. Downton, Department of Electronic Systems Engineering, Uni-
versity of Essex; Fujitsu (UK) Limited and the Imperial College Fujitsu Parallel Computing
Research Centre for access to and support for the parallel computing facilities used in the
experiments reported here.

References

[1] G.M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting abilities. AFIPS Conference Proceeding 30 (1967) 483{485.

[2] K.A. Ariyawansa & D.D. Hudson. Performance of a benchmark parallel implementation
of the Van{Slyke and Wets algorithm. Concurrency: Practice and Experience 3 (1991)
109{128.

[3] A.J. Berger, J.M. Mulvey , E. Rothberg & R. Vanderbei. Solving multistage stochastic
programs using tree dissection. Research Report, Department of Civil Engineering and
Operations Research, Princeton University (June 1995).

[4] J.F. Benders. Partitioning procedures for solving mixed{variable programming prob-
lems. Numerische Mathematik 4 (1962) 238{252.

[5] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York (1982).

[6] D. Bienstock & J.F. Shapiro. Optimizing resource acquisition decisions by stochastic
programming. Management Science 34 (1988) 215{229.

[7] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King & S.W. Wallace.
A standard input format for multiperiod stochastic linear programs. Mathematical Pro-
gramming Society Committee on Algorithms Newsletter 17 (1988) 1{19.

[8] J.R. Birge, C.J. Donohue, D.F .Holmes, O.G. Svintsitski. A parallel implementation of
the nested decomposition algorithm for multistage stochastic linear programs. Techni-
cal Report 94{1. Department of Industrial and Operations Engineering, University of
Michigan (January 1994).

[9] J.R. Birge, C.J. Donohue, D.F .Holmes & O.G. Svintsitski. ND{UM Version 1.0 Com-
puter Code for the Nested Decomposition Algorithm. Department of Industrial and
Operations Engineering, University of Michigan (August 1994).

[10] S.P. Bradley & D.B. Crane. A dynamic model for bond portfolio management. Man-

agement Science 19 (1972) 139{151.

14

[11] X. Corvera Poir�e. Model Generation and Sampling Algorithms for Dynamic Stochastic
Programming. PhD Thesis, Department of Mathematics, University of Essex (August
1995).

[12] D.R. Carino & W.T. Ziemba. Formulation of the Russell{Yasuda Kasai �nancial plan-
ning model. Frank Russell Company, Tacoma, Washington (May 1995).

[13] G. Consigli & M.A.H. Dempster. Stochastic programming techniques for dynamic port-
folio management. Submitted to Annals of OR (1995).

[14] CPLEX Optimization, Inc. Using the CPLEX Callable Library Version 3.0. Incline
Village, Nevada (1994).

[15] Dash Associates Ltd. A quick tour of XPRESS{MP for Windows Version 1.0. Northants,
England (August 1995).

[16] G.B. Dantzig, J.K. Ho & G. Infanger. Solving stochastic linear programs on a hyper-
cube multicomputer. Technical Report SOL 91{10, Department of Operations Research,
Stanford University (August 1991).

[17] G.B. Dantzig & P. Wolfe. Decomposition principle for linear programs. Operations Re-
search 8 (1960) 101{111.

[18] M.A.H.Dempster (ed.). Stochastic Programming. Academic Press, London (1980).

[19] M.A.H.Dempster. On stochastic programming II: Dynamic problems under risk.
Stochastics 25 (1988) 15{42.

[20] M.A.H. Dempster & A.M. Ireland. A �nancial expert decision support system In: G. Mi-
tra (ed.). Mathematical Models for Decision Support , NATO ASI Series F48. Springer{
Verlag, Heidelberg (1988) 631-640.

[21] M.A.H. Dempster & A.M. Ireland. Object{oriented model integration in a �nancial
decision support system. Decision Support Systems 7 (1991) 1{12.

[22] J. Dupa�cov�a. Multistage stochastic programs: The state{of{the{art and selected bibli-
ography. Kybernetika 31 (1995) 151{174.

