DERIVATIVES AS TRADEABLE ASSETS

TERRY J LYONS

1. INTRODUCTION

Consider a market with a heavily traded asset, where a secondary market for
vanilla call options has developed, and where the voltility in the price of the fun-
damental asset has a stochastic fluctuations. This paper aims to develop a model
and methodology for the joint behviour of the prices of the call option and under-
lying asset. In consequence, we are able to provide a more systematic approach to
hedging and pricing other less commonly traded derivatives.

The existence and market price of the traded derivative should strongly influ-
ence the hedging and pricing behaviour of a bank or intermediary selling the OTC
derivativel; it provides a new opportunity to hedge risk, it introduces a danger of
arbitrage, and it changes the market price of the OTC derivative via the market
practise of using implied volatilities.

Our objective can be summarised as the identification of low dimensional models,
complete in markel priced assels, where the liquid derivatives and the underlying
assets are independent tradeable assets.

To be useful, a model must be consistent?, risk adjusted, and provide a reason-
ably explicit description for the dynamics of the traded assets; it should allow one
to reduce the hedging/pricing question to standard and computationally feasible
calculations in the spirit of the classical theory of arbitrage theory. OUr models
have all these properties.

1.1. Stochastic Volatility - an academic approach. The existing academic lit-
erature approaches our question indirectly, looking at models for stochastic volatil-
ity and the market premium for risk. We are not happy with the details of such
an approach, as the relationship between the hard to measure “market premium of
risk” and the volatility of the liquid derivative, and the underlying assets seems too
distant to be reliable. As the full matrix of joint volatilities of the traded assets is
the essential quantity that influences price it seems wise to model these directly.
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1For simplicity we use the term OTC derivative when we refer to the derivative an intermediary
is interested in pricing and selling, and a traded derivative when we refer to the derivative with a
market price.

2Force the pricing relationship between derivatives and the underlying that arise because of
arbitrage. See later for the definition.
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To understand this point consider a basket of underlying assets and the idealistic
situation where a Markov model has been constructed which perfectly describes the
random evolution of their prices and their volatilities:

(11) dSt = M (St7¢t) Stdt + 0 (S't7 ?bt) Stth
dp, = (S, ¢y) dt+p(Se, é,) dVi

where ¢ is an extra state variable that captures all that is important to the evolution
of the system. In general the state variable will not be directly tradeable. Let us
add to our assumption on the model (1.1) that the dimension of the additional
state variable ¢, in this model can be matched to the number of traded options
{Oi li=1,..., d} . However, on it’s own, and even if the model perfectly captured
the behaviour of our system, (1.1) will not price any of the assets O%; information
concerning attitudes to risk must be added.

In his pioneering paper, Vasicek [5], observed that although prices of the O' are
not determined by such a model, arbitrage assumptions force the prices of different
derivatives products to be mathematically interrelated, and this insight points the
way to the explicit identification of the extra ingredient that must be identified
making the prices unique.

1.1.1. The market premium for risk. The Markovian assumptions embodied in (1.1)
ensure that at any time ¢ the two state variables (S, ¢,) contain all the information
that is available at time ¢t concerning the future evolution of S;. It is therefore at
least plausible to assume that the price of any option or derivative on S should
be a function of (S;,¢,) alone. The arbitrage arguments of Vasicek show how
the existence of such a family of pricing functions is essentially equivalent to the
assumption that the market attaches a consistent market price to risk. We will
not re-derive the equivalence here, but to set up notation, we will explain how the
model (1.1) leads to a huge range of different pricing model and hedging strategy,
each suggesting it’s own model for the joint volatility of (S, O;) .

Let Z(St, ¢;) be any bounded function, which we refer to (somewhat loosely) as

the price of risk. Consider the change of measure from P to P? so that under the
new measure, the model for (S, ¢,) satisfies the stochastic differential equation:

(12) dSt = U(St7¢t) th
do = (p(S1,60)b(S0,6,) +0 (S0 ,)) db+p(S1,6,) AV,

Providing ¢ do not become zero P? is absolutely continuous with respect to P, so

that any argument (e.g. about hedging) holds almost surely with respect to the

one probability measure will also hold almost surely with respect to the other.
Suppose for simplicity that the terminal time for each option O! is T and that

Ok = F*(Sr) . Define O? by setting
O =E" [F (Sr) | 7).
It follows from the Markov property, that O? is a function OP (S, ¢4, %) of the state

variables. Exploiting the equality of dimension between the variables Of and ¢,

it will generically the case that O° (S¢,e,t)is at least locally invertible. To make



HEDGING WITH DERIVATIVES 3

our point more simply, we further assume that it is globally invertible so that
¢y =" (Of, St,t) is it’s inverse.

