Compositional description and
! valuation of financial contracts

Simon Peyton Jones, Microsoft Research
and
Jean Marc Eber, Société Général

The big picture

Jean Marc ’

Programming
language design and
implementation

Financial contracts are complex

= An option, exercisable any time
between t1 and t2

= over an underlying consisting
of a sequence of fixed
payments * Complex structure

= plus some rule about what
happens if you exercise the o
option between payments * Need for precision

= plus a fixed payment at time t3

= Subtle distinctions

What we want to do

Scheduling for

back office
Precise Valuati ;
it aluation an
description of a > hedging
contract
2
a, ¢
» Legal and
documentation
W&%@
e setc....

What we want to do

Compute
sugar content

Precise —
. stimate time
descrlptlc_m of a > to make
pudding

Instructions to

make it
» etc....
What we want to do
Precise Compute
description of a sugar content
pudding

Estimate time
to make

Bad approach

= List all puddings (tifle, lemon upside
down pudding, Dutch apple cake, Christmas

uddin
P 9) Instructions to

= For each pudding, write down make it
sugar content, time to make,
instructions etc

What we want to do

Precise Compute
' R sugar content
description of a 9
pudding
Estimate time
Good approach to make

= Define a small set of “pudding
combinators”

= Define all puddings in terms of Instructions to
these combinators make it

= Calculate sugar content from
these combinators too

Creamy fruit salad

On top of Comb/hato_rs combine
— \ small puddings into
, bigger puddings
Whipped Mixture gger p g
l ¥ \
Chopped _
Take l Optional
N\ |
1pint Cream Take Take

\ Y\

3 Apples 6 Oranges

Trees can be written as text

On top of

Notation:
= parent childl child2
= function argl arg2

sal ad = onTopOX topping main_part

t oppi ng = whi pped (take pint crean

mai n_part = m xture apple_part orange_part
appl e_part = chopped (take 3 apple)

orange _part = optional (take 6 oranges)

The combinators are typed

sal ad = onTopOX topping main_part

t oppi ng = whi pped (take 1pint cream

mai n_part = m xture apple_part orange_part
appl e_part = chopped (take 3 apple)

orange _part = optional (take 6 oranges)

onTopXf :: Puddi ng -> Pudding -> Puddi ng

whi pped :: Puddi ng -> Puddi ng

take :: Quantity -> Ingredient -> Pudding

* The types make sure that you can't describe a
nonsensical (e.g. t ake t oppi ng appl e)

Processing puddings

= Wanted: S(P), the sugar content of pudding P
S(onTopOF pl p2) =S(pl) + S(p2)

S(whi pped p) = S(p)
S(ttake q i) =q * S(i)
..etc...

= When we define a new recipe, we can calculate its
sugar content with no further work

* Only if we add new combinators or new ingredients do

we need to enhance S

Processing puddings

= Wanted: S(P), the sugar content of pudding P
S(onTopOf pl p2) =S(pl) + S(p2)

S(whi pped p) = S(p)
S(take q i) =q * S(i)
...etc...

Sis compositional
To compute S for a compound pudding,
= Compute S for the sub-puddings

= Combine the results in some combinator-dependent way

Doing the same for contracts

The big question

What are the appropriate primitive combinators?

Building a simple contract

cl :: Contract
cl = zcb (date “1 Jan 2010”) 100 Pounds

zcb :: Date -> Float -> Currency -> Contract
- Zero coupon bond

date :: String -> Date

Building a simple contract

cl,c2,c3 :: Contract

cl = zcb (date “1 Jan 2010”) 100 Pounds
c2 = zcb (date “1 Jan 2011”) 100 Pounds
c3 = and cl c2

and :: Contract -> Contract -> Contract
-- Both c1 and c2

and c3

cl *////// \\\\\\\, c2

zcb t1 100 Pounds zcbhb t2 100 Pounds

Building a simple contract

c3 =c¢cl ‘and’ c2

= Notational convenience: can write combinators
with two arguments in an infix position

and

T

zcb t1 100 Pounds zchb t2 100 Pounds

Inverting a contract

c4 = cl ‘and’ give c2

give :: Contract -> Contract
-- Invert role of parties

and c4
/ gi ve
cl v c2
zcb t1 100 Pounds zcbhb t2 100 Pounds

New combinators from old

andG ve :: Contract -> Contract -> Contract
andG ve ul u2 = ul ‘and‘ give u2

* andG ve is a new combinator, defined in terms of
simpler combinators

* To the “user” it is no different to a primitive, built-in
combinator

= This is the key to extensibility: users can write their
own libraries of combinators to extend the built-in ones

Choice

An option gives the flexibility to

= Choose which contract to acquire (or, as a special
case, whether to acquire a contract)

= Choose when to acquire a contract
(exercising the option = acquiring the underlying)

Choose which

-- BEither cl1 or c2

zero :: Contract -> Cont
-- A worthless contract
-- the underlying does

or :: Contract -> Contract -> Contract

ract
t hat expires when

» First attempt at a European option
european :: Contract -> Contract
european u = u ‘or‘ zero u

= But we need to specify when the choice may be

exercised

Acquisition dates

european :: Date -> Contract -> Contract
european t u =get t (u ‘or‘ zero u)

» Informally, (get t c) acquires the underlying
contract c at time t

get :: Date -> Contract -> Contract
-- Acquire the underlying at specified date

Acquisition dates

get :: Date -> Contract -> Contract
-- Acquire the underlying at specified date

= A contract confers certain rights and obligations

= When you acquire a contract, you take on its future
rights and obligations; that is, only the ones that fall
due on or after the acquisition date.