[23] E.F.D. Ellison, M. Hajian, R. Levkovitz, I. Maros, G. Mitra & D. Sayers. FORTMP
Manual. Department of Mathematics and Statistics, Brunel University (1994).

[24] R. Entriken. The parallel decomposition of linear programs. Technical Report SOL 89{
17, Department of Operations Research, Stanford University (November 1989).

[25] Yu. Ermoliev & R.J-B. Wets (eds.). Numerical Techniques for Stochastic Optimization,
Springer{Verlag, Berlin (1988).

15

[26] Fujitsu Ltd. Special issue on cellular array processor AP1000. Scienti�c and Technical

Journal 29 (1993).

[27] H.I Gassmann. MSLiP: A computer code for the multistage stochastic linear program-
ming problem. Mathematical Programming 47 (1990) 407{423.

[28] H.I Gassmann. MSLiP 8.2 User's Guide. Working Paper, School of Business Adminis-
tration, Dalhousie University (September 1992).

[29] P. Hutchinson & M. Lane. A model for managing a certi�cate of deposit portfolio under
uncertainty. In: [18] 473{496.

[30] IBM Corporation. Optimization Subroutine Library (OSL) Release 2. Fourth Edition.
Kingston, New York (1992).

[31] P. Kall & S.W. Wallace. Stochastic Programming. John Wiley and Sons, Chichester
(1994).

[32] Kallberg & W. Ziemba. An algorithm for portfolio revision: Theory, computational
algorithm and empirical results. In: R.L. Shultz (ed.). Applications of Management

Science, Vol.I, JAI Press, Greenwich, CT (1981) 267{291.

[33] J.E. Kelley. The cutting{plane method for solving convex programs. Journal of Social
and Industrial Applied Mathematics 7 (1960) 703{712.

[34] A. King. SP/OSL Version 1.0. Stochastic Programming Interface User's Guide. IBM
Research Division, Yorktown Heights, New York (1994).

[35] M.I. Kusy & W.T. Ziemba. A bank asset and liability model. Operations Research 34
(1986) 356{376.

[36] R. Levkovitz & G. Mitra. Solution of large{scale linear programs: A review of hardware,
software and algorithmic issues. In: T.A. Ciriani & R.C. Leachman (eds.). Optimization

in Industry. John Wiley and Sons (1993) 139{171.

[37] D.G. Luenberger. Linear and Nonlinear Programming. Addison{Wesley, Reading, MA
(1994).

[38] I.J. Lustig. R.E. Marsten & D.F. Shanno. Interior point methods for linear program-
ming: Computational state of the art. ORSA Journal on Computing 6 (1994) 1-14.

[39] J.M. Mulvey. Integrative asset{liability planning using large{scale stochastic optimiza-
tion. Report SOR 8, Department of Civil Engineering and Operations Research, Prince-
ton University (July 1992).

[40] S.S Nielson & S.A. Zenios. A massively parallel algorithm for nonlinear stochastic net-
work problems. Report 90{09{08, Decision Sciences Department, The Wharton School,
University of Pennsylvania (October 1990)

16

[41] M.V.F. Pereirea & L.M.V.G. Pinto. Multi{stage stochastic optimization applied to en-
ergy planning. Mathematical Programming 52 (1991)359{375 .

[42] C.E. Pfe�erkorn & T.A. Tomlin. Design of a linear programming system for ILLIAC
|V. Technical Report SOL 76{8, Department of Operations Research, Stanford Uni-
versity and Technical Report 5487, NASA{Ames Institute for Advanced Computation,
Sunnyvale, CA (1976).

[43] A. Ruszczy�nski. Parallel decomposition of multistage stochastic programming problems.
Research Report, Institute of Automatic Control, Warsaw University of Technology,
00665, Warsaw, Poland (August 1991).

[44] A. Ruszczy�nski. On augmented Lagrangian methods for multistage stochastic programs.
Working Paper 94{05, International Institute for Applied Systems Analysis, Austria
(February 1994)

[45] L. Somly�ody & R.J-B. Wets. Stochastic optimization models for lake eutrophication
management. Operations Research 36.5 (1988) 660{681.