In this case, the new variables Of when taken with S; are also a complete set

of state variables. Indeed, (O?, St) will be Markov and we can recover its joint

volatility by differentiating the inverse function. Under P? the process (O?, St) is
a martingale and satisfies the SDE

s, = Odi+o <St,¢g (O?,St,t)) S,dW,

dOb = p(St,ng(O?,St,t))%—O;(St,ng(O?,St,t),t)th
v (516 (01,5,0)) 22 (5,6 (OF,51.0) 1) ity

This system of tradeable assets is obviously complete, and any contingent claim
which is functionally dependent on the underlying assets S; (or even on the deriva-
tives OY ) can be expressed in a unique way as a stochastic integral against the
assets (0, S;) .

Therefore our choice of b has lead to a consistent model with known volatility for
the joint evolution of the prices for our fixed choices of options and the underlying.
Assuming we have correctly identified market price of risk so that the volatility
of the prices corresponds to reality, we can provide a consistent risk free hedging
strategy to price any given contingent claim.

1.1.2. The essential difficulty. So what is the problem with the Vasicek approach
set out above?

1. There is an obvious difficulty in choosing the function b sensibly, this becomes
particularly tricky when one realises that stable hedging and pricing that is
robust to small changes in the modelling relies on understanding the joint

volatility of the traded assets (Off7 , St) . The riskless hedge is completely de-

termined by the volatility of the tradeable assets, in our case (S;,O;). Get
their volatility wrong, and the second order effects of hedging will cause the
portfolio value to drift away from its planned value. The approach outlined
above implicitly forces one to identify this “market price of risk function”
Z, solve the PDE to find the price function O? for this model, compute the
inverse, and the derivative, to finally get the volatility of the option (S, Oy).
Unfortunately, this relationship is not explicit or local. Changes in the values
of b away from the current values of the state variables will change the volatil-
ity of (S, Oy); moreover, the effect is indirect and even obscure. The lack
of a transparent relationship between parameters and the critical volatilities
and lack of measures of the errors in the joint volatility arising from different
price of risk models means that they cannot currently be regarded as robust.
2. A second related problem concerns the state variable ¢. If it has an intrinsic
meaning as representing some economic factors, then it is going to evolve and
have a value; in theory once the market premium of risk has determined the
values of (S, ¢,) each of the options O;: has its price completely determined.
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In general, this will inevitably produce a conflict with market prices. Recali-
bration replaces this difficulty with an ever changing model for the volatility
and hedging losses.?

1.2. Practitioner approaches. Probably the most common approach adopted
by practitioners to accommodate the existence of prices for traded derivatives is
calibration. One can consider models which are complete in the underlying assets
but which have a number of undetermined parameters. By setting the parameters so
that their model produces prices for traded derivatives that agree with market prices
they hope that the Black Scholes framework will adequately reflect the interrelated
movement of the OTC option and the underlying asset and permit it to be hedged.

In other words, implied volatility is used to accommodate the reality of deriva-
tives priced independently by the market, in the hope that the market will incorpo-
rate all relevant historical pricing data relating to the volatility of the underlying.

This approach gives no protection against the implied volatility moving. An
intermediary may well use some vega hedging in an attempt to minimize the im-
pact on portfolio values when the calibration implied by the derivatives undergoes
changes.

This “practitioner” approach is computationally feasible and of course this is
very important, but it also has considerable limitations. Without a vega hedge,
there is complete exposure to model risk and a shift in the implied volatility can
result in a significant change in the value of the portfolio. But as we will see later,
vega hedging is an imperfect attempt to avoid this difficulty.

Moreover, the implicit assumption that the market in the underlying assets is
complete raises a serious intellectual obstruction to tackling our main question: how
should we hedge when we have traded options. This difficulty arises because the
implicit consequence of this assumption is that the liquid option can be synthesized
as a portfolio in the underlying asset alone. One is forced to conclude that the
liquid derivative adds nothing to the market and is redundant when one tries to
hedge.

The stochastic volatility approach has more intellectual validity and avoids this
second conflict. However, it generally lacks computational bite and cannot always
be translated into a realistic hedging strategy. The risk from the need to recalibrate
does not in general go away.

1.3. This paper. This paper aims to provide a more limited and more computa-
tionally valid mathematical framework for analyzing and determining the appropri-
ate price for an OTC derivative, and a hedging strategy to synthesize the same, in
the presence of nearby liquid derivatives. In outline one could say that our approach
is guided by the principle that once a product is heavily traded in the market, its
price has it’s own independent volatility and (in so far as it influences the pricing
of our OTC options) should be included in our vector of prices. The problem is to
model that volatility reasonably accurately using models that are complete in the
visible traded assets including the options.