= If you acquire the contract (get t u) attime s<t,
then you are obliged to acquire the underlying u at the
(later) time t .

= If you acquire the contract (c1 ‘or‘ c¢2) you must
immediately acquire your choice of c1 or c2

*11

Reminder...

= Remember that the underlying contract is arbitrary

c5 :: Contract
get tl c5 = european tl (
v zcb t2 100 Pounds
i “and’ zcb t3 100 Pounds
-\\ “and’ give (zcb t4 200 Pounds)
zero)
N
and The underlying
& TS
and I
Yy N b
zch zch zch

Choose when

anytime :: Contract -> Contract
-- Acquire the underlying at any tine
-- before it expires (but you nust acquire it)

c6 = anytine (
zchb t2 100 Pounds
“and‘ zcb t3 100 Pounds
“and' give (zcb t4 200 Pounds)

)

= Every contract has a horizon, at which point it
expires, and cannot be acquired

Optional acquisition

= In an American option, you can usually choose not to
exercise the option at all

That's easy!

anytime (u ‘or‘ zero u)

Choose

Choose
when

whether

Setting the window

An American option usually comes with a pair of times:

not quite

= you cannot acquire the underlying before t1 ght

get t1 (anytinme (u ‘or‘ zero u))I

= you cannot acquire the underlying after t2

get t1 (anytime (truncate t2 (u ‘or‘ zero u)))

truncate :: Date -> Contract -> Contract
-- You cannot acquire the underlying after
-- the specified date

American options

anerican :: Date -> Date -> Contract -> Contract
anerican t1 t2 u
= get t1 (anytime (truncate t2 (u ‘or‘ zero u)))

-3

v
\

Extensible

%%li(\,!' 241 library

Combinators

Iy

Summary so far

gi ve :: Contract -> Contract

or :: Contract -> Contract -> Contract
and :: Contract -> Contract -> Contract
zero :: Contract -> Contract

get :: Date -> Contract -> Contract
anyti me :: Contract -> Contract

truncate :: Date -> Contract -> Contract
..and some nore besides...

= Choice of combinators driven by
= Economy (as few as possible)
= Expressiveness (can describe many contracts)
= Efficiency (maps cleanly onto e.g. valuation engine)

= We need an absolutely precise specification of what
they mean

~Valuation

= Once we have a precise contract specification, we
may want to value it

Model of world
(e.g. interest rates)

Valuation engine

_ One possible evaluation model: BDT

Given a contract C, define

V(M,C) to be the BDT tree for C under
interest rate model M

zcb 1 100 Pounds
contract C Valuation ‘

6% - engine

5%
Value tree V(M,C)

4%
interest rate model M

Compositional valuation

Now define V(M,C) compositionally

V(M, cl ‘and* c2) =V(M,cl)+ V(M,c2)

V(M, cl ‘or* c2) = max(V(M,c1), V(M,c2))

V(M, gi ve c) = -V(M,c) [y S
V(M, anytime ¢) = snell{ V(M,c)) v .,
V(M, get t c) — discount(V(M,c)[t]) ~ lig
..etc... A

= This is a major payoff! Deal with the 10-ish
combinators, and we are done with valuation!

Space and time

= Obvious implementation computes the value tree for
each sub-contract

» But these value trees can get BIG
= And often, parts of them are not needed

mm) get t omm) <

simple
discounting

Haskell to the rescue

“Lazy evaluation” means that

= data structures are computed incrementally, as they
are needed (so the trees never exist in memory all at
once)

= parts that are never needed are never computed

Slogan
We think of the tree as a first class value “all at once”

III

but it is only materialised “piecemea

Reasoning about contracts

= Two contracts may look different, but be the same
cl ‘and’ c2 = c¢2 ‘and' cl

= We add a set of rules about equality to our language

= Using these rules we can transform a contract into an
equivalent one that takes less work to evaluate

anytinme (anytine c) = anytine c
(cf: query optimisation, program transformation) ¢

=17

Summary

A small set of built-in combinators
A user-extensible library defines the zoo of contracts
So you can define an infinite family of contracts

Compositional (modular) algorithms for valuation, and other
purposes

Not covered: observables. See the paper.

Prototype implementation in Haskell. (100’s not 1000’s of
lines).