[46] U.H. Suhl. MOPS { Mathematical Optimization System. European Journal of Opera-

tional Research 72 (1994) 312{322.

[47] R. T. Thompson. MSLiP{OSL 8.3. User's Guide. Department of Mathematics, Univer-
sity of Essex (1995), forthcoming.

[48] R. T. Thompson. Implementation of nested Benders decomposition on an array of trans-
puters. Working Paper 93{8. Department of Mathematics, University of Essex (Novem-
ber 1993).

[49] R.J. Vanderbei. LOQO User's Manual. Report SOR{12, Department of Civil Engineer-
ing and Operations Research, Princeton University (1993).

[50] R. Van Slyke & R. J-B Wets. L{shaped linear programs with applications to optimal
control and stochastic programming. SIAM Journal of Applied Mathematics 17 (1969)
638{663.

[51] R.J-B. Wets. Large scale linear programming techniques. In: [25] 65{94.

[52] R. Wittrock. Dual nested decomposition of staircase linear programs. Mathematical

Programming Study 24 (1985) 65{86.

[53] D. Yang & S.A. Zenios. Stochastic linear programming and robust optimization. Re-
port 95{07. Department of Public and Business Administration, University of Cyprus,
Cyprus (February 1995).

17

Name Per # Scen Col Row Nonzeros Obj.val. Tree %EVPI

SC205 .2.200 2 200 4414 4412 12030 -10.07 200 359.8
SC205.2.800 2 800 17614 17612 48030 -10.07 800 398.7
SC205.2.1600 2 1600 35214 35212 96030 0.0 1600 -
SC205.3.200 3 200 2258 2256 6149 -10.07 4.50 359.8
SC205.3.800 3 800 8902 8900 24269 -10.07 8.100 398.7
SC205.3.1600 3 1600 17790 17788 48509 0.00 16.100 -

SCSD8.2.216 2 216 30310 4330 95170 23.40 216 0.33
SCSD8.2.432 2 432 60550 8650 190210 25.80 432 0.24
SCSD8.3.216 3 216 15610 2230 48970 23.40 6.36 0.33
SCSD8.3.432 3 432 30730 4390 96490 25.80 6.72 0.24

SCAGR7.3.432 2 432 17300 16431 54474 -834193.83 432 0.01
SCAGR7.2.864 2 864 34580 32847 108906 -834446.93 864 0.01
SCAGR7.3.432 3 432 8780 8337 27636 -834107.52 6.72 0.02
SCAGR7.3.864 3 864 17420 16545 54852 -834446.93 6.144 0.02

SCTAP1.2.216 2 216 20784 12990 76140 249.00 216 0.20
SCTAP1.2.480 2 480 46128 28830 169068 248.50 480 0.20
SCTAP1.3.216 3 216 10704 6690 39180 249.00 3.36 0.20
SCTAP1.3.480 3 480 23376 14610 85644 248.50 6.80 0.20

Table 1: Problem characteristics - SC205, SCSD8, SCAGR7 and SCTAP1

Name Per # Scen Row Col Nonzeros Obj.val. Tree %EVPI

SCFXM1.2.64 2 64 14514 9564 53799 2891.71 64 0.00
SCFXM1.2.256 2 256 57714 37980 213159 2891.71 256 0.00
SCFXM1.4.64 4 64 5874 4104 19299 2891.71 4.1.16 0.00
SCFXM1.4.256 4 256 22002 15412 70559 2891.71 8.1.32 0.00

LOUV.2.320 2 320 5124 2242 10248 480.04 320 8.87
LOUV.2.640 2 640 10244 4482 20488 482.19 640 9.26
LOUV.2.1280 2 1280 20484 8962 40968 482.64 1280 9.35

FOREST.8.144 8 144 5679 5961 23839 -43380.77 32:24:1 3.48
FOREST.8.288 8 288 11215 11771 47163 -43663.28 4:32:23:1 2.95
FOREST.8.384 8 384 14927 15667 62795 -43758.52 42:3:23:1 2.75