Of course we will never be able to completely characterize the joint volatilities
of the options and underlying correctly. But we are not so concerned by this for

30ur approach in this paper is only free of such criticism if one uses historical data to cali-
brate the joint volatility model as the prices of assets and traded derivatives are independently
incorporated. However, if one had many traded derivatives and some were used to calibrate our
model (e.g. to match smile) then our approach would be subject to the same criticism.
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the following two reasons. We see the situation as parallel to the primeval days
when Black and Scholes had just arrived and where historical models of volatility
sufficiently accurate to price and hedge derivatives. The pricing of OTC option is
now essentially a second order process as liquid derivatives can be used to offset
much of the risk in a contract and really one only has to price a smaller residual
contract; substantial errors in this residual price will not radically aflect the price
of the original contract of interest. It is for this reason that banks are willing to
enter OTC contracts at all - under the surface they hope they are really entering
contracts with much smaller total downside and pretty uncertain price, but with
the uncertainty compensated by large profit margins to compensate for the high
risks.

Although we leave the investigation of this aspect for another paper, it is quite
possible to introduce non-linear pde’s to take into account the uncertainty of the
volatilities we model, following [2]. We expect this more robust approach to have
similar features to the intuition we mention above. Residual contracts will see a
big spread between buy and sell reflecting the uncertainties that cannot be hedged
away. However, the “nearness” of many OTCs to existing derivatives will result in
the price of a typical OTC being small. The spreads in the prices of the residuals
are a reflection of uncertainties, but will always remain within arbitrage limits.

The structure of the paper can be summarized as follows.

1. We first review in a less discursive way, two standard industrial approachs
to the existence of liquid derivatives: calibration with implied volatilities and
vega hedging.

2. Then, we analyze the above approach for the minimalist example where there
is a single stock, cash can be borrowed and lent at zero rate of interest, and
there is exactly one liquid derivative with a price in the market. The liquid
derivative will be a simple European call option of fixed strike price and
maturity.

3. Staying with the same simple framework we propose approximate volatility
models for the joint volatility of the call and the underlying. We will call
such a volatility model consistent if, with probability one for the associated
risk neutral measure, the paths of the call and the underlying coalesce appro-
priately at the maturity time. We illustrate this by showing that our main
model is consistent, but that it is a delicate matter as small perturbations to
it are not. The prices of contingent claims can therefore be calculated and
hedged using the standard known volatility/no arbitrage paradigm. How-
ever, the price of the liquid derivative and the underlying asset are no longer
deterministically related, and the hedge involves them both in a dynamic way.

4. The basic calculations in (3) do not depend on the underlying model being
lognormal motion, nor are they dependent on there only being one derivative
traded in the market. Combining Dupire’s approach[1] with ours, we believe
that the case of a market with traded call options at many different strikes
and could also easily be accommodated.

2. STANDARD PRACTISE EXPLORED

2.1. A simplistic example. A very simple example should focus attention. Sup-
pose a single security is freely traded, and has price processes S; and that in addition
there is a single option freely traded on the market with price process Ok ¢, where
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for simplicity, the option is a European call, with payout at a fixed maturity 7" given
by (St — K )+ . Now suppose that a client approaches an intermediary wishing to
purchase or sell a similar option on the same underlying, with the same maturity
time 7', but with a strike price K’ # K. There are a number of alternatives that
can might taken in developing the price Ok, for this new option.

L. In the first case* one could collect large amounts of data relating to the
volatility of the underlying security, using this historical data, to estimate
volatility for the new option; then use the Black and Scholes model.

2. In the second case one could back out an implied volatility from the traded
option under the assumption that it satisfies the Black and Scholes model for
some choice of the volatility, and use this implied volatility as a substitute for
the experienced volatility in the Black and Scholes formula to price the new
option.

Hybrid’s are also possible. Of course the first approach ignores the marketed
option and leaves the bank open to arbitrage and is really a non-starter although it
might be an excellent approach in an immature market where options are not freely
traded. The second approach, effectively the industry standard, is an interpolation
which ignores historical data and cannot directly accommodate more market prices
than there are parameters in the model.

Hedging the resulting contract poses additional questions. Some are not easily
settled in the classical theory. Common sense suggests that there is a huge differ-
ence between a hedging strategy that holds the security and numeraire alone, and
one that also uses the traded option. Unfortunately, the classical theory following
on from applying Black and Scholes predicts that the traded option can itself be
synthesized using the underlying security and so gives no guidance about how much
of the traded option the bank should hold when hedging the OTC option.

In practise this difficulty in hedging is often finessed, in this case one could
purchase a unit of the traded option, and then use the underlying to dynamically
hedge the residual liability using the standard theory and implied volatility. For the
simple contracts studied here, this approach, with it’s static hedge in the traded
derivative is obviously a much more stable and lower risk strategy than hedging
the original claim in terms of the underlying alone. The residual contract has
a maximum value of |K — K'| and if this is small, even quite substantial errors
in hedging the residual will not seriously affect the price of the original contract.
However, it is not obvious, even in this simple example that the static hedge is the
best one.

In theory and for K’ > K, one could develop a hedging strategy by taking note
of the fact that the call option with strike K’ > K is an option on an option with
the strike K. So that providing we could identify a model for the volatility of Ok
we could dynamically hedge the derivative Ok ; in terms of Ok ; and cash.

2.2. The generic approach. More generally and for more complex products, we
can caricature the industry standard approach as follows:

e Identify and isolate components of the contract that can be priced separately,
and also identify the products available in the market which are “financially
close” to the OTC contract we are trying to price. Use the market prices
of these to calibrate a model by backing out the volatility of the underlying

4We do not suggest this is sensible or done in practise.
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assets. The calibrated model is then used to price the new contingent claim
and to value the existing portfolio. The deltas predicted by this calibrated
model are used to decide the mix of cash and the underlying securities required
to hedge the portfolio.

e Also recognize that if the market changes its view of volatility the prices of
the traded options will move independently of the underlying securities to
reflect this, and that such changes are not hedged at all using the approaches
outlined above. So introduce a second level of hedge (known as vega) - where
traded options are introduced into the portfolio so that to first order, the
portfolio is neutral to movements in the specified implied volatilities as well
as the underlying.

Both approaches have problems attached to them. The former obviously leaves
the intermediary wide open to movements in the market view of volatility. Vega
hedging brings more subtle problems. If one were to analyze it mathematically, one
would appreciate that it produces a risk free hedging strategy only if the volatility
of the implied volatility is zero, for in any other case the second order effects of
hedging will produce a portfolio whose value drifts away from the desired stationary
value. It can also have hidden instabilities. None the less one might consider it a
plausible approach in the case where the “vol of vol” was small.

2.2.1. Vega hedging our simplistic example. Before proceeding to the main part of
the article, we briefly look at the consequences of using implied volatility and vega
hedging in the simplistic example of a liquid European option with strike K and
an OTC European option with strike K’ introduced in Section (2.1). Without the
stabilising effects of transaction costs etc. vega hedging exhibits a phase transi-
tion making the computation more interesting and acting as a general warning of
instability. We take advantage of this example to set up notation that will hold
throughout the article.

2.3. Notation. Suppose that the price process S; for the securities is modelled by
a random Markov process

dS} = a' (Sy) dt + 04,5 (Se) SidWy
with risk adjusted probability measure [P so that under this law
dS; = 0,5 (S;) Sidw;

It is well known that for this model, and under regularity conditions to ensure inte-
grability, and conservativeness, the price pr (s,t) of European option with payout
F (St) at a predictable maturity time 7', and with the current time being ¢ and the
current stock price being S; is given by pp (s,t) = E[F (s7)| st = s]. The standard
Black Scholes model corresponds to the case where 0; ; = 0 if i = j and zero oth-
erwise, and there is only one stock. In this case we call the scalar o the volatility.
A call option with strike price K corresponds to a payout F (s) = (s — K)7.

Definition 2.1. Let p(s,7) denote the standard Black-Scholes arbitrage free price
of an option based on a security with geometric Brownian trajectories, strike price
1, current price, volatility 1, and having T units of time to run till maturity.

Scaling arguments yield from p the price of an option under different volatil-
ity and strike assumptions. Because the price process is characterized by ds; =
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o0s:dW; standard scaling arguments show
E|(sp— K) |s; = s] = Kp (s/K,0” (T —1))

. . 1,2 .
and using the representation for s, = spe” "¢ 2% ! where V is another standard

Brownian motion one can integrate to obtain pin the well known closed form

(2.1) p(s,T):= 5

The closed form is useful for numerical calculations, but for much of what we do in
this paper it is better to use the symbolic form Kp (S/K7 o (T — t)) . The function
p satisfies the well known Black Scholes pde with the following normalisation

1020 Op _

2.2 =
(2.2) 28 ds2  or

Varying ¢ between 0 and co we see that any market price of the option satisfying
the arbitrage bounds (s; — K)+ < Og,¢ < 5 is attained for a unique 7 (Og ;) €
[0, 0] .