FOREST.8.512 8 512 19791 20771 83307 -43868.95 43:23:1 2.51

PLTEXPA2.16 2 16 4540 1726 9233 -9.6633 16 0.01
PLTEXPA3.36 3 36 11612 4430 23611 -13.9694 62 0.00
PLTEXPA3.256 3 256 74172 28350 150801 -14.2675 162 0.00
PLTEXPA4.216 4 216 70364 26894 143059 -19.5994 63 0.00

PLTEXPA4.4096 4 4096 1214492 454334 { -18.8493 163 0.00
PLTEXPA5.1296 5 1296 432200 161678 { -23.2141 64 0.00

Table 2: Problem characteristics - SCFXM1, LOUV, FOREST and PLTEXP

Problem Per # Scen. Col Row Nonzeros Obj. Value Tree %EVPI

STORMG2.8 2 8 10193 4409 27424 15535235.730 8 0.03
STORMG2.27 2 27 34114 14441 90903 15508982.306 27 0.21
STORMG2.125 2 125 157496 66185 418321 15512090.180 125 0.23
STORMG2.1000 2 1000 1387360 350185 { 15802589.698 1000 0.23

SGPF3Y3 3 25 1617 1208 4090 -2967.917 52: 4.08
SGPF3Y5 5 625 39867 30458 103090 -5172.165 54 4.28
SGPF3Y6 6 3125 199341 152434 -6463.323 55 5.97
SGPF5Y3 3 25 2509 1952 6570 -3027.706 52 11.07
SGPF5Y5 5 625 61759 49202 165570 -5201.282 54 10.84

WAT.10.16 10 16 8401 4573 21368 -2158.75 24:15 12.64
WAT.10.64 10 64 28097 15101 72648 -2310.53 26:13 30.43
WAT.10.128 10 128 49153 26237 128648 -1637.81 27:12 42.75
WAT.10.256 10 256 82177 43517 218888 -2000.84 28:1 36.63
WAT.10.512 10 512 128001 67069 350728 -1959.63 29 44.63
WAT.10.1024 10 1024 255987 134127 701428 -1926.79 4:28 46.53

Table 3: Problem characteristics - STORM, SGPF and WATSON
18

Name Per 1 Per 2 Per 3 Per 4 Per 5
(RowsxCols) (RowsxCols) (RowsxCols) (RowsxCols) (RowsxCols)

SC205.2 (12x14) (22x22) - - -
SCSD8.2 (10x70) (20x140) - - -
SCAGR7.2 (15x20) (38x40) - - -
SCTAP1.2 (30x48) (60x96) - - -
SCFXM1.2 (92x114) (148x225) - - -
LOUV.2 (2x4) (7x16) - - -
PLTEXP.2 (62x188) (104x272) - - -
STORM.2 (185x121) (528x1259) - - -
SC205.3 (12x14) (11x11) (11x11) - -
SCSD8.3. (10x70) (10x70) (10x70) - -
SCAGR7.3 (15x20) (19x20) (19x20) - -
SCTAP1.3 (30x48) (30x48) (30x48) - -
PLTEXP.3 (62x188) (104x272) (104x272) - -
SGPF.3y3 (38x87) (39x51) (39x51) - -
SGPF.5y3 (62x139) (63x79) (63x79) - -
SCFXM1.4 (92x114) (82x99) (9x45) (57x81) -
PLTEXP.3 (62x188) (104x272) (104x272) (104x272) -
SGPF.3y5 (38x87) (39x51) (39x51) (39x51) (39x51)
SGPF.5y5 (62x139) (63x79) (63x79) (63x79) (63x79)

Name Per 1, 2 Per 3, 4 Per 5, 6 Per , 7, 8 Per 9, 10
(RowsxCols) (RowsxCols) (RowsxCols) (RowsxCols) (RowsxCols)

FOREST.8 (15x15),(17x16) (17x16),(17x16) (17x16),(17x16) (17x16),(8x8)
WAT.10 (11x15),(15x23) (19x31),(23x39) (27x47),(31x55) (35x63),(39x71) (43x79),(92x179)