Definition 2.2. We say 7(Ok, ) is the estimaled operational time to maturity
associated to the current price of an option with security price s, option price Ok ;.
It is the unique solulion in T to the equation.

Kp(s/K,T) = Ok +.

o= T((ff)ft)t) is the implied volatility determined by option price.

Definition 2.3. The actual operational time to maturity is given by the integral of
the empirical volalility between now and malurily

/t " 08 d.

The justification for the term operational time should be apparent to anyone
with experience of the classical Black and Scholes model. It is a (random) variable
reflecting the turbulence to be faced. In the classical model, the standard discrete
proof demonstrates how one can hedge perfectly by reapportioning ones assets every
time the underlying share goes up or down by a set percentage. The standard
continuous result is obtained by taking the limit. However, the whole approach
only works if one knows, in advance how many such step changes in price there will
be before maturity. One does not need to know how regularly, or irregularly these
changes occur, only how many there are going to be. In our language, operational
time measures the number of such intrinsic ticks and in the standard model these
come regularly and operational time is proportional to time; but in the real world
where the volatility of the security may change, the amount of operational time
before maturity will not be known in advance. In this case, the option price can be
regarded as a representation of the market view of exactly how much operational
time there will be from time ¢ maturity.
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2.4. Pricing and hedging. The market approach of using implied volatility we
described in remark 2 from section (2.1) can be summarized as saying that one
would value the second option at K’ p(s/K',7(Ok,)). There are then two stan-
dard approaches to hedging it.

The first uses only the underlying, and assumes (or hopes?) that the implied
volatility will not change, and also assumes that the experienced volatility will
coincide with the implied volatility. In other words, it values the portfolio of stock
and the option at

V(s,7) =vs— K'p(s/K',7(Ok,+))

and proposes a hedge of ¥ = pt1:9) (s/K', 7 (O )) units of stock. This immunizes
the portfolio to first order against movement of the underlying given that the im-
plied volatility remains constant. Providing empirical volatility coincides with the
implied volatility®, the fact that p in the pricing formulae solves the Black Scholes
pde ensures that second order price movements are also cancelled out on average
which is enough to hedge. Movements in the implied volatilily are unhedged as are
differences between the empirical and the implied volatility.

It is a stable hedge, in the sense that the amount of the stock held is always
between nothing and one unit, swinging between the two according to the extent
that security is out or in the money, and becoming close to one or other of these
extremities as the estimated operational time goes to zero.

A vega hedge® would aim to hold ¥ units of the underlying, and € units of the
option with strike K so that the portfolio is neutralised against movements in price
of the underlying or of volatility. In other words so that the total derivative of the
portfolio in the price of the underlying and implied volatility (keeping time fixed,
is zero). Because of the way that implied volatility and time always occur together
we see this is the same as asking that in (s,7) co-ordinates, 88_‘5/ and 88—‘7/ are both
zero where

Vs, T) =vs+EKp(s/K,7)— K'p(s/K',T)

whereas the conventional hedge above would demand that the derivative 88_‘5/ =0

and set £ = 0.
The vega hedge an easily be computed from the above.

1.,(0,1) (s 1,0) (s
v — K'pl )(;,,T)p( )(zsoT) +p(1,o)<i T)
KpO1) (%,7) K"

K'pO (%,7)

Kp(O,l) (%77)

and from the closed form of the solution one can deduce the portfolio suggested by
the hedge. In the following graphs we show how the mix between the underlying
stock 7 and the option £ as operational time goes to zero in the case where K < K'
and vice versa. Meanwhile in the case where one is in the money, but K’ < K one
gets a much better stability in the money. However, there remains a less serious out
of the money singularity which could cause some difficulty. This instability seems

3

53 I am told that the market seems to place the implied volatility on the high side of reality,
reflecting the fact that the intermediaries tend to be short call options

6In all that follows, we will assume that we have fully discounted and that the return on a
bond is zero. This achieves the usual simplification of presentation without loss of content.
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FIGURE 1. The exotic derivative has strike 1.1 while the liquid
derivative has strike 1.0. Operational time ranges from .01 to 1.5
in steps of .2. The suggested hedge goes arbitrarily short in the
stock as maturity approaches.
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FIGURE 2. The exotic derivative has strike 0.9 while the liquid
derivative has strike 1.0. Operational time ranges from .01 to 1.5
in steps of .2. The suggested hedge holds positive bounded amounts
of the stock and option as maturity approaches.

to be generic and can be observed in stochastic volatility models as well.

3. THE JOINT VOLATILITY OF THE CALL AND THE UNDERLYING

3.1. Overview. Vega hedging is a hybrid. It aims to hedge to second order in
the underlying security, but only delta hedges in the direction of fluctuations in
the price of the liquid option. But those fluctuations exist or one would not be
interested in vega hedging!

It is the nature of markets and market makers that they impose a price on
any traded security. In the absence of complete knowledge of the volatility of the
underlying, the price of a liquid derivative must fluctuate in relation to any given
Black Scholes predictions. The traded derivative has a price of it’s own. It is not a
deterministic function of the underlying assets, and in effect it becomes a new asset
in it’s own right.
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If one could model the joint volatility of the underlying price vector (St, Ok ¢)
for the traded option and the underlying together we could use the classical Black
and Scholes paradigm to price and hedge a new contingent claim using them both,
however we would no longer use the classical Black Scholes formula to price the
contingent claim, but a new function that comes from solving the new pde.

Although this approach seems far more natural than the vega hedging, some
obvious issues need to be addressed before it can really be considered as a starter.

1. The behaviour of an option and the underlying are clearly not completely
independent, and at the maturity of the option there is no independence at
all. Therefore any model for the joint volatility of the pair should force this
terminal relationship for the risk neutral measure without further assump-
tions.

2. There needs to be some basic and reasonably natural models for the volatility
of the pair that can play the role of the geometric Brownian motion in the
classical case.

3. Time to maturity must play an essential role in the model for the volatility,
at least with respect to the volatility of the option price.

We initiate the study of these issues below, and demonstrate the existence of a

workable class of models.

The approach provides a framework for pricing in a mature market where many
derivatives have market prices, which takes account of those prices, and also pro-
vides rational hedging strategies, indicating the correct mix of derivatives and un-
derlying assets. In addition, including market priced options in the hedging asset
mix means that their calibration is taken into account automatically via the state
of the system, rather than via the parameters. It is therefore possible, without any
conflict with market prices, to use historical data to improve the model for the joint
volatility.

3.2. Connection with classical stochastic volatility papers. Before proceed-
ing to the details of our approach, we make one final remark. There are numerous
papers on stochastic volatility, reflecting the importance of the topic. Our approach,
which constructs some quite explicit models for stochastic behaviour of the implied
volatility, is not primarily directed to modelling in a stochastic way, the empirical
volatility of the underlying, although this is a bi-product. Our primary interest is
to identify the volatility of derivatives with prices in the market, along with that
of the underlying.

The volatility of our new price process (S, Ok ) will still be uncertain and
the methods of stochastic empirical volatility could be applied in this setting if
required. However, the residual nature of most contracts, and large errors one
expects, indicate that an approach based on non-linear pde and uncertain volatility
might be simpler and quite adequate.

3.3. Modelling stochastic implied volatility. Suppose that we have two trade-
able assets, a security with price S; and a European call option O; then we may
always re-scale the units of the stock so that the strike price is 1. Our objective is
to identify sensible models for volatility of the pair (S;,0,) and to calculate prices
based on these models.

Now the process (S;,0,) is forced by arbitrage constraints to live in domain

E={(50)1+0>s>0,0 >0}
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FIGURE 3. The domain F

and any value in F is potentially possible at any time although some values are
obviously more likely than others. Let p (s,7) be the function defined in (2.1), giving
the Black-Scholes price of an option with current stock price s and with volatility 1,
T units of time to run. Recall that if O; is the price of option maturing at time T,
then the equation O; = p(s,7) always has a unique solution 7 for any point in F.
We regard s and T as a new parameterisation for %, as the map (s,7) — (s,p(s,7))
is one to one, taking RT™ x R™ onto F.
To get started, we make the following modelling assumptions:

e the volatility of the price of stock s is controlled by the value of the estimated
operational time 7 but is independent of the volatility of 7.

e the implied volatility determined by the option and stock prices agrees with
the volatility of the stock price.

Both are only assumed to keep the mathematics relatively simple - but seem
reasonable to first approximation at least. We have not had the chance to rigorously
test them against market data. More complicated assumptions would not radically
change the picture - only the numerical complexity of extracting a solution.

The assumptions restrict us to a model of the form

S = )
(3.2) dre = g(T,t)dWe+ p, dt

As both assets are assumed tradeable, one knows from the classical complete market
paradigm that to obtain arbitrage prices, the next step is to choose A\; and p, so
as to make the measure risk neutral, in other words, chosen so that so that S; and
O, = p(S;,7¢) are both martingales, and take expectations. The risk free nature
of these prices make it standard that prices do not dependent on the real values
of these parameters. However, there is a new feature our model must satisfy, and
which we have not seen previously. It is clear that as time approaches maturity,
the prices of the option and the underlying must become more closely aligned and
compatible with the relationship determined by the payoff of the contingent claim.