Table 4: Problem characteristics - Nodal dimensions

Name MSLiP -OSL Itns Cuts
CPU CPU (Feas)

SC205 .2.200 1.6 5.5 20 19(18)
SC205.2.800 10.5 35.5 27 26(25)
SC205.2.1600 32.9 97.9 32 31(30)
SC205.3.200 0.3 1.1 7 18(13)
SC205.3.800 1.3 4.4 7 30(21)
SC205.3.1600 2.4 11.5 8 55(38)

SCSD8.2.216 7.5 3.3 2 1(0)
SCSD8.2.432 14.0 6.6 2 1(0)
SCSD8.3.216 1.1 3.8 4 12(0)
SCSD8.3.432 3.2 7.4 5 20(0)

SCAGR7.3.432 21.7 88.7 13 12(3)
SCAGR7.2.864 30.5 89.3 8 7(3)
SCAGR7.3.432 9.2 39.9 16 105(14)
SCAGR7.3.864 9.0 39.7 7 42(14)

SCTAP1.2.216 12.3 7.2 3 2(0)
SCTAP1.2.480 27.4 15.9 3 2(0)
SCTAP1.3.216 3.1 7.8 4 17(0)
SCTAP1.3.480 6.9 23.7 4 17(0)

Name MSLiP -OSL Itns Cuts
CPU CPU (Feas)

SCFXM1.2.64 75.9 76.6 77 76(66)
SCFXM1.2.256 295.7 290.1 77 76(66)
SCFXM1.4.64 16.4 19.5 180 251(233)
SCFXM1.4.256 34.9 61.7 180 323(307)

LOUV.2.320 11.5 40.6 41 40(0)
LOUV.2.640 28.11 103.4 56 55(0)
LOUV.2.1280 62.3 226.5 47 46(0)

FOREST.8.144 15.9 59.5 20 3966(18)
FOREST.8.288 23.7 135.4 19 6095(10)
FOREST.8.384 33.3 169.5 18 8637(16)
FOREST.8.512 41.1 225.3 18 10446(18)

PLTEXPA2.16 6.0 0.7 2 1(0)
PLTEXPA3.36 15.9 2.2 2 7(0)
PLTEXPA3.256 98.2 11.9 2 17(0)
PLTEXPA4.216 114.1 12.0 2 43(0)
PLTEXPA4.4096 1644.87 184.9 2 273(0)
PLTEXPA5.1296 610.5 69.1 2 259(0)

Table 5: Serial solution times on an IBM RS6000/590 - no bunching

Name MSLiP -OSL Itns Cuts
CPU CPU (Feas)

STORMG2.8 - 131.3 40 39(0)
STORMG2.27 - 451.8 42 41(0)
STORMG2.125 - 3055.6 62 61(0)
STORMG2.1000 - 22071.9 56 55(0)

SGPF3Y3 0.7 0.3 2 6(0)
SGPF3Y5 18.2 18.4 3 198(0)
SGPF3Y6 105.2 191.3 5 1057(0)
SGPF5Y3 1.7 0.3 3 11(0)
SGPF5Y5 40.2 9.7 4 178(0)

Name MSLiP -OSL Itns Cuts
CPU CPU (Feas)

WAT.10.16 7.6 7.6 6 306(0)
WAT.10.64 32.7 37.0 11 1170(1)
WAT.10.128 57.4 72.7 11 1492(0)
WAT.10.256 144.2 143.8 13 2291(13)
WAT.10.512 181.9 181.0 12 2885(0)
WAT.10.1024 371.3 369.8 15 7499(94)

Table 6: Serial solution times on an IBM RS6000/590 - no bunching
19

Name Per 1 Per 2 Per 3 Per 4 Per 5 Per 6

Agg.1 1-2 3-4 5-6 7-8 9 10
Agg.2 1-3 4-6 7-9 10
Agg.3 1-3 4-6 7-8 9-10
Agg.4 1-3 4-5 6-7 8-9 10