Definition 3.1. We say that such a model as (3.2, 3.1) is consistent if at the
terminal time (Sp — 1)+ = O7. In other words if the first exit time of the process
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(O, Sy) from E occurs at time T' and at that time the process leaves E through the
lower boundary.

As an initial remark in the direction of understanding the condition of consistency
we remark that our models are always “almost” consistent, in the sense of the next
result.

Lemma 3.1. In any model in the above class, (S, O) will converge to point on
one of the three lines bounding E at maturity time.

Proof. Since (S;,0,) is a positive martingale in each co-ordinate, it must converge
as t tends to T". Suppose it converges to some point in the interior of . It follows
from standard martingale arguments that the Martingale must have finite quadratic
variation along almost every sample path. Moreover, the map from RT x RT
onto F is smooth with locally bounded and invertible derivative. So the quadratic
variation of (S¢,7;) provides a lower bound for that of (S;, 0;) and must also be
finite. However the assumption that (S;,7;) converges to an interior point ensures

that
T 2
/ < L5u> du =00
u=t T—u

giving a contradiction. From this we conclude that the process (S;, O;) must con-
verges to a boundary point as ¢ tends to T. |

3.4. Fixing the price. In this section we will do the computation giving the values
for Ay, 1, for which (s, P (s;,7;)) is martingale. Observe first that the requirement
that s; is a martingale implies that A; = O since V; is already a Brownian motion,
and hence a martingale. So all the interest is in identifying the correct form for
ft;. For this it seems substantially simpler to work in a fairly general way as the
explicit form of the Black and Scholes formula does not seem to play a big role. We
introduce a notation for the infinitesimal generator for the diffusion (s 7¢):

1 2 1, o 0
(3.3) L:—( T >32—+— Pt — +—

o\T—1)% 92 29 2 "Moo T

Then our requirement is to choose g, so that one has Lp(s,7) = 0.
By hypothesis p (s,7) is the Black-Scholes solution and satisfies (2.2) so that

(1 L, T 17
Lp = (2 g 627+<ut+<T_t>> aT)zo(«w)

and thus the condition that Lp = 0 translates into

9 . |om|_ 2(##(%))
ar %lar| g?
It remains to compute % log gﬁ and we will have an explicit form for p.

We could just go directly into computation using the formula (2.1) but it is better
and applies more generally to observe that if p is any solution to the equation

1,0 9
22 _ZY,-0
<28 Os2 6T>p

1.2 92

then so is g% , and this function can be rewriten as 55° 5= aswell. However, from

this it is obvious that the boundary data corresponding to the solution gﬁ for our
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particular p is given by a delta function and is hence relatively easy to compute
without computation!
We have

—T g% 9 1 op|
T—-1 2 ar Blar| T H
So far we have not used the explicit form of the call option Black and Scholes

solution, but on doing this one gets the following result.

Proposition 3.2. The value of u making the process (S¢,0,) risk neutral is given

by
K\2
_lf1, 1 1(111;) s T
F=9ls 2r 727 = |9 7T
which is deduced from
K
o |ow|_ 1 1+<1ns—0)
or Blor| T 78 2r 272
using the identily
9 |op|_ 2<M+<T37))
ar Blar| T g?

from abowve.

Corollary 3.3. The risk adjusted process has the infinitesimal generator

I :l T 2262
2\T—1% EXs

2
1 2 | 02 log (&) 1 1)\ 0
— T —)* | =— 2 \K/ - )=
_'_29(7—7 )l87'2+( 272 2r 8 ) or
1%}

o

Proof: We must be careful about normalisations to get a consistent answer.
Define

_1
ds; = s dV; or st:soev’5 3t

where V' is a Brownian motion with variance ¢ at time ¢, then
p(s, T—t)=E [(ST — K)Vs; = s]

and
1 §2 d?p
2 ds?

1,d
= E 5 2—2 —K)+|St:«90>

1%}
ap (So,T—t) =

[ 3ptenT -0 # - k)7
= - 50, S, S —F (8— S
A 2,0 0, d52
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so that

1 d?

a lo'e]
EP(SO,T) :/0 5,0(30,3,7') P ] (s—K)+ds

where p (80,8, T —t) is the density of the Log normal distribution. That is, it is
the density of spe Virg(T=8) gt 5. A simple calculation shows this to be

1 1 7!%‘r+log5710g50!2
,0(80,8,7’):;\/%6 T

Suppose that f is a smooth function of compact support at infinity and bouned at
zero then integrating by parts:

oo 2
/0 %f(s) 32%(3—K)+ds
= /Ool (s —K)© d—z(f(s) s%) ds
0 2 ds?

/ %(S—K) %(f(s) 32) ds

K
>*1d d 9
1/~ d
1
= §K2f(K)
and combining these two remarks we have that
0 1
EP(SOJ—) = §K2,0(807K7T)
1 2 1 (14 2In(K/s0))*
S ISR
4 T 8 T
and that
o |l L 27 (T4 2In (K/s0)) — (7 + 21n (K/s0))
ar Blor| T 2T 872
1 27(r+2In(K/s) — (T +2In (K/s))*
a 2T 872
1 (7'—0—2111%) (T—2ln§)
- T 872
2
| o1k
- T T s

K\2
L1, <1n 5)
8 27 272

and the result follows by substitution.
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3.5. Models for g. If T represents number of ticks of “operational time” till ma-
turity - then do we have any intuition as to how it should behave and how volatile
this estimate should be. Suppose then that you regard the volatility of market as a
measure of the number n of market actions till maturity, where n is large, then the
number that will arrive over a time period of length ¢ is approximately nt + /nt
(mean £ +/variance.) So it seems quite reasonable that the market view of the op-
erational time should swing by this sort of amount over a unit of time, suggesting
a model of the form
Tt

(B4)  dS, = |\ [m=rosdVi

1
3.5 d —_—
( ) Tt + 2T

ool —

1
TdW; + 5

for initial experiments. The crucial point is that the volatility of the operational
time is heavily dependent on the time to maturity. Moreover we have not just
assumed that the volatility of the underlying security is stochastic - more subtly we
have assumed that the option has its own vol depending on maturity. A heuristic
example of what we have in mind comes from the process of downloading a file
across the Internet. Most web browser programmes provide a continual estimate
for the time till download of the file - it is often based on some compromise between
the current and integrated rate of data transfer, and is remarkably frustrating as it
can go up as well as down. The relative volatility can get bigger as one gets near
the completion of the transfer.

The model above is obviously consistent, as the final term ensures that the
process T, for small time intervals near maturity, is bounded above with probability
one; and so combining with the lemma we proved above, about the convergence of
the process to one of the three boundaries of the region F, it follows that it must
converge to the lower boundary as required for consistency.

3.5.1. A second example. A second model sets ¢ = /T, /7 ,and seems rather

similar, as we do not expect the volatility , /== to fluctuate by orders of magnitude

as the contracts approach maturity. This second model has attractive features from
a mathematical perspective.

Tt

(3.65: 75 dVi

T

1
3dy, = ——dW, + | =
(B VT e+ | 5

2
K
1(111?,5) T T
— T — dt
2 T2 T—t T—t

+1
2T

|~

In this second example, we may transform this process into a nicer one by intro-
ducing a random time change. Let
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then we can rewrite (3.6,3.7) as

(3.8) dS; = s;dV,

1% 2
1 (hlsT)
57 T—1|du

~ 111 1
3.9 d dW, -l +—-
(3.9) T R n
The fascinating remark is that this model is not consistent. There is always a
small chance that the process 7 will escape to infinity.

4. WIDER ISSUES

4.1. Robust approaches to hedging. It is therefore open to the bank to devise
consistent models for the volatility of underlying assets and derivatives at once. It
goes without saying that this paper treats a very special case and is not the complete
picture. There are a number of ways in which to try to improve it. The first is to
note that it is not vital to get the correct volatility model for the joint behaviour.
This is because of the way these approaches to pricing are used in the market.
The point is that real contracts have quite small residual components after a crude
hedge with derivatives, so that the price of the contract is not ultra-sensitive, and
using a robust conservative hedging strategy permitting a wide possible range of
volatilities need not make a large difference to the price of a contract. It is also
easy to impliment.

4.2. Broader classes of model and many strikes. In general there are a num-
ber of tradeable derivatives, and those that are traded freely are often change with
only those broadly on the money having liquidity. Moreover different derivatives
have different maturity. We certainly do not have a clear model to choose in every
example - although the principle of looking for sensible and consistent models is
obviously a sensible one. However, we recall the approach of Dupire where he uses
derivatives at all strikes and maturities to predict a price dependent model for the
volatility of the security. This approach allows one to easily generalise the results
of this paper to derivatives with different strikes.

4.3. Other relevant work. Like the present paper, Zhu and Avelleneda [6] also
use a derivative as an additional stochastic state variable while explicitly retaining
market completeness, although from a somewhat different standpoint. They pre-
specifying a lognormal process for the instantaneous volatility of a single underlying
asset, and then make the connection with traded derivatives by identifying this
volatility with the implied volatility of short maturity call options, which necessarily
therefore have the same implied volatility.
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