Agg.5 1-3 4-6 7 8 9 10

Agg.6 1 2 3 4-5 6-8

Name CPU Itns Cuts

WAT.16.Agg1 6.5 6 170(0)

WAT.16.Agg2 5.0 5 91(0)

WAT.16.Agg3 4.9 5 95(0)

WAT.16.Agg4 5.1 5 136(0)

WAT.64.Agg1 31.4 8 569(0)

WAT.64.Agg2 29.7 8 323

WAT.64.Agg3 31.8 9 375(0)

WAT.64.Agg4 32.5 9 456(0)

FOREST.8.144.Agg1 56.7 12 1103(0)

FOREST.8.144.Agg2 51.0 9 694(0)

FOREST.8.144.Agg4 43.5 11 691(0)

FOREST.8.288.Agg1 128.5 14 2135(0)

FOREST.8.288.Agg2 116.8 10 1450(0)

FOREST.8.288.Agg4 91.8 11 11

Name CPU Itns Cuts

WAT.128.Agg1 75.0 11 859(0)

WAT.128.Agg2 58.0 8 445(0)

WAT.128.Agg3 56.4 9 521(0)

WAT.128.Agg4 47.9 9 784(0)

WAT.256.Agg1 102.0 9 1464(2)

WAT.256.Agg2 119.4 8 712

WAT.256.Agg3 77.9 8 850(1)

WAT.256.Agg4 89.5 8 1101

FOREST.8.384.Agg1 172.9 14 2860(0)

FOREST.8.384.Agg2 171.7 11 1928(0)

FOREST.8.384.Agg4 128.4 11 1845(0)

FOREST.8.512.Agg1 214.6 13 3695(0)

FOREST.8.512.Agg2 232.4 11 2602(0)

FOREST.8.512.Agg4 171.1 11 2575(0)

Table 7: Aggregation on the FOREST and WATSON problem sets with MSLiP-OSL

Name CPU Itns Cuts

WAT.256 Numerical errors

WAT.256.Agg3 266.2 12 1117(11)

WAT.1152 Numerical errors

WAT.1152.Agg5 419.6 2 6023(113)

Name CPU Itns Cuts

WAT.256 472.1 15 2085(60)

WAT.256.Agg3 266.2 12 1117(11)

WAT.1152 Numerical errors

WAT.1152.Agg5 654.2 13 5556(52)

Table 8: Aggregation to obtain a WATSON solution with - MSLiP and MSLiP-OSL

Name Serial # Processors CPU Speed-up E�ciency %

CPU

SC205 .2.200 11.8 8 16.7 0.7 8.8

SC205.3.200 2.1 8 5.8 0.4 5.0

SCSD8.2.216 57.2 24 6.6 8.5 35.4

SCSD8.3.216 8.6 8 10.6 0.8 10.0

SCAGR7.3.432 170.3 8 67.3 2.5 31.3

SCAGR7.3.432 70.3 8 66.7 1.1 13.8

SCTAP1.2.216 96.0 15 14.4 6.6 44.0

SCTAP1.3.216 24.8 8 11.2 2.2 27.5

SCFXM1.2.64 602.0 24 88.6 6.8 28.3

SCFXM1.4.64 159.7 8 116.3 1.4 17.5

LOUV.2.640 83.0 8 124.7 0.6 7.5

FOREST.8.288 194.0 8 260.7 0.7 8.8

PLTEXPA3.36 200.3 15 48.1 4.1 27.3

SGPF5Y4 62.2 15 10.8 5.7 38.0

WAT.10.16 64.4 15 21.5 2.9 14

Table 9: Parallel results on the AP1000

20

Name Serial # Processors CPU Speed-up E�ciency
CPU

FOREST.8.144 139.4 15 99.2 1.4 9.3
FOREST.8.144.Agg6 297.4 15 40.7 7.3 48.7

Table 10: Parallel Aggregation with FOREST.8.144

Figure 1: Results on the AP1000 for various problems

21

Figure 2: Results on the AP1000 for various problems

Figure 3: Results on the AP1000 for various problems

22

